Complex numbers

Any polynomial $p(x)$ of degree d ought to have d roots. (I.e., $p(x) = 0$ should have d solutions.)

But the equation

$$x^2 + 1 = 0$$

has no solutions at all if we restrict our attention to real numbers.

Introduce a special symbol i to stand for a solution to $(*)$. Then $i^2 = -1$ and $(*)$ has the required two solutions, i and $-i$.

Adding i allows all polynomial equations to be solved! Indeed a polynomial of degree d has d roots (taking account of multiplicities). This is the *Fundamental Theorem of Algebra*.

Roots of Unity

In particular,

$$x^n = 1$$

has n solutions in the complex numbers. They may be written

$$1, \omega_n, \omega_n^2, \ldots, \omega_n^{n-1}$$

where ω_n is the *principal* nth root of unity:

$$\omega_n = \cos(2\pi/n) + i\sin(2\pi/n), \quad (\dagger).$$

Convention: from now on ω_n denotes the principal nth root of unity given by (\dagger).

Note: $e^{iu} = \cos u + i\sin u$ so $\omega_n = e^{2\pi i/n}$.

8th Roots of Unity

For $n = 8$,

$$\omega_8 = e^{i\cdot2\pi/8} = i = (\cos \theta + i\sin \theta) = \sqrt{2}/2 \cdot (1+i).$$

"Wheel" representation of 8th roots-of-unity (complex plane).

Same wheel structure for any n (then ω_n found at angle $2\pi/n$).
The Discrete Fourier Transform (DFT)

Instance A sequence of \(n \) complex numbers
\[a_0, a_1, a_2, \ldots, a_{n-1}, \]
\(n \) is a Power-of-2.

Output The sequence of \(n \) complex numbers
\[A(1), A(\omega_n), A(\omega_n^2), \ldots, A(\omega_n^{n-1}) \]

obtained by evaluating the polynomial
\[A(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} \]
at the \(n \)th roots of unity.

The DFT is a fingerprint of size \(n \) of a polynomial.

CLASS QUESTION: It’s not the only fingerprint (why?)

Motivation for algorithms for DFT/Inverse DFT

Direct. Signal processing: mapping between time and frequency domains.

Indirect. Subroutine in numerous applications, e.g., multiplying polynomials or large integers, cyclic string matching, etc.

It is important, therefore to find the fastest method. There is an obvious \(\Theta(n^2) \) algorithm. Can we do better?

YES! Really cool algorithm (Fast Fourier Transform (FFT)) runs in \(O(n \lg n) \) time. Published by Cooley & Tukey in 1965 - basics known by Gauss in 1805!

Used in *every* Digital Signal Processing application. Probably the most important algorithm of today. We will show how to apply FFT to do polynomial multiplication in \(O(n \lg n) \) (not most common application, but cute).

ADS: lects 5 & 6 – slide 6 – 25th and 28th Jan, 2016

Divide-and-Conquer

We are interested in evaluating:
\[A(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1}, \]
n a Power-Of-2. Put
\[A_{\text{even}}(y) = a_0 + a_2y + \cdots + a_{n-2}y^{n/2-1}, \]
\[A_{\text{odd}}(y) = a_1 + a_3y + \cdots + a_{n-1}y^{n/2-1}, \]
so that
\[A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2). \] (#)

To evaluate \(A(x) \) at the \(n \)th roots of unity, we need to evaluate \(A_{\text{even}}(y) \) and \(A_{\text{odd}}(y) \) at the points \(1, \omega_n^2, \omega_n^4, \ldots, \omega_{2(n-1)}^2 \).

