1. The more tricky ones are (c) and (f) (I think)

(c). The answer is that \sqrt{n} is neither $O(n \sin(n))$ nor $\Omega(n \sin(n))$. The reason for this is the sin curve and the erratic behaviour of $\sin(n)$.

No matter how big n_0 is, there are always infinitely many $n > n_0$ so that $\sin(n)$ approaches 1; also there are infinitely many $n > n_0$ so that $\sin(n)$ approaches -1.

(f) It is actually the case that this pair of expressions are Theta of each other. This might be surprising to the students because it is absolutely *not* true if we don’t take the ‘lg’ of each side.

Use the formula $n^{n/2} < n! < n^n$. Tell them you are using this - they will be using it later in the course, but haven’t seen it yet.

2. The recurrence (as usual n is $j - i + 1$) is

$$T_{RM}(n) = \begin{cases} 1 & \text{if } n = 1 \\ T_{RM}(\lfloor \frac{n}{2} \rfloor) + T_{RM}(\lceil \frac{n}{2} \rceil) + 4 & \text{if } n > 1 \end{cases}$$

The 1 for the case of $n = 1$ comes from the observation that the only work done in this case is the comparison of i and j. The 4 in the recursive case comes from the $i < j$ test, the assignment to m (I guess it is debatable how many operations this corresponds to), the test $\ell < r$, and the subsequent return.

Then using the Master theorem, we have $k = 0$ and $c = 1$. Hence running time is $\Theta(n)$.

3. (a) We prove $T(\hat{n}) = (\hat{n})^2(1 + \lg(\hat{n}))$ for all powers-of-2 by induction.

base case: $p = 0$ and $n = 1$. Then $T(1) = 1$ by definition. Also $1^2(1 + \lg(1)) = 1^2(1 + 0) = 1$. So true.

Induction hypothesis (IH): $T(\hat{n}) = (\hat{n})^2(1 + \lg(\hat{n}))$ for $\hat{n} = 1, \ldots, 2^p$.

Induction step: We must prove that under the (IH), that the claim also holds for $\hat{n} = 2^{p+1}$.

We have $p + 1 \geq 1$, so $2^{p+1} \geq 2$, so we can apply the recurrence to get

$$T(2^{p+1}) = 4T(\lfloor 2^{p+1}/2 \rfloor) + 2^{2(p+1)}$$
$$= 4T(2^p) + 2^{2(p+1)} \quad \text{(because } 2^{p+1}/2 = 2^p \in \mathbb{N})$$
$$= 4(2^p)^2(1 + \lg(2^p)) + 2^{2(p+1)} \quad \text{(by (IH))}$$
$$= 2^{2p+2}(1 + \lg(2^p)) + 2^{2(p+1)}$$
$$= 2^{2p+2}(\lg(2^{p+1})) + 2^{2(p+1)} \quad \text{(by } \lg(2 \cdot 2^p) = \lg(2) + \lg(2^p) = 1 + \lg(2^p))$$
$$= 2^{2p+2}(1 + \lg(2^{p+1})),\)
as required.

Note that the first line is obtained by substituting \(\hat{n} = 2^{p+1} \) into the recurrence; the second line is by observing that \(\lfloor \cdot \rfloor \) is unnecessary as \(2^{p+1}/2 = 2^p \) is an integer; the third line is due to substituting the (IH) for \(T(2^p) \), \(2^p \) being strictly smaller than \(2^{p+1} \); the fourth and fifth lines come from applying multiplication and properties-of-logs directly; and the final line by rearranging terms.

(b) We can just prove \(T(n) \leq T(n+1) \) for all \(n \in \mathbb{N} \). Then we can use transitivity to observe that \(T(j) \leq T(k) \) for all \(j < k, j, k \in \mathbb{N} \). There are other ways, eg working explicitly with \(n \) and \(m \), but the (IH) would be slightly messier in wording - eg, see slide 13, lecture 2: where the (IH) is less tidy.

First we prove the base case.

Base case: \(k = 1 \). We have \(T(1) = 1 \); however \(T(2) = 4 \cdot T(1) + 2^2 = 8 \); clearly \(T(1) < T(2) \).

Next we formulate our Induction Hypothesis.

Induction Hypothesis (IH): for every \(k, 1 \leq k < n \), we have \(T(k) < T(k+1) \).

Induction step: Based on the (IH) for all \(k < n \), we will show \(T(n) \leq T(n+1) \) also. Note we must have \(n \geq 2 \) (else we’d be in the base case), so the recursive step of the recurrence applies to both \(T(n) \) and also \(T(n+1) \). We can write

\[
T(n) = 4T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n^2 \\
T(n+1) = 4T\left(\left\lfloor \frac{n+1}{2} \right\rfloor \right) + (n+1)^2
\]

Now observe that either

\[
\left\lfloor \frac{n+1}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor \text{ or } \left\lfloor \frac{n+1}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor + 1.
\]

In the first case \(n \) even, \(\left\lfloor \frac{n+1}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor \), we have \(4T\left(\left\lfloor \frac{n+1}{2} \right\rfloor \right) = 4T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) \).

