
Algorithms and Data Structures 2016
Week 5 solutions (Tues 9th - Fri 12th February)

1. Draw the decision tree (under the assumption of all-distinct inputs) Quicksort for
n = 3.

answer: (of course you should also *explain* why to students)

2. What is the smallest possible depth of a leaf in a decision tree for a sorting algorithm?

answer: The shortest possible depth is n − 1. To see this, observe that if we have a
root-leaf path (say pr→`) with k comparisons, we cannot be sure that the permutation
π(`) at the leaf ` is the correct one.

proof: To see this consider a graph of n nodes, each node i representing A[i]. Draw
a (directed) edge from i to j if we compare A[i] with A[j] on the path from root to `.
Note that for k < n−1, this graph on {1, . . . , n} will not be connected. Hence we have
two components C1 and C2 and we know nothing about the relative order of array
elements indexed by C1 against elements indexed by C2. therefore there cannot be a
single permutation π that sorts all inputs passing these k tests - so π(`) is wrong for
some arrays which lead to leaf `.

1

3. Intuition: In doing this kind of question, you should always think of choosing com-
parisons which will carry most information - ie the result of the comparison (< or >)
will split our current possible permutations as close to half as possible.

(a) Let the numbers to be sorted be x, y, z, w. Here is the algorithm.

1. Compare (x, y).
2. Compare (z,w).
3. Compare (winner(1), winner (2)).
4. Compare (loser(1), loser(2)).
5. Compare (loser(3), winner(4)).

Output: winner(3), winner(5), loser(5), loser(4).

(b) Assume wlog all four inputs are distinct.
There are 4! = 24 different permutations of 4 inputs, all are possible outputs. We
model this as usual as a binary decision tree with at least 24 leaves (to cover each
permutation).

The length of a root-leaf path in the decision tree corresponds to the number of
comparisons done in sorting that particular permutation.

Suppose that we have a binary tree with height `. Then this tree has at most
2` leaves. To solve our 4-sort problem, we require 2` ≥ 24, hence we need ` ≥
lg 24 > 4 (to show lg 24 > 4 without calc, just observe lg 16 = 4).

Since path-length corresponds to no-of-comparisons, we need a tree which for
some inputs does more than 4 comparisons.

4. Show that there is no comparison sort whose running time linear for at least half of n!
inputs of length n. What about a fraction of 1/n of the inputs of length n? What
about a fraction of 1/2n?

Answer:

1st case: First case (1/2 of all n! inputs) is not much different from what’s in the notes.
Have a try, and if stuck, ask me.

2nd case: Take the second case - we would like an algorithm S which sorts in cn time,
for some c > 0, on at least a 1/n fraction of all n! input permutations.

For 2nd case, I will prove by contradiction. So suppose there is some sorting algorithm S

which sorts in cn time every permutation in some set P ⊂ Sn, such that |P| ≥ n!/n.
Consider the decision tree of S, and restrict it to the leaves which are labelled by
elements of P - by this, I mean that we remove every leaf not in P, every internal node
which has no elements of P below it, and every edge which has no elements of P below

2

it. Let hP denote the height of the restricted tree TP. We will now derive a lower bound
on hP.

Observe that as it stands, the restricted tree TP on P is not a binary tree, as there may
be many vertices which have just one child. We take care of this by contracting any
degree-2 vertices (except the root), ie by identifying the edges passing through such a
vertex. Finally, if the root node has degree 1 in TP , we will delete it and its outgoing
edge. These contractions and prunings create a binary tree T ′

P (though not necessarily
a complete or near-complete binary tree). The point to note is that T ′

P will have height
h ′
P such that h ′

P ≤ hP.
Now we lower bound h ′

P. By h ′
P ≤ hP this will automatically give us the exact same

lower bound on hP. We have a binary tree of height h ′
P, hence it can have at most 2h

′
P

leaves. Since |P| ≥ n!/n, it must contain at least n!/n leaves. Hence we require
2h

′
P ≥ n!/n, and by hP ≥ h ′

P, we certainly require 2hP ≥ n!/n = (n − 1)!. This
is equivalent to hP ≥ lg((n − 1)!). Then by (n − 1)! ≥ (n − 1)(n−1)/2, we require
hP ≥ lg((n− 1)(n−1)/2) = ((n− 1)/2) lg(n− 1).

note: I think it is clear that (n − 1)/2 lg(n − 1) is non-linear (ie is not O(n)). To
prove rigorously, imagine I am comparing against cn, for any given c (I’m doing this
because in the definition of O(·), we have the power to choose c). I will now show that
regardless of which c > 0 we are working with, that for sufficiently large n, we have
((n− 1)/2) lg(n− 1) > cn. Take n0 = 2

2c+2 + 1. Then for all n > n0,

((n− 1)/2) lg(n− 1) ≥ ((n− 1)/2) lg(n0 − 1)

=
n− 1

2
(2c+ 2)

≥ c(n− 1) + (22c+2)

= cn+ (22c+1 − c)

> cn.

Therefore, regardless of which c > 0 we chose, our corresponding definition of n0 gives
hP ≥ h ′

P ≥ ((n− 1)/2) lg(n− 1) > cn for all n ≥ n0. Hence we have a contradiction.

