
Algorithms and Data Structures:
Lower Bounds for Sorting

1st February, 2016

ADS: lect 7 – slide 1 – 1st February, 2016

Comparison Based Sorting Algorithms

Definition 1
A sorting algorithm is comparison based if comparisons A[i] < A[j],
A[i] ≤ A[j], A[i] = A[j], A[i] ≥ A[j], A[i] > A[j] are the only ways in
which it accesses the input elements.

Comparison based sorting algorithms are generic in the sense that they
can be used for all types of elements that are comparable (such as objects
of type Comparable in Java).

Example 2

Insertion-Sort, Quicksort, Merge-Sort, Heapsort are all
comparison based.

ADS: lect 7 – slide 2 – 1st February, 2016

Comparison Based Sorting Algorithms

Definition 1
A sorting algorithm is comparison based if comparisons A[i] < A[j],
A[i] ≤ A[j], A[i] = A[j], A[i] ≥ A[j], A[i] > A[j] are the only ways in
which it accesses the input elements.

Comparison based sorting algorithms are generic in the sense that they
can be used for all types of elements that are comparable (such as objects
of type Comparable in Java).

Example 2

Insertion-Sort, Quicksort, Merge-Sort, Heapsort are all
comparison based.

ADS: lect 7 – slide 2 – 1st February, 2016

Comparison Based Sorting Algorithms

Definition 1
A sorting algorithm is comparison based if comparisons A[i] < A[j],
A[i] ≤ A[j], A[i] = A[j], A[i] ≥ A[j], A[i] > A[j] are the only ways in
which it accesses the input elements.

Comparison based sorting algorithms are generic in the sense that they
can be used for all types of elements that are comparable (such as objects
of type Comparable in Java).

Example 2

Insertion-Sort, Quicksort, Merge-Sort, Heapsort are all
comparison based.

ADS: lect 7 – slide 2 – 1st February, 2016

The Decision Tree Model

Abstractly, we may describe the behaviour of a comparison-based sorting
algorithm S on an input array A = 〈A[1], . . . ,A[n]〉 by a decision tree:

i : j

r : s

p : q
k : l

t : u

A[i] < A[j]

A[i] = A[j]

A[i] > A[j]

A[k] < A[l]

At each leaf of the tree the output of the algorithm on the corresponding
execution branch will be displayed. Outputs of sorting algorithms
correspond to permutations of the input array.

ADS: lect 7 – slide 3 – 1st February, 2016

A Simplifying Assumption

In the following, we assume that all keys of elements of the input array
of a sorting algorithm are distinct. (It is ok to restrict to a special case,
because we want to prove a lower bound.)
Thus the outcome A[i] = A[j] in a comparison will never occur, and the
decision tree is in fact a binary tree:

i : j

r : sk : l

t : u

A[i] < A[j] A[i] > A[j]

A[k] < A[l]

ADS: lect 7 – slide 4 – 1st February, 2016

Example

Insertion sort for n = 3:

2 : 3

A[1] A[2] A[3]

A[1] A[3] A[2] A[3] A[1] A[2]

A[2] A[1] A[3]

1 : 2

1 : 3

1 : 3

2 : 3

A[2] A[3] A[1] A[3] A[2] A[1]

In insertion sort, when we get the result of a comparison, we often swap some
elements of the array. In showing decision trees, we don’t implement a swap.
Our indices always refer to the original elements at that position in the array.

To understand what I mean, draw the evolving array of InsertionSort beside

this decision tree.

ADS: lect 7 – slide 5 – 1st February, 2016

A Lower Bound for Comparison Based Sorting

For a comparison based sorting algorithm S :

CS(n) = worst-case number of comparisons performed
by S on an input array of size n.

Theorem 3
For all comparison based sorting algorithms S we have

CS(n) = Ω(n lg n).

Corollary 4

The worst-case running time of any comparison based sorting algorithm
is Ω(n lg n).

ADS: lect 7 – slide 6 – 1st February, 2016

A Lower Bound for Comparison Based Sorting

For a comparison based sorting algorithm S :

CS(n) = worst-case number of comparisons performed
by S on an input array of size n.

Theorem 3
For all comparison based sorting algorithms S we have

CS(n) = Ω(n lg n).

Corollary 4

The worst-case running time of any comparison based sorting algorithm
is Ω(n lg n).

ADS: lect 7 – slide 6 – 1st February, 2016

A Lower Bound for Comparison Based Sorting

For a comparison based sorting algorithm S :

CS(n) = worst-case number of comparisons performed
by S on an input array of size n.

Theorem 3
For all comparison based sorting algorithms S we have

CS(n) = Ω(n lg n).

