
Algorithms and Data Structures:
Computational Geometry III (Convex Hull)

Friday, 18th Nov, 2014

ADS: lect 17 – slide 1 – Friday, 18th Nov, 2014

The Convex Hull

Definition 1

1. A set C of points is convex if for all p, q ∈ C the whole line segment
pq is contained in C .

2. The convex hull of a set Q of points is the smallest convex set C
that contains Q.

Observation 2
The convex hull of a finite set Q of points is a convex polygon whose
vertices (corner points) are elements of Q.

ADS: lect 17 – slide 2 – Friday, 18th Nov, 2014

The Convex Hull Problem

Input: A finite set Q of points in the plane

Output: The vertices of the convex hull of Q in counterclockwise order.

Example:

The Convex Hull Problem

Input: A finite set S of points in the plane
Output: The vertices of the convex hull of S in counterclockwise order.

Example 16.3

a
b

c

de

f

g

h

i
j

Output of a convex-hull algorithm: a, b, c, g, j

A&DS Lecture 16 2 Mary CryanOutput of a convex-hull algorithm: a, b, c , g , j

ADS: lect 17 – slide 3 – Friday, 18th Nov, 2014

Polar Angles

The polar angle of a point q with respect to a point p is the (as usual
anti-clockwise) angle between a horizontal line and the line through p
and q.

Polar Angles

The polar angle of a point q with respect to a point p is the angle
between a horizontal line and the line through p and q.

p

q

Lemma
There is an algorithm that, given points p0, p1, . . . , pn, sorts
p1, . . . , pn by non-decreasing polar angle with respect to p0 in
O(n lgn) time (How? - this is related to Q1 of the week 10
tutorial).

A&DS Lecture 16 3 Mary Cryan

Lemma 3
There is an algorithm that, given points p0, p1, . . . , pn, sorts p1, . . . , pn

by non-decreasing polar angle with respect to p0 in O(n lg n) time.

ADS: lect 17 – slide 4 – Friday, 18th Nov, 2014

Graham’s Scan

IDEA

I Let p0 be a “bottom-most” point in the set. Start walking around
the points in the order of increasing polar angles.

I As long as you turn left, keep on walking.

I If you have to turn right to reach the next point, discard the current
point and step back to the previous point. Repeat this until you can
turn left to the next point.

I The points that remain are the vertices of the convex hull.

ADS: lect 17 – slide 5 – Friday, 18th Nov, 2014

Turning Left (reminder)

Problem
Given p, q, r in the plane, if we walk from p → q → r , do
we make a left, a right, or no turn at q?

Solution

q q

r

p

r

anti−clockwise

p

clockwise

(q − p)× (r − p) = 0: collinear segments — no turn.
(q − p)× (r − p) < 0: right turn at q.
(q − p)× (r − p) > 0: left turn at q.

ADS: lect 17 – slide 6 – Friday, 18th Nov, 2014

Example (BOARD)
Example

a
b

c

de

f

g

h

i
j

A&DS Lecture 16 5 Mary Cryan

ADS: lect 17 – slide 7 – Friday, 18th Nov, 2014

Implementation
Algorithm Graham-Scan(Q)

1. Let p0 be the point in Q with minimum y coordinate.
(if there is a tie, take the leftmost such point).

2. Sort Q \ {p0} “lexicographically” in terms of (primary key) non-decreasing
polar angle with respect to p0 and (secondary key) distance from p0.

For angles with more than one point, delete all corresponding points
except the one farthest from p0.

Let 〈p1, . . . , pm〉 be the resulting list..

3. if m ≤ 2 then return 〈p0, . . . , pm〉
4. else {
5. Initialise stack S

6. S.push(p0)

7. S.push(p1)

8. S.push(p2)

9. for i ← 3 to m do

10. while the angle formed by the topmost two elements of S and pi

does not make a left turn do

11. S.pop

12. S.push(pi)

13. return S

14. }

ADS: lect 17 – slide 8 – Friday, 18th Nov, 2014

Analysis of Running time

Let n = |Q |, then m ≤ n.

I Lines 3–8, 13 require time Θ(1).

I Line 1 requires time Θ(n) in the worst case.

I Line 2 requires time Θ(n lg n).

I The outside (for) loop in lines 9–12 is iterated m − 2 times. Thus,
disregarding the time needed by the inner while loop, the loop requires
time Θ(m) = O(n).

I The inner loop in lines 10–11 is executed at most once for each element,
because every element enters the stack at most once and thus can only be
popped once. Thus overall the inner loop requires time O(n).

Thus the overall worst-case running time is

Θ(n lg n).

ADS: lect 17 – slide 9 – Friday, 18th Nov, 2014

Proof of Correctness

(I) First we consider the effect of executing lines 1 and 2 to get the (possibly
smaller) set of points P = p0, p1, . . . , pm.

claim (i): The convex hull of Q is equal to the convex hull of P.

Proof of claim (i): We only discard a point q ∈ Q if it has the same polar angle
wrt p0 as some point pi ∈ P, AND q is closer to p0 than this pi . When q satisfies
these 2 conditions, then q lies on p0pi . The convex hull of P by definition must
contain p0pi for every pi , so the convex hull of P must contain q.
Applying this inductively (on the entire set of points removed) we find that the
convex hull of P equals that of Q.