So no sorting algorithm can sort 1/nth of its inputs in linear time.

3rd case:

For the case when we ask about 1/2n, the answer is *still* no (no sorting alg takes just
linear time on this fraction).

It’s a bit harder though. When we are working with h ′
P, our assumption changes, and

now we have the condition
hP ≥ h ′

P ≥ lg(n!/2n),

3

since the size of the set P is now only required to be a 2n fraction. We then apply our
usual formula n! ≥ nn/2. Therefore it must be the case that

hP ≥ h ′
P ≥ lg(nn/2/2n).

Now observe that 2n = 4n/2, so the condition is exactly equivalent to asking for

hP ≥ h ′
P ≥ lg((

n

4
)n/2).

=
n

2
lg(
n

4
)

=
n

2
(lg(n) − lg(4))

=
n

2
(lg(n) − 2)

As in the solution to the 2nd case I’d say it was obvious that this is non-linear. . .

You might or might-not want to do a rigorous proof of non-linearity in relation to some
arbitrary cn. An interesting thing is that actually the n0 of 2nd case will work here.
This is just luck, maybe helped a bit by the fact that although n

2
(lg(n) − 2) is (a bit)

smaller than the value for 2nd case, it is nevertheless neater (in terms of working with
lg etc).

5. Tutor, for this question please follow the exact version of Partition from the slides -
if you use a different version, you may get not get non-stability (or may get an easier
example).

I tried to achieve this with just three items but could not see how . . .

Example: the array 6a, 4a, 6b, 4b.

At the top-level, 4b is the pivot.

Walking from the left, the first A[j] selected for ‘swapping’ (as <= 4) is j = 2

with A[2] = 4a.
i has been sitting to the left of the array (it did not move during j = 1) so it advances
to i← 1.
A[1] = 6a and A[2] = 4a get swapped, to give the new order 4a, 6a, 6b, 4b. So far so
good.
Now j = 3 has A[3] = 6b so nothing is done; this is the last index we must consider
for j so we exit the loop.
After exiting loop, i = 1, so we swaps A[2] = 6a and A[4] = 4b and return the array
4a, 4b, 6b, 6a with i+ 1 = 2 as the split point.
So next we have two calls with an 1-element array 4a, and a 2-element array 6b, 6a.
This version of Partition will end up swapping 6b with itself on the second call.
So the final output will be 4a, 4b, 6b, 6a.

4

hence not stable.

Your students might find a simpler example.

6. Intuition: A good way to first get a feel for this question is to consider the no-of-pivots
corresponding to the Best-case (equal splits all the way) and worst-case (array sorted)
for Running Time of non-random quicksort. In fact these turn out to be best-and-worst
cases for pivots also (again in the in non-random quicksort case, which is our question).

Lemma: We can show that (no matter how we choose the pivots), we use between
d(n − 1)/2e and max{0, n − 1} pivots to sort an array of size n (the reason the max
is there is to take care of n = 0).

Proof is by induction.

n = 1. We have 0 pivots, with 0 equal to d(n− 1)/2e and max{0, n− 1}. So ok here.

n > 1. Suppose true for all k < n (I.H.), now we show for n.
Suppose we split into two partitions of size i and n − i − 1, and assume wlog that
i is smallest, possibly zero (this guarantees n − i − 1 is not zero). Then piv(n) =
piv(i) + 1+ piv(n− i− 1).

For lower bound we know piv(i) ≥ d(i− 1)/2e, and piv(n− i− 1) ≥ d(n− i− 2)/2e.
So

piv(n) ≥ 1+ d(i− 1)/2e+ d(n− i− 2)/2e.

Best way of finishing this is to do case analysis on odd/evenness of n and i. In all 4
cases you will get a lower bound of d(n− 1)/2e (which is only met for n odd, i odd).

For upper bound, we observe that

piv(n) ≤ 1+ max{0, i− 1}+ (n− i− 2) ≤ (n− 1).

(we only have one max because we know the rhs has n− i− 1 > 0)

Worst case: Take an array in sorted order 1, 2, 3, . . . , n.
At each step, we will split into a subarray of length n−1, then the pivot, and an empty
subarray. Hence we use n− 1 pivots.

Best case: take an array of length 2k − 1 for some k. The array is arranged so that
the final element is 2k−1 and such that all elements less than 2k−1 are in the first 2k−1

positions, and all elements greater than this are in the last 2k−1 positions (also this
is true *recursively*, I don’t have time to write details). Then, the first pivot splits
the array exactly into two parts of equal size 2k−1 − 1, with the pivot in the middle.
Applied recursively, this means we use 2k−1 − 1 = d(n− 1)/2e calls - I’m not going to
prove this, but check n = 15 as an example.

5

7. Show how to sort n integers in the range {1, . . . , n2} in O(n) time.

answer: This is a simple application of the Radix Sort Theorem of lecture 9. The
theorem states that if we have numbers represented by b bits, we can sort in time
Θ(ndb/lg(n)e) time. When our numbers are the integers between 1 and n2, the
numbers of bits needed for the representation is b = d2 lg(n)e.
Then db/lg(n)e ≤ 4. So Radix sort (with bits taken in dlg(n)e size blocks) runs in
Θ(4n) = Θ(n).

Mary Cryan

6

