
Algorithms and Data Structures 2013/14
Week 10 “tutorial” solutions (no tutorial happened)

1. Show how to determine in O(n2 lgn) time whether any three points in a set of n
points are co-linear.

answer: This one depends on observing that if three points are co-linear, and we
draw them in a line, then one of the three points must be lowest - ie, have the
smallest y-value (if there are ties, we take the leftmost such point). Suppose p, q, r
are co-linear, and p is the lowest. Then the polar angle of q wrt p is the same as the
polar angle of r wrt p.

Our algorithm is as follows:
Choose every point p in turn, to act as the origin.
Then sort all of the other points in terms of their polar angle wrt p.
Finally do a linear search of the sorted points - if any two neighboring points in the
sort have equal polar angles (mod π), they are co-linear with p, and we can terminate
with yes.
Repeat until all points have been considered as the origin.

I did not yet explain how we can sort by polar angle - it is not too difficult. We can
use a standard sorting algorithm such as MergeSort, except that we must change
the comparison operator. That can be done by observing that we can compare the
polar angles of q, r wrt p by considering the vectors −→pq and −→pr. By definition, the
vector −→pr is anti-clockwise of −→pr iff (r − p)× (q − p) < 0. This is almost enough to
order r and q by polar angle wrt p. First suppose the the y-coordinate of q − p is
non-negative:
If (r− p)× (q− p) < 0, then r has greater polar angle wrt p than q;
alternatively if (r− p)× (q− p) > 0, then q has polar angle greater
than r if and only if r− p has a non-negative y-coordinate.
If (r− p)× (q− p) = 0, then we need to check the y coordinate of r− p.
We can do similar case analysis for q− p having a negative y-coordinate.

This polar-angle comparison operator can (clearly) be evaluated in constant time for
any pair q, r. Hence by plugging the new comparison into MergeSort (say), we can
sort polar angles wrt p in Θ(n lgn) time. Finally in a linear walk through the array
we can search for any pair of neighbouring points q, q ′ such that (q−p)×(q ′−p) = 0.

Notice that in the last phase (where we do a linear scan looking for neighbours with
0 cross product) we are forgetting to check for q, q ′ which are a polar angle π apart.
This does not hurt our algorithm - even if it is the case that the 3 colinear points
are such that p lies between q and q ′, we will observe the co-linearity whenever we
choose q or q ′ as our base point, whichever happens first.

1

2. In the online convex hull problem, we are given the set Q of n points one point at
a time. After receiving each point, we are to compute the convex hull of the points
seen so far. Obviously, we could run Graham’s scan once for each point, with a total
running time of O(n2 lgn). Show how to improve this slightly, by showing we can
solve the online convex hull problem in O(n2).

This is Ex. 33.3-5 of [CLRS]. Ex. 35.3-5 of [CLR].

answer: It is good to first think about why the näıve algorithm (re-running Graham’s
scan each time a point is added) will only lead to the bound O(n2 lg(n)). This is
because, if Graham’s scan is O(n lg(n)), this means there is some c ≥ 0 such that
the running time of Graham’s scan is ≤ cn lg(n) for sufficiently large n. This gives
us the following upper bound

n∑
k=3

ck lg(n)

of the running time of the näıve online algorithm. Taking only the terms from
k = n/2 to k = n, this would give us an expression as large as n2

4
(lg(n) − 1) which

is of the form Θ(n2 lg(n)). So we need to work harder...

In coming up with our better online algorithm, note that the points p1, . . . , pn may
arrive in any order, the ordering of them does not imply any geometric relationship
(it is important to remember this, to distinguish from the scenario of the standard
Convex Hull algorithm, where we sort all points together first, and then access points
in order of polar angle)

For our improved algorithm, we assume, that the convex hull of a set of points is
represented by its points presented in anti-clockwise order, starting with the bottom-
most point (if there is more than one point with this y-coordinate, then take the
left-most of these). In the online setting, we will consider a number of such “convex
hulls’, as points are added.

The näıve algorithm was defined by running the convex hull algorithm again every
time a new point was added - this having the time-bound O(k lg(k)) for the update
for the kth point.

Our better algorithm will just use O(k) work to update the convex hull for the k-
th point. We will not need to do the sorting of points (which is what drives the
O(n lg(n)) running time of Graham’s scan) when we are just adding a new extra
point to a current convex hull. This is because if we have the convex hull C(k − 1)

of the points {p1, . . . , pk−1}, then this lists the points of that hull in counterclockwise
order from the bottom-most (and left-most if breaking ties) point in that set.

Now consider the work we need to do in updating the convex hull C(k− 1) to obtain
C(k), ie to consider the change on adding pk.

