Algorithms and Data Structures:
Counting sort and Radix sort

8th February, 2016
Special Cases of the Sorting Problem

In this lecture we assume that the sort keys are sequences of bits.

- Quite a natural special case. Doesn’t cover everything:
 - eg, exact real number arithmetic doesn’t take this form.
 - In certain applications, eg Biology, pairwise experiments may only return $>$ or $<$ (non-numeric).

- Sometimes the bits are naturally grouped, eq, as characters in a string or hexadecimal digits in a number (4 bits), or in general bytes (8 bits).

- Today’s sorting algorithms are allowed access these bits or groups of bits, instead of just letting them compare keys . . .
 This was NOT possible in comparison-based setting.
Easy results . . . Surprising results

Simplest Case:
Keys are integers in the range 1, . . . , m, where \(m = O(n) \) (\(n \) is (as usual) the number of elements to be sorted). We can sort in \(\Theta(n) \) time.
Easy results ... Surprising results

Simplest Case:
Keys are integers in the range 1, ..., m, where $m = O(n)$ (n is (as usual) the number of elements to be sorted). We can sort in $\Theta(n)$ time (big deal)
Easy results . . . Surprising results

Simplest Case:
Keys are integers in the range 1, . . . , \(m \), where \(m = O(n) \) (\(n \) is (as usual) the number of elements to be sorted). We can sort in \(\Theta(n) \) time
(big deal . . . but will help later).
Easy results ... Surprising results

Simplest Case:
Keys are integers in the range 1, ..., m, where $m = O(n)$ (n is (as usual) the number of elements to be sorted). We can sort in $\Theta(n)$ time (big deal ... but will help later).

Surprising case: (I think)
For any constant k, the problem of sorting n integers in the range $\{1, \ldots, n^k\}$ can be done in $\Theta(n)$ time.
Counting Sort

Assumption: Keys (attached to items) are Ints in range $1, \ldots, m$.

Idea
1. Count for every key j, $1 \leq j \leq m$ how often it occurs in the input array. Store results in an array C.
2. The counting information stored in C can be used to determine the position of each element in the sorted array. Suppose we modify the values of the $C[j]$ so that now $C[j] =$ the number of keys less than or equal to j. Then we know that the elements with key j must be stored at the indices $C[j-1]+1, \ldots, C[j]$ of the final sorted array.
3. We use a "trick" to move the elements to the right position of an auxiliary array. Then we copy the sorted auxiliary array back to the original one.
Counting Sort

Assumption: Keys (attached to items) are Ints in range 1, ..., \(m \).

Idea

1. Count for every key \(j \), \(1 \leq j \leq m \) how often it occurs in the input array. Store results in an array \(C \).
Counting Sort

Assumption: Keys (attached to items) are Ints in range 1, \ldots, m.

Idea

1. Count for every key \(j \), \(1 \leq j \leq m \) how often it occurs in the input array. Store results in an array \(C \).

2. The counting information stored in \(C \) can be used to determine the position of each element in the sorted array. Suppose we modify the values of the \(C[j] \) so that now

\[
C[j] = \text{the number of keys less than or equal to } j.
\]

Then we know that the elements with key “\(j \)” must be stored at the indices \(C[j - 1] + 1, \ldots, C[j] \) of the final sorted array.

ADS: lect 9 – slide 4 – 8th February, 2016
Counting Sort

Assumption: Keys (attached to items) are Ints in range 1, ..., m.

Idea

1. Count for every key j, $1 \leq j \leq m$ how often it occurs in the input array. Store results in an array C.

2. The counting information stored in C can be used to determine the position of each element in the sorted array. Suppose we modify the values of the $C[j]$ so that now

 $$C[j] = \text{the number of keys less than or equal to } j.$$

 Then we know that the elements with key “j” must be stored at the indices $C[j-1] + 1, \ldots, C[j]$ of the final sorted array.

3. We use a “trick” to move the elements to the right position of an auxiliary array. Then we copy the sorted auxiliary array back to the original one.
Implementation of Counting Sort

Algorithm Counting Sort(A, m)

1. \(n \leftarrow A.\text{length} \)
2. Initialise array \(C[1 \ldots m] \)
3. for \(i \leftarrow 1 \) to \(n \) do
4. \(j \leftarrow A[i].\text{key} \)
5. \(C[j] \leftarrow C[j] + 1 \)
6. for \(j \leftarrow 2 \) to \(m \) do
7. \(C[j] \leftarrow C[j] + C[j - 1] \) \(\triangleright \) \(C[j] \) stores \# of keys \(\leq j \)
8. Initialise array \(B[1 \ldots n] \)
9. for \(i \leftarrow n \) downto 1 do
10. \(j \leftarrow A[i].\text{key} \) \(\triangleright A[i] \) highest w. key \(j \)
11. \(B[C[j]] \leftarrow A[i] \) \(\triangleright \) Insert \(A[i] \) into highest free index for \(j \)
12. \(C[j] \leftarrow C[j] - 1 \)
13. for \(i \leftarrow 1 \) to \(n \) do
14. \(A[i] \leftarrow B[i] \)

ADS: lect 9 – slide 5 – 8th February, 2016
Analysis of Counting Sort

- The loops in lines 3–5, 9–12, and 13–14 all require time $\Theta(n)$.
- The loop in lines 6–7 requires time $\Theta(m)$.
- Thus the overall running time is $O(n + m)$.
- This is linear in the number of elements if $m = O(n)$.

