
Algorithms and Data Structures 2014/15
Week 6 solutions (Tues 21st - Fri 24th October)

1. Show how to sort n integers in the range {1, . . . , n2} in O(n) time.

This question was on the tutorial sheet for week 5. However, I only covered the
material for this question today (Friday of week 5) so I put it on the week 6 sheet
also - probably most tutorial groups didn’t cover it yet.

answer: This is a simple application of the Radix Sort Theorem of lecture 8. The
theorem states that if we have numbers represented by b bits, we can sort in time
Θ(ndb/lg(n)e) time. When our numbers are the integers between 1 and n2, the
numbers of bits needed for the representation is b = d2 lg(n)e.
Then db/lg(n)e ≤ 4. So Radix sort (with bits taken in dlg(n)e size blocks) runs in
Θ(4n) = Θ(n).

2. Find an optimal parenthesization of a matrix-chain product whose sequence of di-
mensions is 〈5, 10, 12, 5, 50, 6〉.

answer:

Basically this question is to show how to iterate the dynamic programming Matrix-
chain algorithm given in lecture 9. We have 5 matrices A1, . . . A5, hence we need
a 5-by-5 table/array which we call m. Our first step is to set m[i, i] = 0 for every
1 ≤ i ≤ 5 (also we black out the bottom left-hand half of the array, since cells in that
part of the array represent sequences Ai . . . Aj for i > j, which doesn’t make sense).

In this solution, I don’t actually draw out the s matrix. The entries of the s matrix
only matter for sequences of ≥ 3 matrices (as there is only one possible parenthesi-
sation for sequences of length 1 or 2). However, I do mention the values given to s
in the description below for the cases of ` = 3 (A1A2A3, A2A3A4 and A3A4A5),
of ` = 4 (A1 . . . A4 and A2 . . . A5) and ` = 5.

Initialising the main matrix m, we get:

1 2 3 4 5
1 0
2 - 0
3 - - 0
4 - - - 0
5 - - - - 0

Now consider all “sequence windows” of length 2 (` = 2 in terms of line 4 of Ma-
trixChainOrder). In this case there is only ever one possible split (taking one
matrix on each side), hence there is no choice to be made - eg, for cell [1, 2], we have
m[1, 2] = 5 ∗ 10 ∗ 12 = 600.
Doing the same operation for m[2, 3], m[3, 4], m[4, 5], we get:

1



1 2 3 4 5
1 0 600
2 - 0 600
3 - - 0 3000
4 - - - 0 1500
5 - - - - 0

Next we consider windows of length 3 (` = 3 in the Algorithm).
We must fill-in m[1, 3],m[2, 4],m[3, 5]. I’ll do m[1, 3] in full:
For m[1, 3], we can choose k = 1 or k = 2 (k ← i to j − 1, line 8. of algorithm
MatrixChainOrder). If we take k = 1, our cost is

m[1, 1] +m[2, 3] + p0p1p3 = 0+ 600+ 5 ∗ 10 ∗ 5 = 850.

If we take k = 2, our cost is

m[1, 2] +m[3, 3] + p0p2p3 = 600+ 0+ 5 ∗ 12 ∗ 5 = 900.

Hence we set m[1, 3] = 850, s[1, 3] = 1 (remember s[i, j] stores the top-level split for
the optimum parenthesization). After doing m[2, 4],m[3, 5] similarly, we get the new
table:

1 2 3 4 5
1 0 600 850
2 - 0 600 3100
3 - - 0 3000 1860
4 - - - 0 1500
5 - - - - 0

We also have s[2, 4] = 3 and s[3, 5] = 3.

Next we do windows of length 4 - there are just two, [1, 4] and [2, 5]. Doing those
(I’m not giving details), we get

1 2 3 4 5
1 0 600 850 2100
2 - 0 600 3100 2400
3 - - 0 3000 1860
4 - - - 0 1500
5 - - - - 0

We also have s[1, 4] = 3 and s[2, 5] = 3.

2



Finally we must calculate m[1, 5]. There are 4 possibilities for top-level parentheses,
namely k = 1, 2, 3, 4. We have

m[1, 1] +m[2, 5] + p0p1p5 = 0+ 2400+ 5 ∗ 10 ∗ 6 = 2700

m[1, 2] +m[3, 5] + p0p2p5 = 600+ 1860+ 5 ∗ 12 ∗ 6 = 2820

m[1, 3] +m[4, 5] + p0p3p5 = 850+ 1500+ 5 ∗ 5 ∗ 6 = 2500

m[1, 4] +m[5, 5] + p0p4p5 = 2100+ 0+ 5 ∗ 50 ∗ 6 = 3600

Hence we have m[1, 5] = 2500 and s[1, 5] = 3.
You might want to trace back the s values to find the parenthesization.