2

• First suppose pk sits in the interior of C(k−1). Then C(k) is equal to C(k−1).
We can detect this case by the fact that if p1,k−1, . . . , p`(k−1),k−1 are the points
of C(k − 1) in anti-clockwise order from the lowest one p1,k−1, then for every
1 ≤ i ≤ `(k − 1), pi,k−1 → pi+1,k−1 → pk involves a left-turn (note we perform
i+ 1 in a wrap around fashion, with p`(k−1)+1,k−1 =def p1,k−1)

• Alternatively suppose that pk is on the exterior of C(k − 1). Then the convex
hull consists of pk plus one continuous segment from C(k − 1) - usually this
segment will consist of most of the existing points on the convex hull C(k− 1).
In this scenario, the left/right turns of the convex hull C(k − 1) wrt pk can be
characterised as follows:

– In considering the points of C(k − 1) from the bottom-most point p1,k−1

onwards, let i be the first point such that pi,k−1 → pi+1,k−1 → pk involves
a right turn.

– Subsequent to finding the i defined above, let j be the first index after i
such that pj,k−1 → pj+1,k−1 → pk involves a left turn.

– It is easy to argue that ph,k−1 → ph+1,k−1 → pk is always a left turn from
h = j all the way round to h = i− 1.

– The convex hull C(k) is equal to p1,k−1 . . . , pi,k−1, pk, pj,k−1 . . . , p`(k−1),k−1.

The following picture is a good reference point for the discussion.

p k

Now we observe that the updating of C(k− 1) to become C(k) just involves a linear
scan of the existing points (of which there are at most k − 1) on C(k − 1), with
the “work done” in considering each point, being just constant-time (doing the left-
turn/right-turn test). Overall the update for the new point pk takes O(n) time.

3. Prove that the problem of finding the Convex Hull of n points has a lower bound
of Ω(n lgn). For this, think about using a reduction from sorting to Convex Hull
(that is, think about how to use a Convex Hull algorithm to sort a list of numbers).

answer: The best approach for this one is to think about *what* the convex hull
problem is.

The question is asking for a reduction - in other words, showing how to map one
problem to another.

3

There is only one observation needed - if we are given a set of points which form a
convex polytope in the plane, then the convex hull is just the list of those points in
counterclockwise order (guess this last point is important, the convex hull lists the
points in order).

We are given a list of numbers which we wish to sort. I’m not going to assume
anything special about them, no bounds on size, they can be reals (though not
complex), etc. However as we know from our information-theoretic lower bounds
on sorting, we may assume that the numbers we wish to sort are distinct (this is a
special case of sorting which we know has complexity Ω(n lgn))

For our reduction, we first do a linear scan of the numbers, separating them into
positive and negative sets. We will do two rounds of the convex hull problem.

First take the set of non-negative numbers:
We will map each number to a point in the plane. To do this I want to think of a
mapping which will arrange the points along a convex curve in the plane (so that all
points will wind up on the convex hull). So I will work with the curve x → x2. For
every non-negative number x in our list of elements to be sorted, we add (x, x2) to
the set of points for convex hull. Finally, we add an extra point (−1, 0) (to act as an
anchor). Note that because the curve x → x2 is convex, every point (x, x2) will end
up on the convex hull. Also (−1, 0) will lie on the convex hull. Moreover, remember
our requirement that the convex hull points should be output in anti-clockwise order.
Hence the points will be returned in increasing order of (x, x2). Since this order is the
same as the increasing order of the numbers x, we have sorted all positive numbers.

Similarly, we take the set of negative numbers and map every x here to (|x|, x2). Then
after making a call to convex hull, the points are returned in increasing order of |x|,
ie in decreasing order of x. We invert the list of sorted points, and take −|x| for each
point. Then we have the negative numbers in sorted order.

Finally we merge the two lists in Θ(n) time.

Hence we have an algorithm which uses two calls to the Convex Hull problem and
a linear amount of “extra work” (eg, partitioning into small/large, mapping from
numbers to points and back again, merging the two sorted lists) to sort the list of
input numbers. We can write

Tsort(n) ≤ 2Thull(n) +Θ(n).

However we know sorting is Ω(n lgn). Hence 2Thull(n) + Θ(n) is Ω(n lgn) . We
know Θ(n) cannot beΩ(n lgn), hence it must be the case that 2Thull(n) isΩ(n lgn).

note: This last step is why we need to count up the “extra work” done on top of the
calls to the convex-hull problem (we have to arrange things so that the lower bound
must be satisfied by the convex hull calls).

4

note 2: We cheated a *tiny* bit, but I think this is a nice question and worth doing
anyhow. If we are being strict with ourselves we should not assume Ω(n lgn) for
this version of sorting. We proved Ω(n lgn) for comparison-based sorting, and here
we have a bit more information, we know the elements to be sorted are at least real
numbers.

Strictly we can’t be sure we have an Ω(n lgn) bound for this case - though on the
other hand, Radix sort does not apply to reals in general (only reals which can
be represented with a bounded number of bits). The Ω(n lg(n)) lower bound is a
sensible thing to believe for inputs which are general reals, though we don’t have an
answer one way or the other.

Mary Cryan

5

