Algorithms and Data Structures:
Average-Case Analysis of Quicksort

4th February, 2016
Quicksort

Divide-and-Conquer algorithm for sorting an array. It works as follows:

1. If the input array has less than two elements, nothing to do ... Otherwise, do the following partitioning subroutine: Pick a particular key called the pivot and divide the array into two subarrays as follows:

\[
\begin{array}{c|c|c}
\leq \text{pivot} & \text{piv.} & \geq \text{pivot} \\
\end{array}
\]

2. Sort the two subarrays recursively.
Quicksort Algorithm

Algorithm \textsc{Quicksort}(A, p, r)
1. if $p < r$ then
2. $q \leftarrow \textsc{Partition}(A, p, r)$
3. \textsc{Quicksort}(A, p, q - 1)
4. \textsc{Quicksort}(A, q + 1, r)
Algorithm Partition(A, p, r)

1. pivot ← A[r]
2. i ← p − 1
3. for j ← p to r − 1 do
4. if A[j] ≤ pivot then
5. i ← i + 1
6. exchange A[i], A[j]
7. exchange A[i + 1], A[r]
8. return i + 1

Same version as [CLRS]
Analysis of Quicksort

- The **size** of an instance \((A, p, r)\) is \(n = r - p + 1\).
- Basic operations for sorting are **comparisons of keys**. We let
 \[
 C(n)
 \]
 be the **worst-case number of key-comparisons** performed by \textsc{Quicksort}(A, p, r). We shall try to determine \(C(n)\) as precisely as possible.
- It is easy to verify that the worst-case running time \(T(n)\) of \textsc{Quicksort}(A, p, r) is \(\Theta(C(n))\) if a single comparison requires time \(\Theta(1)\).
 (ie, for \textsc{Quicksort}, comparisons **dominate** the running time).
 In any case,
 \[
 T(n) = \Theta(C(n) \cdot \text{cost per comparison}).
 \]

ADS: lect 8 – slide 5 – 4th February, 2016
Analysis of \textsc{Partition}

\textsc{Partition}(A, p, r) does \textit{exactly} $n - 1$ comparisons for every input of size n.

This is of course apart from any comparisons which may be done inside the recursive calls to \textsc{Quicksort}.
Worst-case Analysis of Quicksort

We get the following recurrence for $C(n)$:

$$C(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
\max_{1 \leq k \leq n} \left(C(k - 1) + C(n - k) \right) + (n - 1) & \text{if } n \geq 2
\end{cases}$$

Intuitively, worst-case seems to be $k = 1$ or $k = n$, i.e., everything falls on one side of the partition. This happens, e.g., if the array is sorted.
Worst-Case Analysis (cont’d)

- **Lower Bound:** \(C(n) \geq \frac{1}{2} n(n + 1) = \Omega(n^2) \).

 Proof: Consider the situation where we are presented with an array which is already sorted. Then on every iteration, we split into one array of length \((n - 1)\), and one of length 0.

\[
C(n) \geq C(n - 1) + (n - 1) \\
\geq C(n - 2) + (n - 2) + (n - 1) \\
\vdots \\
\geq \sum_{i=1}^{n-1} i = \frac{1}{2} n(n - 1).
\]

- **Upper Bound:** \(C(n) \leq O(n^2) \).

BOARD Bit harder than \(\Omega(n^2) \) (must consider all possible inputs).

- Overall, we will show \(C(n) = \Theta(n^2) \).

ADS: lect 8 – slide 8 – 4th February, 2016
Best-Case Analysis

- $B(n)$ = number of comparisons done by QUICKSORT in the best case.

- Recurrence:

\[
B(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
\min_{1 \leq k \leq n} (B(k - 1) + B(n - k)) + (n - 1) & \text{if } n \geq 2
\end{cases}
\]

- Intuitively, the best case is if the array is always partitioned into two parts of the same size. This would mean

\[
B(n) \approx 2B(n/2) + \Theta(n),
\]

which implies $B(n) = \Theta(n \lg(n))$.

ADS: lect 8 – slide 9 – 4th February, 2016
Average-Case Analysis

- \(A(n) = \) number of comparisons done by QuickSort on average if all input arrays of size \(n \) are considered equally likely.

- **Intuition:** The average case is closer to the best case than to the worst case, because only repeatedly very unbalanced partitions lead to the worst case.