3. We have the recurrence

kpk, bC =


0 if k = 0

kpk−1, bC if k > 0 but sk > Ĉ
max{kpk−1, bC, kpk−1, bC−sk

+ vk} otherwise
,

where kpk, bC denotes the maximum value solution for Knapsack considering the items

1, . . . , k and with capacity Ĉ.

(a) Show the recurrence is correct.

answer:

(i) The first case, when n = 0 is obvious. We have no items to pack, so the
optimal value is 0.

If k ≥ 1, then we focus on the final item in {1, . . . , k}. This have value vi and
size si.

(ii) In the case that sk > Ĉ, no feasible packing for k, Ĉ can contain item k.
The optimal solution is the same as the optimal one on the first k − 1 items
with the same capacity bound.

(iii) In the case that sk ≤ Ĉ, the set of feasible packings can be partitioned
depending on whether they contain item k, or do not contain item k.

By definition,

kpk, bC = max
S⊆{1,...,k}

{∑
i∈S

vi :
∑
i∈S

si ≤ Ĉ

}
.

The set of all S to be considered can be partitioned according to whether k ∈ S
or k 6∈ S. Using this partitioning, we can rewrite kpk, bC as

max

{
max

S⊆{1,...,k−1}

{∑
i∈S

vi :
∑
i∈S

si ≤ Ĉ

}
, max

S⊆{1,...,k−1}

{
vk +

∑
i∈S

vi : vk

∑
i∈S

si ≤ Ĉ

}}
,

where the left internal max selects the optimum knapsack not containing item k,
and the right internal max selects the optimum knapsack that does contain

3



item k. Now observe that by definition of kpk−1, bC, this implies

kpk, bC = max

{
kpk−1, bC, max

S⊆{1,...,k−1}

{
vk +

∑
i∈S

vi : vk

∑
i∈S

si ≤ Ĉ

}}
.

Also note that we have vk

∑
i∈S si ≤ Ĉ if and only if

∑
i∈S si ≤ Ĉ − sk, hence

we have

kpk, bC = max

{
kpk−1, bC, max

S⊆{1,...,k−1}

{
vk +

∑
i∈S

vi :
∑
i∈S

si ≤ Ĉ− sk

}}

= max

{
kpk−1, bC, vk + max

S⊆{1,...,k−1}

{∑
i∈S

vi :
∑
i∈S

si ≤ Ĉ− sk

}}
= max

{
kpk−1, bC, vk + kpk−1, bC−sk

}
,

where the final step follows by definition of kpk−1, bC−sk
.

(b) Now we use the recurrence to design our algorithm.

answer: The main issues to be considered in solving are dp1(a) and dp1(b)
(the collection of subproblems and the recurrence relating the problems), dp2
(the table(s) where the results will be stored) and dp3 (the order of filling
in the table(s)). For dp3, the order of filling in the table has to ensure the
subproblems on the rhs of the recurrence have *always* been solved and stored
(hence available for lookup) in advance of the problem on the lhs.

Now we give our solution:

dp1 dp1(a) and dp2(b). These decisions are easily made by reference the recur-
rence above in 2(a). This recurrence contains kpk,C ′ terms on the right-hand
side, for what seems like fairly changeable values of C ′ ≤ C. Hence we will
decide to solve kpk,C ′ for all 0 ≤ k ≤ n and all C ′ ∈ N, C ′ ≤ C.

dp2 We define two tables of size (n+ 1) · (C+ 1) each, one called kp, the other
called s. The kp table stores integers (the values of the “best” knapsacks)

and the s table stores binary values. For any 0 ≤ j ≤ n, 0 ≤ Ĉ ≤ C, the
entry kp[j, Ĉ] will denote the value of the best knapsack solution from items

1, . . . , j wrt capacity Ĉ - that is the value of kpj, bC. The auxiliary table s

is defined as follows - s[j, Ĉ] will be 1 if an optimal solution does include
item j and 0 otherwise.
Note that the space used by our algorithm is already Θ(n · C).

dp3 The tables are filled in increasing order of j, and then in increasing order
of Ĉ.
Initialize the 0th row and 0th column of kp and of s to contain all 0s. Note
that this initialization of the 0th row takes care of all instances of the “first
case” of our recurrence.