We’ll show now that these are DFTs. (wrt \(n/2 \))

ADS: lects 5 & 6 – slide 7 – 25th and 28th Jan, 2016

Key Facts

Assuming \(n \) is even:
\[\omega_n^2 = (e^{\frac{2\pi i}{n}})^2 = e^{\frac{2\pi i}{n^2}} = \omega_n/2, \] and
\[\omega_n^{n/2} = (e^{\frac{2\pi i}{n}})^{n/2} = e^{\pi i} = -1. \]

Thus we have the following relationships between \(\omega_n \) and \(\omega_{n/2} \):

\[
\begin{array}{cccccccc}
1 & \omega_n & \ldots & \omega_n^{n-2} & \omega_n^n & \omega_n^{n+2} & \cdots & \omega_{2(n-1)}^2 \\
\| & \| & \cdots & \| & \| & \| & \cdots & \|
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & \omega_{n/2} & \ldots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2}^2 & \ldots & \omega_{n/2}^{n/2-1} \\
\| & \| & \cdots & \| & \| & \| & \cdots & \|
\end{array}
\]

So evaluating \(A_{\text{odd}}(x), A_{\text{even}}(x) \) at \(\omega_n^2 \) for all \(n \)th-roots-of-unity (in order to implement (#)), is TWO “sweeps” of evaluating \(A_{\text{odd}}(x), A_{\text{even}}(x) \) at the \(n/2 \)th-roots.
“Divide”: a warning

In performing the “Divide” part of Divide-and-Conquer to DFT, it was important that the “Divide” was based on odd/even.

Suppose we had instead partitioned $A(x)$ into small/larger terms:

$A_{\text{small}}(y) = a_0 + a_1 y + \cdots + a_{n/2-1} y^{n/2-1},$

$A_{\text{big}}(y) = a_{n/2} + a_{n/2+1} y + \cdots + a_{n-1} y^{n/2-1}$

Then we would have

$$A(x) = A_{\text{small}}(x) + x^{n/2} A_{\text{big}}(x).$$

However, to evaluate $A(x)$ at the nth roots of unity, we would need to evaluate $A_{\text{small}}(y)$ and $A_{\text{big}}(y)$ at all of the nth roots of unity.

So for recursive calls: we would reduce the degree of the polynomial (to $n/2 - 1$), but would NOT reduce the “number of roots”. We would lose the relationship between degree of poly. and number of roots, which is CRUCIAL.

Key Facts (cont’d)

$$A(ω_{n/2}^k) = A_{\text{even}}(1) - 1 \cdot A_{\text{odd}}(1)$$

$$A(ω_{n/2}^{n/2+1}) = A_{\text{even}}(ω_{n/2}) - ω_n A_{\text{odd}}(ω_{n/2})$$

$$\vdots$$

$$A(ω_{n/2}^{n-1}) = A_{\text{even}}(ω_{n/2}^{n/2-1}) - ω_n^{n/2-1} A_{\text{odd}}(ω_{n/2}^{n/2-1})$$

From $ω_n^{n/2}$ on, the x co-efficient of $xA_{\text{odd}}(x^2)$ of (#) is negative.

We will use this negative relationship (with the $j < n/2$ case) on lines 8., 9. of our pseudocode.

Key Facts (cont’d)

$$A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1},$$

assume n is a power of 2. Compute

$$A(1), A(ω_n), A(ω_n^2), \ldots, A(ω_n^{n-1}),$$

as follows:

1. If $n = 1$ then $A(x)$ is a constant so task is trivial. Otherwise split A into A_{even} and A_{odd}.
2. By making two recursive calls compute the values of $A_{\text{even}}(y)$ and $A_{\text{odd}}(y)$ at the $(n/2)$ points $1, ω_{n/2}, ω_{n/2}^2, \ldots, ω_{n/2}^{n/2-1}$.
3. Compute the values (#) by using the equation

$$A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2).$$

The Fast Fourier Transform (FFT)

$$A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1},$$

assume n is a power of 2. Compute

$$A(1), A(ω_n), A(ω_n^2), \ldots, A(ω_n^{n-1}),$$

as follows:

1. If $n = 1$ then $A(x)$ is a constant so task is trivial. Otherwise split A into A_{even} and A_{odd}.
2. By making two recursive calls compute the values of $A_{\text{even}}(y)$ and $A_{\text{odd}}(y)$ at the $(n/2)$ points $1, ω_{n/2}, ω_{n/2}^2, \ldots, ω_{n/2}^{n/2-1}$.
3. Compute the values (#) by using the equation

$$A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2).$$

The x co-efficient on $xA_{\text{odd}}(x^2)$ of (#) stays positive until $x = ω_n^{n/2}$.