In the second case \(n \) odd) the (IH) can be applied to \(\left\lfloor \frac{n}{2} \right\rfloor \) because \(\left\lfloor \frac{n}{2} \right\rfloor \leq n \) (this is true always when \(n \geq 2 \)). Hence the (IH) tells us that \(4T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) < 4T\left(\left\lfloor \frac{n+1}{2} \right\rfloor \right) \).

We get \(4T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) \leq 4T\left(\left\lfloor \frac{n+1}{2} \right\rfloor \right) \) in either case.

Also \(n^2 < (n+1)^2 \). Combining these two facts, we get that overall \(T(n) < T(n+1) \) (ie, given the (IH), the claim holds for \(n \) also).

By induction, we have \(T(n) < T(n+1) \) for all \(n \in \mathbb{N} \).

(*) Note we really needed a recurrence with \(= \) and with explicit constants (no \(O \), no \(\Theta \)) to prove the strictly increasing. This is because we substituted the \(T \) on the right-hand side and the left-hand side of the claim \(T(j) < T(k) \).

(c) Now consider an arbitrary \(n \in \mathbb{N} \). Let \(p \) be the greatest integer such that \(2^p \leq n \) (note we are then guaranteed \(2^p > n/2 \)).

By (a), \(T(2^p) = (2^p)^2(1 + \lg(2^p)) \). By (b), we know that \(T(n) \geq T(2^p) \).
By above $2^p > n/2$. Hence we have

$$T(n) \geq T(2^p) = (2^p)^2(1 + \lg(2^p))$$

$$> (n/2)^2(1 + \lg(n/2))$$

$$= \frac{n^2}{4}(\lg(n)).$$

This gives $\Omega(n^2 \lg(n))$ for $n_0 = 1$ and $c = 1/4$.

4. For (c) you only need to show (a) and (b), then you get (c) automatically. So the main thing to do is prove (a) and (b).

I’ll do (b) (the lower bound Ω), the more tricky one (tutors/students probably able to do (a) themselves – though tutors might want to use it as a warm-up).

Proof of (b): Assume at least one coefficient a_i, for $i < d$, is non-zero (otherwise the proof is easy), and define $C = (|a_0| + |a_1| + \ldots + |a_{d-1}|)$. Take $c = a_d/2$, $n_0 = 2\lceil C/a_d \rceil$. Then for all $n \geq n_0$, we have

$$\sum_{i=0}^d a_in^i \geq a_dn^d - \sum_{i=0}^{d-1} |a_i|n^i$$

$$\geq (a_d/2)n^d + Cn^{d-1} - \sum_{i=0}^{d-1} |a_i|n^i$$

$$\geq (a_d/2)n^d + Cn^{d-1} - Cn^{d-1} = (a_d/2)n^d$$

$$\geq (a_d/2)n^k \quad \text{for any } k \leq d.$$

Hence by definition of Ω, we have $p(n) = \Omega(n^k)$ for all $k \leq d$.

A good way to “arrive at” the proof (rather than present it as a ‘fait accompli’) is to consider what we need to show $\Omega(n^k)$ (for $k \leq d$). We need to find $c > 0, n_0 \in \mathbb{N}$ so that

$$\sum_{i=0}^d a_in^i \geq cn^k \quad \text{for } k \leq d.$$

$$\Leftrightarrow \sum_{i=0}^d a_in^i - cn^k \geq 0 \quad \text{for } k \leq d.$$

and develop this downwards to see what setting of c, n_0 are sufficient to make this possible.

5. Use Strassen’s algorithm to compute the matrix product

$$\begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} 8 & 4 \\ 6 & 2 \end{pmatrix}.$$
6. Describe an algorithm for efficiently multiplying a \((p \times q)\) matrix with a \((q \times r)\) matrix, where \(p, q, r\) are arbitrary positive integers. The running time should be \(\Theta(n \lg(7))\), where \(n = \max\{p, q, r\}\).

Answer:

Let \(A\) be the \(p \times q\) matrix, and \(B\) be the \(q \times r\) matrix. We round up the matrices to become \(n \times n\) matrices \(A', B'\), keeping \(A\) in the top lhs of \(A'\) (and similarly \(B\) in the top lhs of \(B'\)). All the entries outside the top-left \(p \times q\) of \(A'\) are 0 and similarly for entries outside the top-left \(q \times r\) of \(B'\).

We call \textsc{Strassen}(\(A', B'\)) and then extract the top-left hand \(p \times r\) matrix.

For this alg it’s clear that the runtime is \(\Theta(n^{\lg(7)})\) (because that is the running time of \textsc{Strassen} on \(n \times n\) matrices, and because the “extra work” in mapping to-and-from \(n \times n\) matrices is only \(O(n^2)\)).

observation: A tangential issue wrt this algorithm is that for this general “rectangular” case it is NOT clear that this “reduce to \textsc{Strassen}” algorithm is often a good strategy. Suppose wlog that \(p = \max\{p, q, r\}\). Then the naïve matrix multiplication algorithm is \(\Theta(pqr)\). Our asymptotic running-time from “reduce to \textsc{Strassen}” is only better if \(qr \geq p^{\lg(7)} - 1 \sim p^{1.8}\), which is not necessarily the case in the “rectangular” setting.

Mary Cryan