- **Recurrence:**

 \[
 A(n) = \begin{cases}
 0 & \text{if } n \leq 1 \\
 \sum_{k=1}^{n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1) & \text{if } n \geq 2
 \end{cases}
 \]

- **Solution:**

 \[A(n) \approx 2n \ln(n). \]
Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have

\[
A(n) \leq 2 \ln(n)(n + 1).
\]

(\(\star\))
Average Case Analysis in Detail

We shall prove that for all $n \geq 1$ ("sufficiently large") we have

$$A(n) \leq 2 \ln(n)(n + 1).$$

(Note (*) holds trivially for $n = 1$, because $\ln(1) = 0$)
Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have

\[
A(n) \leq 2 \ln(n)(n + 1).
\]

(Note (⋆) holds trivially for \(n = 1 \), because \(\ln(1) = 0 \))

So assume that \(n \geq 2 \). We have

\[
A(n) = \sum_{1 \leq k \leq n} \frac{1}{n}(A(k - 1) + A(n - k)) + (n - 1)
\]

(ADS: lect 8 – slide 11 – 4th February, 2016)
Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) (“sufficiently large”) we have

\[A(n) \leq 2 \ln(n)(n + 1). \] \((\star) \)

(Note \((\star) \) holds trivially for \(n = 1 \), because \(\ln(1) = 0 \))

So assume that \(n \geq 2 \). We have

\[
A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1)
\]

\[
= \frac{2}{n} \sum_{k=0}^{n-1} A(k) + (n - 1).
\]
Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have

\[
A(n) \leq 2 \ln(n)(n + 1).
\] (\(\star \))

(Note (\(\star \)) holds trivially for \(n = 1 \), because \(\ln(1) = 0 \))

So assume that \(n \geq 2 \). We have

\[
A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} (A(k-1) + A(n-k)) + (n-1)
\]

\[
= \frac{2}{n} \sum_{k=0}^{n-1} A(k) + (n-1).
\]

Thus

\[
nA(n) = 2 \sum_{k=0}^{n-1} A(k) + n(n-1).
\] (\(\star \star \))
Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have

\[
A(n) \leq 2\ln(n)(n + 1).
\]

(Note (⋆) holds trivially for \(n = 1 \), because \(\ln(1) = 0 \))

So assume that \(n \geq 2 \). We have

\[
A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} \left(A(k - 1) + A(n - k) \right) + (n - 1)
\]

\[
= \frac{2}{n} \sum_{k=0}^{n-1} A(k) + (n - 1).
\]

Thus

\[
nA(n) = 2 \sum_{k=0}^{n-1} A(k) + n(n - 1). \tag{⋆⋆}
\]
Average Case Analysis in Detail (cont’d)

Applying (⋆⋆) to \((n - 1)\) for \(n \geq 3\), we obtain

\[(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).\]
Applying (⋆⋆) to \((n - 1)\) for \(n \geq 3\), we obtain

\[
(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).
\]

Subtracting this equation from (⋆⋆) (when \(n \geq 3\))

\[
nA(n) - (n - 1)A(n - 1) = 2A(n - 1) + n(n - 1) - (n - 1)(n - 2),
\]
Average Case Analysis in Detail (cont’d)

Applying (⋆⋆) to \((n − 1)\) for \(n \geq 3\), we obtain

\[
(n − 1)A(n − 1) = 2 \sum_{k=0}^{n−2} A(k) + (n − 1)(n − 2).
\]

Subtracting this equation from (⋆⋆) (when \(n \geq 3\))

\[
nA(n) − (n − 1)A(n − 1) = 2A(n − 1) + n(n − 1) − (n − 1)(n − 2),
\]

thus

\[
nA(n) = (n + 1)A(n − 1) + 2n − 2,
\]
Applying (⋆⋆) to \((n - 1)\) for \(n \geq 3\), we obtain

\[
(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).
\]

Subtracting this equation from (⋆⋆) (when \(n \geq 3\))

\[
nA(n) - (n - 1)A(n - 1) = 2A(n - 1) + n(n - 1) - (n - 1)(n - 2),
\]

thus

\[
nA(n) = (n + 1)A(n - 1) + 2n - 2,
\]

and therefore

\[
\frac{A(n)}{n+1} = \frac{A(n-1)}{n} + \frac{2n-2}{n(n+1)} \leq \frac{A(n-1)}{n} + \frac{2}{n}
\]
Average Case Analysis in Detail (cont’d)

Applying (⋆⋆) to \((n - 1)\) for \(n \geq 3\), we obtain

\[(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).\]

Subtracting this equation from (⋆⋆) (when \(n \geq 3\))

\[nA(n) - (n - 1)A(n - 1) = 2A(n - 1) + n(n - 1) - (n - 1)(n - 2),\]

thus

\[nA(n) = (n + 1)A(n - 1) + 2n - 2,\]

and therefore

\[\frac{A(n)}{n + 1} = \frac{A(n - 1)}{n} + \frac{2n - 2}{n(n + 1)} \leq \frac{A(n - 1)}{n} + \frac{2}{n}.\]

We now apply unfold-and-sum to this recurrence (stopping at \(n = 2\)):

\[\frac{A(n)}{n + 1} \leq \frac{A(n - 1)}{n} + \frac{2}{n}\]

\[\vdots\]