ADS: lects 5 & 6 – slide 9 – 25th and 28th Jan, 2016

ADS: lects 5 & 6 – slide 11 – 25th and 28th Jan, 2016

ADS: lects 5 & 6 – slide 12 – 25th and 28th Jan, 2016
The Discrete Fourier Transform

Recall

- The DFT maps a tuple $\langle a_0, \ldots, a_{n-1} \rangle$ to the tuple $\langle y_0, \ldots, y_{n-1} \rangle$ defined by

 $$y_j = \sum_{k=0}^{n-1} a_k \omega_n^{jk},$$

 where $\omega_n = e^{2\pi i/n}$ is the principal nth root of unity.

- Thus for every n (power of 2) we may view DFT$_n$ as mapping $\mathbb{C}^n \rightarrow \mathbb{C}^n$, where \mathbb{C} denote the complex numbers.

- FFT (the Fast Fourier Transform) is an algorithm computing DFT$_n$ in time $\Theta(n \lg(n))$.

The inverse DFT

$$\text{DFT}^{-1}_n : \mathbb{C}^n \rightarrow \mathbb{C}^n$$

$$\langle a_0, \ldots, a_{n-1} \rangle \mapsto \langle y_0, \ldots, y_{n-1} \rangle$$

Question

Can we go back from $\langle y_0, \ldots, y_{n-1} \rangle$ to $\langle a_0, \ldots, a_{n-1} \rangle$?

More precisely:

1. Is DFT$_n$ invertible, that is, is it one-to-one and onto?
2. If the answer to (1) is 'yes', can we compute DFT$_n^{-1}$ efficiently?
An alternative view on the DFT

DFT$_n$ is the linear mapping described by the matrix

$$V_n = \begin{pmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & \omega_n & \omega_n^2 & \ldots & \omega_n^{n-1} \\
1 & \omega_n^2 & \omega_n^4 & \ldots & \omega_n^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \ldots & \omega_n^{(n-1)(n-1)}
\end{pmatrix}.$$

That is, we have

$$V_n \begin{pmatrix} a_0 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} y_0 \\ \vdots \\ y_{n-1} \end{pmatrix}.$$

We will NOT actually perform the naïve matrix mult. (we will do much better: $O(n \log n)$)

ADS: lects 5 & 6 – slide 17 – 25th and 28th Jan, 2016

Inverse of DFT

Claim: V_n is a van-der-Monde matrix and thus invertible.

Proof: Define the following “Inverse” matrix:

$$V_n^{-1} = \frac{1}{n} \begin{pmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & \omega_n^{-1} & \omega_n^{-2} & \ldots & \omega_n^{-(n-1)} \\
1 & \omega_n^{-2} & \omega_n^{-4} & \ldots & \omega_n^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_n^{-(n-1)} & \omega_n^{-2(n-1)} & \ldots & \omega_n^{-(n-1)(n-1)}
\end{pmatrix}.$$

$$V_n^{-1} = \frac{1}{n} \sum_{k=0}^{n-1} \begin{pmatrix} \omega_n^{(k-j)k} \\ \vdots \\ \omega_n^{-(j-k)kj} \end{pmatrix},$$

$$= \begin{cases} 1 & \text{if } \ell = j \text{ (because } \omega_n^{\ell-j} = 1) \\
0 & \text{otherwise}
\end{cases}.$$

$(V_n V_n^{-1})_{\ell j} = 0$ case uses the fact that for all $r \neq 0 (r = (\ell - j))$ we have $\sum_{k=0}^{n-1} \omega_n^{rk} = 0.$

Inverse of DFT (proof)

Verification: We must check that $V_n V_n^{-1} = I_n$:

Want $\ell\ell$-th entry $= 1 \forall \ell$, and ℓj-th entry $= 0 \forall \ell, j$ with $\ell \neq j$.