Corollary 4

The worst-case running time of any comparison based sorting algorithm
is Ω(n lg n).

ADS: lect 7 – slide 6 – 1st February, 2016

A Lower Bound for Comparison Based Sorting

Proof of Theorem 3 uses Decision-Tree Model of sorting.

It is an Information-Theoretic Lower Bound:

I “Information-Theoretic” means that it is based on the amount of
“information” that an instance of the problem can encode.

I For sorting, the input can encode n! outputs.

I Proof does not make any assumption about how the sorting might
be done (except it is comparison-based).

ADS: lect 7 – slide 7 – 1st February, 2016

A Lower Bound for Comparison Based Sorting

Proof of Theorem 3 uses Decision-Tree Model of sorting.

It is an Information-Theoretic Lower Bound:

I “Information-Theoretic” means that it is based on the amount of
“information” that an instance of the problem can encode.

I For sorting, the input can encode n! outputs.

I Proof does not make any assumption about how the sorting might
be done (except it is comparison-based).

ADS: lect 7 – slide 7 – 1st February, 2016

A Lower Bound for Comparison Based Sorting

Proof of Theorem 3 uses Decision-Tree Model of sorting.

It is an Information-Theoretic Lower Bound:

I “Information-Theoretic” means that it is based on the amount of
“information” that an instance of the problem can encode.

I For sorting, the input can encode n! outputs.

I Proof does not make any assumption about how the sorting might
be done (except it is comparison-based).

ADS: lect 7 – slide 7 – 1st February, 2016

A Lower Bound for Comparison Based Sorting

Proof of Theorem 3 uses Decision-Tree Model of sorting.

It is an Information-Theoretic Lower Bound:

I “Information-Theoretic” means that it is based on the amount of
“information” that an instance of the problem can encode.

I For sorting, the input can encode n! outputs.

I Proof does not make any assumption about how the sorting might
be done (except it is comparison-based).

ADS: lect 7 – slide 7 – 1st February, 2016

Proof of Theorem 3

Observation 5
For every n, CS(n) is the height of the decision tree of S on inputs n (the longest path
from the “root” to a leaf is the maximum number of comparisons that algorithm S will
do on an input of length n).

We shall prove a lower bound for the height of the decision tree for any algorithm S .

Remark
Maybe you are wondering . . . was it really ok to assume all keys are
distinct?

It is ok - because the problem of sorting n keys (with no distinctness
assumption) is more general than the problem of sorting n distinct
keys.

The worst-case for sorting certainly is as bad as the worst-case for
all-distinct keys sorting.

ADS: lect 7 – slide 8 – 1st February, 2016

Proof of Theorem 3

Observation 5
For every n, CS(n) is the height of the decision tree of S on inputs n (the longest path
from the “root” to a leaf is the maximum number of comparisons that algorithm S will
do on an input of length n).

We shall prove a lower bound for the height of the decision tree for any algorithm S .

Remark
Maybe you are wondering . . . was it really ok to assume all keys are
distinct?

It is ok - because the problem of sorting n keys (with no distinctness
assumption) is more general than the problem of sorting n distinct
keys.

The worst-case for sorting certainly is as bad as the worst-case for
all-distinct keys sorting.

ADS: lect 7 – slide 8 – 1st February, 2016

Observation 6
Each permutation of the inputs must occur at at least one leaf of the decision tree.

(Obs 6 must be true, if our algorithm is to sort properly for all inputs.).

I By Obs 6, the decision tree on inputs of size n has at least n! leaves (for any
algorithm S).

I The (simplified) decision tree is a binary tree. A binary tree of height h has at
most 2h leaves.

I Putting everything together, we get

n! ≤ number of leaves of decision tree

≤ 2height of decision tree

≤ 2CS (n).

I Thus
CS(n) ≥ lg(n!) = Ω(n lg(n)).

To obtain the last inequality, we can use the following inequality:

nn/2 ≤ n! ≤ nn

This tells us that lg n! ≥ lg(nn/2) = (n/2) lg n = Ω(n lg(n)).

Thm 3 QED

ADS: lect 7 – slide 9 – 1st February, 2016

Observation 6
Each permutation of the inputs must occur at at least one leaf of the decision tree.

(Obs 6 must be true, if our algorithm is to sort properly for all inputs.).

I By Obs 6, the decision tree on inputs of size n has at least n! leaves (for any
algorithm S).

I The (simplified) decision tree is a binary tree. A binary tree of height h has at
most 2h leaves.

I Putting everything together, we get

n! ≤ number of leaves of decision tree

≤ 2height of decision tree

≤ 2CS (n).

I Thus
CS(n) ≥ lg(n!) = Ω(n lg(n)).