Note: This does not contradict Theorem 3 from Lecture 7 - that's a result about the general case, where keys have an arbitrary size (and need not even be numeric).

Note: Counting-Sort is **stable**.

(After sorting, 2 items with the same key have their initial relative order.)
Analysis of Counting Sort

- The loops in lines 3–5, 9–12, and 13–14 all require time $\Theta(n)$.
- The loop in lines 6–7 requires time $\Theta(m)$.
- Thus the overall running time is $O(n + m)$.

- This is linear in the number of elements if $m = O(n)$.

Note: This does not contradict Theorem 3 from Lecture 7 - that’s a result about the general case, where keys have an arbitrary size (and need not even be numeric).
Analysis of Counting Sort

- The loops in lines 3–5, 9–12, and 13–14 all require time $\Theta(n)$.
- The loop in lines 6–7 requires time $\Theta(m)$.
- Thus the overall running time is

\[O(n + m). \]

- This is linear in the number of elements if $m = O(n)$.

Note: This does not contradict Theorem 3 from Lecture 7 - that’s a result about the general case, where keys have an arbitrary size (and need not even be numeric).

Note: Counting-Sort is STABLE.

- (After sorting, 2 items with the same key have their initial relative order).

ADS: lect 9 – slide 6 – 8th February, 2016
Radix Sort

Basic Assumption

Keys are sequences of digits in a fixed range $0, \ldots, R - 1$, all of equal length d.

Examples of such keys

- 4 digit hexadecimal numbers (corresponding to 16 bit integers)
 $R = 16, d = 4$

- 5 digit decimal numbers (for example, US post codes)
 $R = 10, d = 5$

- Fixed length ASCII character sequences
 $R = 128$

- Fixed length byte sequences
 $R = 256$

ADS: lect 9 – slide 7 – 8th February, 2016
Stable Sorting Algorithms

Definition 1
A sorting algorithm is **stable** if it always leaves elements with equal keys in their original order.
Stable Sorting Algorithms

Definition 1
A sorting algorithm is stable if it always leaves elements with equal keys in their original order.

Examples
- Counting-Sort, Merge-Sort, and Insertion Sort are all stable.
- Quicksort is not stable.
- If keys and elements are exactly the same thing (in our setting, an element is a structure containing the key as a sub-element) then we have a much easier (non-stable) version of Counting-Sort. (How? ... CLASS?).
Radix Sort (cont’d)

Idea

Sort the keys digit by digit, *starting with the least significant digit*.

Example

Each of the three sorts is carried out with respect to the digits in that column. “Stability” (and having previously sorted digits/suffixes to the right), means this achieves a sorting of the suffixes starting at the current column.

ADS: lect 9 – slide 9 – 8th February, 2016
Radix Sort (cont’d)

Algorithm \textsc{Radix-Sort}(A, d)

1. \hspace{1em} for $i \leftarrow 0$ to d do
2. \hspace{2em} use stable sort to sort array A using digit i as key

Most commonly, \textsc{Counting Sort} is used in line 2 - this means that once a set of digits is already in sorted order, then (by \textit{stability}) performing \textsc{Counting Sort} on the \textit{next-most significant} digits preserves that order, within the “blocks” constructed by the new iteration.

Then each execution of line 2 requires time $\Theta(n + R)$. Thus the overall time required by \textsc{Radix-Sort} is

$$\Theta(d(n + R))$$
Sorting Integers with Radix-Sort

Theorem 2
An array of length n whose keys are b-bit numbers can be sorted in time

$$\Theta(n\lceil b/\lg n \rceil)$$

using a suitable version of Radix-Sort.

Proof: Let the digits be blocks of $\lceil \lg n \rceil$ bits. Then $R = 2^{\lceil \lg n \rceil} = \Theta(n)$ and $d = \lceil b/\lceil \lg n \rceil \rceil$. Using the implementation of Radix-Sort based on Counting Sort the integers can be sorted in time

$$\Theta(d(n + R)) = \Theta(n\lceil b/\lg n \rceil).$$

Note: If all numbers are at most n^k, then $b = k \lg n \ldots \Rightarrow$ Radix Sort is $\Theta(n)$ (assuming k is some constant, eg 3, 10).
Reading Assignment

[CLRS] Sections 8.2, 8.3

Problems

1. Think about the qn. on slide 7 - how do we get a very easy (non-stable) version of Counting-Sort if there are no items attached to the keys?

2. Can you come up with another way of achieving counting sort's $O(m + n)$-time bound and stability (you will need a different data structure from an array).

3. Exercise 8.3-4 of [CLRS].