Expanding ...

$$(V_n V_n^{-1})_{\ell j} = \frac{1}{n} \sum_{k=0}^{n-1} \omega_n^{(k-j)k}$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} \omega_n^{(\ell-j)k},$$

$$= \begin{cases} 1 & \text{if } \ell = j \text{ (because } \omega_n^{\ell-j} = 1) \\
0 & \text{otherwise}
\end{cases}.$$

We have shown $\sum_{k=0}^{n-1} \omega_n^{rk} = 0.$

ADS: lects 5 & 6 – slide 20 – 25th and 28th Jan, 2016

Inverse of DFT

We have shown DFT$_n$ is invertible with

$$V_n^{-1} = \begin{pmatrix} y_0 \\ \vdots \\ y_{n-1} \\ a_0 \\ \vdots \\ a_{n-1} \end{pmatrix}.$$

If we are were to apply $V_n^{-1} \langle y_0, \ldots, y_{n-1} \rangle$ directly in order to recover $\langle a_0, \ldots, a_{n-1} \rangle$, the evaluation of $V_n^{-1} \langle y_0, \ldots, y_{n-1} \rangle$ would take $\Theta(n^2)$ time!!!

Solution

Take another look back at the V_n^{-1} matrix, and see that it is more-or-less a “flipped-over” DFT.

ADS: lects 5 & 6 – slide 20 – 25th and 28th Jan, 2016
Inverse DFT (efficient) Algorithm

\(\omega_n^{-1} \) is an \(n \)th root of unity (though not the principal one). Note that

\[(\omega_n^{-1})^j = 1/\omega_n^j = \omega_n^j/\omega_n = \omega_n^{n-j}, \]

for every \(0 \leq j < n \).

Inverse FFT

- Compute \(\text{DFT}_n(y_0, \ldots, y_{n-1}) \) (deliberately using DFT\(_n \), not inverse), to obtain the result \(\langle d_0, \ldots, d_{n-1} \rangle \).
- Flip the sequence \(d_1, d_2, \ldots, d_{n-1} \) in this result (keeping \(d_0 \) fixed), then divide every term by \(n \).

\[a_i = \begin{cases} d_0/n & \text{if } i = 0 \\ d_{n-i}/n & \text{if } 1 \leq i \leq n-1 \end{cases} \]

Worst-case running time is \(\Theta(n \lg(n)) \).

Interpolation

Theorem

Let \(\alpha_0, \ldots, \alpha_{n-1} \in \mathbb{C} \) pairwise distinct and \(y_0, \ldots, y_{n-1} \in \mathbb{C} \).

Then there exists exactly one polynomial \(p(X) \) of degree at most \(n-1 \) such that for \(0 \leq k \leq n-1 \)

\[p(\alpha_k) = y_k. \]

- The sequence

\[\langle (\alpha_0, y_0), \ldots, (\alpha_{n-1}, y_{n-1}) \rangle \]

is called a point-value representation of the polynomial \(p \).

- The process of computing a polynomial from a point-value representation is called interpolation.

Our Application! Multiplication of Polynomials

Input: \(p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1} \)

\(q(x) = b_0 + b_1 x + b_2 x^2 + \cdots + b_{m-1} x^{m-1} \).

Required output:

\[p(x)q(x) = (a_0b_0) + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + \cdots + (a_{n-2}b_{m-1} + a_{n-1}b_{m-2})x^{n+m-3} + (a_{n-1}b_{m-1})x^{n+m-2} \]

Naive method uses \(\Theta(nm) \) arithmetic operations

CAN WE DO BETTER?
we take the solid-arrow route, using 3 steps, to achieve performance $\Theta(n \lg(n))$.

Reading Assignment

Fast Fourier Transform, by M. Cryan, notes handed out today.

[CLRS] (2nd and 3rd ed) Section 30.2 and 30.3.

Problems

1. Exercise 30.2-2 of [CLRS].
2. Let $f(x) = 3 \cos(2x)$. For $0 \leq k \leq 3$, let $a_k = f(2\pi k/4)$. Compute the DFT of (a_0, \ldots, a_3).
 Do the same for $f(x) = 5 \sin(x)$.
3. Exercise 30.2-3 of [CLRS].
4. Exercise 30.2-7 of [CLRS].