To obtain the last inequality, we can use the following inequality:

nn/2 ≤ n! ≤ nn

This tells us that lg n! ≥ lg(nn/2) = (n/2) lg n = Ω(n lg(n)).

Thm 3 QED

ADS: lect 7 – slide 9 – 1st February, 2016

Observation 6
Each permutation of the inputs must occur at at least one leaf of the decision tree.

(Obs 6 must be true, if our algorithm is to sort properly for all inputs.).

I By Obs 6, the decision tree on inputs of size n has at least n! leaves (for any
algorithm S).

I The (simplified) decision tree is a binary tree. A binary tree of height h has at
most 2h leaves.

I Putting everything together, we get

n! ≤ number of leaves of decision tree

≤ 2height of decision tree

≤ 2CS (n).

I Thus
CS(n) ≥ lg(n!) = Ω(n lg(n)).

To obtain the last inequality, we can use the following inequality:

nn/2 ≤ n! ≤ nn

This tells us that lg n! ≥ lg(nn/2) = (n/2) lg n = Ω(n lg(n)).

Thm 3 QED

ADS: lect 7 – slide 9 – 1st February, 2016

Observation 6
Each permutation of the inputs must occur at at least one leaf of the decision tree.

(Obs 6 must be true, if our algorithm is to sort properly for all inputs.).

I By Obs 6, the decision tree on inputs of size n has at least n! leaves (for any
algorithm S).

I The (simplified) decision tree is a binary tree. A binary tree of height h has at
most 2h leaves.

I Putting everything together, we get

n! ≤ number of leaves of decision tree

≤ 2height of decision tree

≤ 2CS (n).

I Thus
CS(n) ≥ lg(n!) = Ω(n lg(n)).

To obtain the last inequality, we can use the following inequality:

nn/2 ≤ n! ≤ nn

This tells us that lg n! ≥ lg(nn/2) = (n/2) lg n = Ω(n lg(n)).

Thm 3 QED

ADS: lect 7 – slide 9 – 1st February, 2016

Observation 6
Each permutation of the inputs must occur at at least one leaf of the decision tree.

(Obs 6 must be true, if our algorithm is to sort properly for all inputs.).

I By Obs 6, the decision tree on inputs of size n has at least n! leaves (for any
algorithm S).

I The (simplified) decision tree is a binary tree. A binary tree of height h has at
most 2h leaves.

I Putting everything together, we get

n! ≤ number of leaves of decision tree

≤ 2height of decision tree

≤ 2CS (n).

I Thus
CS(n) ≥ lg(n!) = Ω(n lg(n)).

To obtain the last inequality, we can use the following inequality:

nn/2 ≤ n! ≤ nn

This tells us that lg n! ≥ lg(nn/2) = (n/2) lg n = Ω(n lg(n)).

Thm 3 QED

ADS: lect 7 – slide 9 – 1st February, 2016

Observation 6
Each permutation of the inputs must occur at at least one leaf of the decision tree.

(Obs 6 must be true, if our algorithm is to sort properly for all inputs.).

I By Obs 6, the decision tree on inputs of size n has at least n! leaves (for any
algorithm S).

I The (simplified) decision tree is a binary tree. A binary tree of height h has at
most 2h leaves.

I Putting everything together, we get

n! ≤ number of leaves of decision tree

≤ 2height of decision tree

≤ 2CS (n).

I Thus
CS(n) ≥ lg(n!) = Ω(n lg(n)).

To obtain the last inequality, we can use the following inequality:

nn/2 ≤ n! ≤ nn

This tells us that lg n! ≥ lg(nn/2) = (n/2) lg n = Ω(n lg(n)).

Thm 3 QED

ADS: lect 7 – slide 9 – 1st February, 2016

Observation 6
Each permutation of the inputs must occur at at least one leaf of the decision tree.

(Obs 6 must be true, if our algorithm is to sort properly for all inputs.).

I By Obs 6, the decision tree on inputs of size n has at least n! leaves (for any
algorithm S).

I The (simplified) decision tree is a binary tree. A binary tree of height h has at
most 2h leaves.

I Putting everything together, we get

n! ≤ number of leaves of decision tree

≤ 2height of decision tree

≤ 2CS (n).

I Thus
CS(n) ≥ lg(n!) = Ω(n lg(n)).

To obtain the last inequality, we can use the following inequality:

nn/2 ≤ n! ≤ nn

This tells us that lg n! ≥ lg(nn/2) = (n/2) lg n = Ω(n lg(n)).

Thm 3 QED

ADS: lect 7 – slide 9 – 1st February, 2016

Observation 6
Each permutation of the inputs must occur at at least one leaf of the decision tree.