ADS: lect 8 – slide 12 – 4th February, 2016
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n+1} \leq \frac{A(n-2)}{n-1} + \frac{2}{n} + \frac{2}{n-1}
\]
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n+1} \leq \frac{A(n-2)}{n-1} + \frac{2}{n} + \frac{2}{n-1}
\]

\[
\vdots
\]

\[
\leq \frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k}
\]
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n + 1} \leq \frac{A(n - 2)}{n - 1} + \frac{2}{n} + \frac{2}{n - 1}
\]

\[
\vdots
\]

\[
\leq \frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k}
\]

\[
= \frac{3}{3} + 2 \sum_{k=3}^{n} \frac{1}{k} = 2 \sum_{k=2}^{n} \frac{1}{k}.
\]

ADS: lect 8 – slide 13 – 4th February, 2016
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n+1} \leq \frac{A(n-2)}{n-1} + \frac{2}{n} + \frac{2}{n-1} \\
\vdots \\
\leq \frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k} \\
= \frac{3}{3} + 2 \sum_{k=3}^{n} \frac{1}{k} = 2 \sum_{k=2}^{n} \frac{1}{k}.
\]

It is easy to verify this result by induction. Thus

\[
\frac{A(n)}{n+1} \leq 2 \sum_{k=2}^{n} \frac{1}{k} = 2 \sum_{k=1}^{n-1} \frac{1}{k+1} \leq 2 \int_{1}^{n} \frac{1}{x} = 2 \ln(n).
\]

Multiplying by \((n + 1)\) completes the proof of \((\star)\).
Improvements

- Use insertion sort for small arrays.
- Iterative implementation.

Main Question

Is there a way to avoid the bad worst-case performance, and in particular the bad performance on sorted (or almost sorted) arrays?

Different strategies for choosing the pivot-element help (in practice).
Median-of-Three Partitioning

Idea: Use the median of the first, middle, and last key as the pivot.

Algorithm \textsc{M3Partition}(A, p, r)

1. exchange $A[(p + r)/2], A[r - 1]$
5. \textsc{Partition}(A, p + 1, r - 1)

Note that \textsc{M3Partition}(A, p, r) only requires 1 more comparison than \textsc{Partition}(A, p, r)

\textit{ADS: lect 8 – slide 15 – 4th February, 2016}
Median-of-Three Partitioning (cont’d)

Algorithm \(\text{M3Quicksort}(A, p, r) \)
1. if \(p < r \) then
2. \(q \leftarrow \text{M3Partition}(A, p, r) \)
3. \(\text{M3Quicksort}(A, p, q - 1) \)
4. \(\text{M3Quicksort}(A, q + 1, r) \)

In can be shown that the worst-case running time of \(\text{M3Quicksort} \) is still \(\Theta(n^2) \), but at least in the case of an almost sorted array (and in most other cases that are relevant in practice) it is very efficient.
Randomized Quicksort

Idea: Use key of random element as the pivot.

Algorithm \texttt{RPartition}(A, p, r)

1. \(k \leftarrow \texttt{Random}(p, r) \) \hspace{1cm} \triangleright \text{choose } k \text{ randomly from } \{p, \ldots, r\}
2. exchange \(A[k], A[r] \)
3. \texttt{Partition}(A, p, r)

Algorithm \texttt{Randomized Quicksort}(A, p, r)

1. \textbf{if} \(p < r \) \textbf{then}
2. \hspace{1cm} \(q \leftarrow \texttt{RPartition}(A, p, r) \)
3. \hspace{1cm} \texttt{Randomized Quicksort}(A, p, q - 1)
4. \hspace{1cm} \texttt{Randomized Quicksort}(A, q + 1, r)

ADS: lect 8 – slide 17 – 4th February, 2016
Analysis of Randomized Quicksort

The running time of Randomized Quicksort on an input of size n is a random variable.

An analysis similar to the average case analysis of Quicksort shows:

Theorem
For all inputs (A, p, r), the expected number of comparisons performed during a run of Randomized Quicksort on input (A, p, r), is at most $2 \ln(n)(n + 1)$, where $n = r - p + 1$.

Corollary
Thus the expected running time of Randomized Quicksort on any input of size n is $\Theta(n \lg(n))$.

ADS: lect 8 – slide 18 – 4th February, 2016
Reading Assignment

Sections 7.2, 7.3, 7.4 of [CLRS] (edition 2 or 3)

Problems

1. Convince yourself that Partition works correctly by working a few examples, or (better) try to prove that it works correctly.

2. In our proof of the Average-running time $A(n)$, we can think of the input as being some permutation of $(1, \ldots, n)$, and assume all permutations are equally likely. Why does this explain the $1/n$ factor in the recurrence on slide 10?

3. Show that if the array is initially in decreasing order, then the running time is $\Theta(n^2)$.
 (the $O(n^2)$ is already taken care of on slide 8 (well, the board note), the $\Omega(n^2)$ involves considering Partition on a decreasing array).