Algorithmic Paradigms

Divide and Conquer

Idea: Divide problem instance into smaller sub-instances of the same problem, solve these recursively, and then put solutions together to a solution of the given instance.

Examples: Mergesort, Quicksort, Strassen’s algorithm, FFT.

Greedy Algorithms

Idea: Find solution by always making the choice that looks optimal at the moment — don’t look ahead, never go back.

Examples: Prim’s algorithm, Kruskal’s algorithm.

Dynamic Programming

Idea: Turn recursion upside down.

Example: Floyd-Warshall algorithm for the all pairs shortest path problem.

Fibonacci Example (cont’d)

Running time $T(n)$ satisfies

$$T(n) = T(n-1) + T(n-2) + \Theta(1) \geq F_n \sim (1.6)^n.$$

Why is the recursive solution so slow?

Ridiculously slow: exponentially many repeated computations of $\text{REC-FIB}(j)$ for small values of j.

BOARD: We show $F_n \geq \frac{1}{2}(3/2)^n$ for $n \geq 8.$
Fibonacci Example (cont'd)

Dynamic Programming Approach

Algorithm Dyn-Fib(n)
1. \(F[0] = 0 \)
2. \(F[1] = 1 \)
3. for \(i \leftarrow 2 \) to \(n \) do
4. \(F[i] \leftarrow F[i - 1] + F[i - 2] \)
5. return \(F[n] \)

Build “from the bottom up”

Running Time \(\Theta(n) \)

Very fast in practice - just need an array (of linear size) to store the \(F(i) \) values.

ADS: lect 9 – slide 5 – 21st October, 2014

Multiplying Sequences of Matrices

Recall
Multiplying a \((p \times q) \) matrix with a \((q \times r) \) matrix (in the standard way) requires \(pqr \) multiplications.

We want to compute products of the form \(A_1 \cdot A_2 \cdots A_n \).

How do we set the parentheses?

ADS: lect 9 – slide 6 – 21st October, 2014

Example

Compute
\[
\begin{array}{cccc}
A & \cdot & B & \cdot & C & \cdot & D \\
30 \times 1 & 1 \times 40 & 40 \times 10 & 10 \times 25 \\
\end{array}
\]

Multiplication order \((A \cdot B) \cdot (C \cdot D) \) requires
\[
30 \cdot 1 \cdot 40 + 40 \cdot 10 \cdot 25 + 30 \cdot 40 \cdot 25 = 41,200
\]
multiplications.

Multiplication order \(A \cdot ((B \cdot C) \cdot D) \) requires
\[
1 \cdot 40 \cdot 10 + 1 \cdot 10 \cdot 25 + 30 \cdot 1 \cdot 25 = 1,400
\]
multiplications.

The Matrix Chain Multiplication Problem

Input:
Sequence of matrices \(A_1, \ldots, A_n \), where \(A_i \) is a \(p_{i-1} \times p_i \)-matrix

Output:
Optimal number of multiplications needed to compute \(A_1 \cdot A_2 \cdots A_n \), and an optimal parenthesisation to realise this

Running time of algorithms will be measured in terms of \(n \).

ADS: lect 9 – slide 8 – 21st October, 2014
Solution “Attempts” (cont’d)

Approach 3: Alternative greedy algorithm (INCORRECT).
Set outermost parentheses such that cheapest multiplication is done last.
Doesn’t work correctly — sometimes, it returns a parenthesisation that is not optimal:
Example: Consider
\[
A_1 \quad A_2 \quad A_3
\]
\[
3 \times 100 \quad 100 \times 2 \quad 2 \times 2
\]
Solution proposed by greedy algorithm: \((A_1 \cdot (A_2 \cdot A_3))\) with
100 \cdot 2 \cdot 2 + 3 \cdot 100 \cdot 2 = 1000 multiplications.
Optimal solution: \(((A_1 \cdot A_2) \cdot A_3)\) with 3 \cdot 100 \cdot 2 + 3 \cdot 2 \cdot 2 = 612 multiplications.

The Recursive Algorithm (SLOW)
Running time \(T(n)\) satisfies the recurrence
\[
T(n) = \sum_{k=1}^{n-1} (T(k) + T(n-k)) + \Theta(n).
\]
This implies
\[
T(n) = \Omega(2^n).
\]

Dynamic Programming Solution
As before:
\[
m[i,j] = \text{least number of multiplications needed to compute } A_i \cdots A_j
\]
Moreover,
\[
s[i,j] = \text{(the smallest) } k \text{ such that } i \leq k < j \text{ and }
m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j.
\]
\(s[i,j]\) can be used to reconstruct the optimal parenthesisation.

Idea
Compute the \(m[i,j]\) and \(s[i,j]\) in a bottom-up fashion.

TURN RECURSION UPSIDE DOWN :-)}
Algorithm Matrix-Chain-Order(p)
1. \(n \leftarrow p.length - 1 \)
2. for \(i \leftarrow 1 \) to \(n \) do
3. \(m[i,i] \leftarrow 0 \)
4. for \(\ell \leftarrow 2 \) to \(n \) do
5. for \(i \leftarrow 1 \) to \(n - \ell + 1 \) do
6. \(j \leftarrow i + \ell - 1 \)
7. \(m[i,j] \leftarrow \infty \)
8. for \(k \leftarrow i \) to \(j - 1 \) do
9. \(q \leftarrow m[i,k] + m[k+1,j] + p_i \cdots p_k p_j \)
10. if \(q < m[i,j] \) then
11. \(m[i,j] \leftarrow q \)
12. \(s[i,j] \leftarrow k \)
13. return \(s \)

Running Time: \(\Theta(n^3) \)

Example

\[
A_1 \cdot A_2 \cdot A_3 \cdot A_4
\]

30 \times 1 1 \times 40 40 \times 10 10 \times 25

Solution for \(m \) and \(s \)

<table>
<thead>
<tr>
<th>(m)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1200</td>
<td>700</td>
<td>1400</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>400</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>10000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(s)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optimal Parenthesisation

\[
A_1 \cdot ((A_2 \cdot A_3) \cdot A_4))
\]

Algorithm Matrix-Chain-Multiply(A, p)
1. \(n \leftarrow A.length \)
2. \(s \leftarrow \text{Matrix-Chain-Order}(p) \)
3. return \(\text{Rec-Mult}(A, s, 1, n) \)

Algorithm Rec-Mult(A, s, i, j)
1. if \(i < j \) then
2. \(C \leftarrow \text{Rec-Mult}(A, s, i, s[i,j]) \)
3. \(D \leftarrow \text{Rec-Mult}(A, s, s[i,j]+1, j) \)
4. return \((C) \cdot (D) \)
5. else
6. return \(A_i \)

Problems

see Wikipedia:
[CLRS] Sections 15.2-15.3

1. Review the Edit-Distance Algorithm and try to understand why it is a dynamic programming algorithm.
2. Exercise 15.2-1 of [CLRS].