(Obs 6 must be true, if our algorithm is to sort properly for all inputs.).

I By Obs 6, the decision tree on inputs of size n has at least n! leaves (for any
algorithm S).

I The (simplified) decision tree is a binary tree. A binary tree of height h has at
most 2h leaves.

I Putting everything together, we get

n! ≤ number of leaves of decision tree

≤ 2height of decision tree

≤ 2CS (n).

I Thus
CS(n) ≥ lg(n!) = Ω(n lg(n)).

To obtain the last inequality, we can use the following inequality:

nn/2 ≤ n! ≤ nn

This tells us that lg n! ≥ lg(nn/2) = (n/2) lg n = Ω(n lg(n)).

Thm 3 QED
ADS: lect 7 – slide 9 – 1st February, 2016

An Average Case Lower Bound

For any comparison based sorting algorithm S :

AS(n) = average number of comparisons per-
formed by S on an input array of
size n.

Theorem 7
For all comparison based sorting algorithms S we have

AS(n) = Ω(n lg n).

Proof uses the fact that the average length of a path from the root to a
leaf in a binary tree with ` leaves is Ω(lg `) (Theorem 11 and 12).

Corollary 8

The average-case running time of any comparison based sorting
algorithm is Ω(n lg n).

ADS: lect 7 – slide 10 – 1st February, 2016

An Average Case Lower Bound

For any comparison based sorting algorithm S :

AS(n) = average number of comparisons per-
formed by S on an input array of
size n.

Theorem 7
For all comparison based sorting algorithms S we have

AS(n) = Ω(n lg n).

Proof uses the fact that the average length of a path from the root to a
leaf in a binary tree with ` leaves is Ω(lg `) (Theorem 11 and 12).

Corollary 8

The average-case running time of any comparison based sorting
algorithm is Ω(n lg n).

ADS: lect 7 – slide 10 – 1st February, 2016

Average root-leaf length in Binary tree

Definition 9
For any binary tree T , let AvgRL(T) denote the average root-to-leaf length
for T .

Definition 10
A near-complete binary tree T is a binary tree in which every internal node has
exactly two child nodes, and all leaves are either at depth h or depth h − 1.

Theorem 11
Any “near-complete” binary tree T with leaf set L(T), |L(T)| ≥ 4, has Average
root-to-leaf length AvgRL(T) at least lg(|L(T)|)/2.

Theorem 12
For any binary tree T , there is a near-complete binary tree T ′ such that
L(T) = L(T ′) (same leaf set) and such that AvgRL(T ′) ≤ AvgRL(T).
Hence AvgRL(T) ≥ lg(|L(T)|)/2 holds for all binary trees.

Proof of Theorems 11 and 12 via BOARD notes.

ADS: lect 7 – slide 11 – 1st February, 2016

Implications of These Lower Bounds

Theorem 3 and Theorem 7 are significant because they hold for all
comparison-based algorithms S . They imply the following:

1. By Thm 3, any comparison-based algorithm for sorting which has a
worst-case running-time of O(n lg n) is asymptotically optimal (ie,
apart from the constant factor inside the “O” term, it is as good as
possible in terms of worst-case analysis). This includes algorithms
like MergeSort, HeapSort.

2. By Thm 7, any comparison-based algorithm for sorting which has an
average-case running-time of O(n lg n) is the best you can hope for
in terms of average-case analysis (apart from the constant factor
inside the “O” term). This is accomplished by MergeSort and
HeapSort. In Lecture 7, we will see it is also true for QuickSort.

ADS: lect 7 – slide 12 – 1st February, 2016

Lecture 9 (after average-case analysis of QuickSort)

We will show how in a special case of sorting (when the inputs are
numbers, coming from the range {1, 2, . . . , nk } for some constant k , we
can sort in linear time (not a comparison-based algorithm).

Reading Assignment

[CLRS] Section 8.1 (2nd and 3rd edition) or
[CLR] Section 9.1
Well-worth reading - this is a nice chapter of CLRS (not too long).

ADS: lect 7 – slide 13 – 1st February, 2016

Problems

1. Draw (simplified) decision trees for Insertion Sort and
Quicksort for n = 4.

2. Exercise 8.1-1 of [CLRS] (both 2nd and 3rd ed).

3. Resolve the complexity (in terms of no-of-comparisons) of sorting 4
numbers.

3.1 Give an algorithm which sorts any 4 numbers and which uses at
most 5 comparisons in the worst-case.

3.2 Prove (using the decision-tree model) that there is no algorithm to
sort 4 numbers, which uses less than 5 comparisons in the worst-case.

ADS: lect 7 – slide 14 – 1st February, 2016