4



Next we consider each j from 1, . . . , n in turn, and for a particular j also
consider all Ĉs in increasing order. For a specific j, Ĉ, test whether si ≤ Ĉ
(this takes Θ(1) time), and depending on the result, either do a lookup of

kp[j− 1, Ĉ] or of both kp[j− 1, Ĉ] and also kp[j− 1, Ĉ− si]. Note that by
j− 1 < j, we have previously visited these cells and filled them, hence these
lookups are immediate, taking Θ(1) time. Then, with these values, compare

kp[j− 1, Ĉ] with kp[j− 1, Ĉ− si] + vi (Θ(1) time). Take the maximum and

assign kp[j, Ĉ] this value. If the first is larger, set s[j, Ĉ] to be 0, if the

second is larger, set s[j, Ĉ] to be 1.
The two tables can be entirely completed in Θ(n · C) time. To find the
actual knapsack solution (rather than just its value), we finish by starting

with j = n, Ĉ = C, and outputting ′j, ′ if and only if s[j, Ĉ] = 1, then

recursing either on cell [j− 1, Ĉ] or [j− 1, Ĉ− si].

4. Longest Common Subsequence Formally, given s = s1s2 . . . sn, we say that r =

r1 . . . rk is a subsequence of s if there is a strictly increasing sequence i1, i2, . . . , ik
of indices such that for all j = 1 . . . k we have rj = sij . Given two sequences x
and y we say that a sequence r is a common subsequence if r is a subsequence of
both x and y. In the longest common subsequence problem, we are given two se-
quences x = x1 . . . xn and y = y1 . . . ym and wish to find a maximum-length common
subsequence of x and y.

Give a O(mn)-time DP algorithm to solve longest common subsequence.

answer: (Students might notice that it can be cast in terms of edit distance). Here
is a sketch of a *direct* solution. We will write lcs to denote the Length of the lcs,
rather than the actual sequence.

To give a direct answer, the main observation is that we can have a concrete view
of any common subsequence of x and y using the concept of an alignment, where
the two sequences x and y have ‘-’ characters inserted into them to make x ′ and y ′

such that x ′ and y ′ are the same length and more importantly, when x ′ is laid out
above y ′ (two consecutive rows), the only indices where both x ′i 6= - and y ′j 6= - are
those indices where x ′i = y ′i; also, that reading these matching characters from left
to right gives the common sequence of interest. Take as an example, the two given
sequences ’miserable’ and ’amiable’. A common subsequence of these two words is
’iable’. An alignment which demonstrates this is shown below:

m - - i s e r a b l e
- a m i - - - a b l e

(note the above is an alignment, not necessarily the best one). Observe that the
length of the common sequence is given by the number of matching characters in the
alignment - hence the longest common subsequence problem is equivalent to finding

5



the alignment with the maximum number of matches. Also notice that there are
three possible options for the final column of the alignment:

• to place xn aligned with ym if we have a match between those characters (this
adds 1 to the length of the common subsequence);

• to align xn with ‘-’ in the final column. The best alignment which ends in this
way is equal to the best alignment of x1 . . . xn−1 with y.

• to align yn underneath a ‘-’ for the final column. The best alignment which
ends in this way is equal to the best alignment of x with y1 . . . ym−1.

dp1(a) What is the generalization we look at?

For lcs, we will generalize to the problem of finding lcs(x[1 . . . k], y[1 . . . `]), for
all 0 ≤ k ≤ n, all 0 ≤ ` ≤ m.

You might want to mention that there’s no justification for this, YET (we
could have considered generalising to computing lcs(x[k ′ . . . k], y[` ′ . . . `]) for all
k ′, k, ` ′, `, fortunately we’ll see that’s not necessary).

dp1(b) We need a recurrence to justify our choice of generalization (ie, why would it
be possible to use ‘small’ solutions to build bigger ones).

The recurrence is

lcs(x[1 . . . k], y[1 . . . `])

=

{
1+ lcs(x[1 . . . k− 1], y[1 . . . `− 1]) if xk = y`

max{lcs(x[1 . . . k− 1], y[1 . . . `]), lcs(x[1 . . . k], y[1 . . . `− 1]} otherwise

dp2 What size table do we need to store our solutions?

We will need a table of size (n+ 1)(m+ 1) (to store lcs for every k, `).

dp3 What are the rules for filling-in the table?

For k = 0 we fill the values of this row directly, setting lcs(x[1 . . . 0], y[1 . . . `]) =

0 for every 0 ≤ ` ≤ m. We also fill in column 0 the same way.

Then for k← 1 to n (in increasing order) we fill in row k in one go as follows:
we generate the values for lcs(x[1 . . . k], y[1 . . . `]) in terms of increasing `, using
the recurrence above.

This method of doing the rows in increasing order of k, and within each row,
in increasing order of `, ensures that the lcs values from the right-hand side of
the recurrence above are ALWAYS available in advance.

• Running time?

Θ(nm).

Mary Cryan

6