(II) Next we must prove that lines 3-14 compute the convex hull of p0, p1, . . . , pm.

If m ≤ 2 then the alg returns all m + 1 (1, 2, or 3) points (line 3). Correct.

Else m > 2 and the algorithm executes lines 5.-13.

For any 2 ≤ i ≤ m, define Ci to be the convex hull of p0, . . . , pi .

After executing lines 5.-8., the points on stack S are the vertices of C2 (clockwise).

We now prove that this situation holds for Ci after we execute the for loop

with i .
ADS: lect 17 – slide 10 – Friday, 18th Nov, 2014

Proof of Correctness (m > 2) cont’d

claim (ii): Let i be such that 2 ≤ i ≤ m. Then after the ‘i ’-execution of the
for loop (lines 9-12), the points on S are the vertices of Ci in clockwise order.

Proof of claim (ii): Our proof is by induction.

Base case (i=2): In this case there is no i-iteration of the loop. However, the
stack holds p0, p1, p2 (lines 6.-8.), which form the convex hull of {p0, p1, p2}.

Induction hypothesis (IH): Assume claim (ii) holds for some i , 2 ≤ i < m.

Induction step: We will show claim (ii) also holds for i + 1.

I Since the polar angle of pi+1 is strictly greater than the polar angle of pi ,
therefore p0pipi+1 forms a triangle that is not contained in Ci .

..
..

p

pp
ii+1

0

I Note pi+1 is NOT contained in Ci and thus is definitely a vertex of Ci+1.

ADS: lect 17 – slide 11 – Friday, 18th Nov, 2014

Proof of Correctness (m > 2) cont’d

I By (IH) any q “‘popped” so far is in the convex hull formed by the points
currently on stack S . . . ⇒ . . . the convex hull Ci+1 is contained in the
convex hull of pi+1 and the points on S .

I Left: First suppose the “next-to-top” point p on S , followed by the “top”
point pi , followed by pi+1 creates a “left turn”:

p

pp
ii+1

0

p

.
.
.

I Then the triangle p0ppi+1 does NOT contain all of triangle p0pi pi+1

I ⇒ pi must be on the Convex Hull Ci+1.
I Using convexity of the points on S , p0 → bp → pi+1 is a left turn for all

points bp on S
I ⇒ all such bp must be on the Convex Hull Ci+1.
I ⇒ hence the decision to “push” pi+1 and leave all items of S there,

correctly constructs Ci+1. ⇒ claim (ii) Left proven.

ADS: lect 17 – slide 12 – Friday, 18th Nov, 2014

Proof of Correctness (m > 2) cont’d

I Right: Otherwise suppose the “next-to-top” point p on S , followed by the
“top” point pi , followed by pi+1, creates a “right turn”:

p

p
i+1

0

.
.

.
p
i

p

I Then the triangle p0ppi+1 does contain all of triangle p0pi pi+1.
I ⇒ Ci+1 does not need to include the point pi .
I ⇒ decision to “pop” pi (top item on S) on line 11 is correct.

After the “pop”, it is still true that the vertices of the convex hull Ci+1 are
from the set of points on S , together with pi+1.

I We can apply this iteratively by considering the “turn direction” of the top
two items on the stack, p∗, bp say (taking the roles of p, pi), followed by
pi+1, “popping” until there is a left turn.

I Once we find a left turn slide 12 applies, and we push pi+1 onto S on line
12, to complete Ci+1. ⇒ claim (ii) right proven.

ADS: lect 17 – slide 13 – Friday, 18th Nov, 2014

Proof of Correctness (m > 2) cont’d

Wrapping up . . .

I We have proven the inductive step for claim (ii).

I Hence claim (ii) holds after the consideration of every point p3, . . . , pm,
and in particular for i = m:

I ⇒ after the m-execution (the final execution) of the for, the points on the
stack S are the vertices of Cm in clockwise order.

The vertices Cm are the vertices of the original set of points Q (by claim
(i)).

Hence Graham’s scan computes the Convex Hull of its input correctly.

ADS: lect 17 – slide 14 – Friday, 18th Nov, 2014

Optimality

I The best-known algorithm for finding the convex hull has a running
time of O(n lg h), where h is the number of vertices of the convex
hull.

I It can be shown (based on fairly natural assumptions) that every
algorithm for finding the convex hull has a worst-case running time
of

Ω(n lg n).

The proof of this lower bound is due to the fact that we can
implement real-number sorting using Convex Hull.

ADS: lect 17 – slide 15 – Friday, 18th Nov, 2014

Reading Assignment

Section 33.3 of [CLRS].

Problems

1. Exercises 33.3-3 and 33.3-5 of [CLRS].

2. Show how to sort a collection of n points by polar angle (wrt some
lowest point p0) in O(n lg(n)) time, without using division or
trigonometry.

3. Prove that the problem of finding the Convex Hull of n points has a
lower bound of Ω(n lg n). For this, think about using a reduction
from sorting to Convex Hull (that is, think about how to use a
Convex Hull algorithm to sort a list of numbers).

ADS: lect 17 – slide 16 – Friday, 18th Nov, 2014

