Algorithms and Data Structures:
Minimum Spanning Trees (Kruskal)

7th Nov, 2014

ADS: lect 14 — slide 1 — 7th Nov, 2014



Minimum Spanning Tree Problem

Given: Undirected connected weighted graph (G, W)
Output: An MST of §

» We have already seen the PRIM algorithm, which runs in
O((m 4+ n)lg(n)) time (standard Heap implementation) for graphs
with n vertices and m edges.

» In this lecture we will see KRUSKAL's algorithm, a different
approach to constructing a MST.
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Kruskal's Algorithm

A forest is a graph whose connected components are trees.

ldea
Starting from a spanning forest with no edges, repeatedly
add edges of minimum weight (never creating a cycle) until
the forest becomes a tree.

Algorithm KRUSKAL(G, W)

1. F«10

2. for all e € E in the order of increasing weight do

3. if the endpoints of e are in different con-
nected components of (V, F) then

4. F «— FU{e}

5. return tree with edge set F
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Example

4.0

5.0

2.0
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Correctness of Kruskal's algorithm

1. Throughout the execution of KRUSKAL, (V/, F) remains a spanning
forest.
Proof: (V/, F) is a spanning subgraph because the vertex set is V. It
always remains a forest because edges with endpoints in different
connected components never induce a cycle.

2. Eventually, (V, F) will be connected and thus a spanning tree.
Proof: Suppose that after the complete execution of the loop,
(V/, F) has a connected component ( Vi, F1) with V; # V. Since §
Is connected, there is an edge e € E with exactly one endpoint in
V1. This edge would have been added to F when being processed in
the loop, so this can never happen.

3. Throughout the execution of KRUSKAL, (V/, F) is contained in
some MST of G.

Proof: Similar to the proof of the corresponding statement for
Prim’s algorithm. Will prove in week 9 Tutorial.
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Data Structures for Disjoint Sets

» A disjoint set data structure maintains a collection & ={51,..., Sk}
of disjoint sets.

» The sets are dynamic, i.e., they may change over time.

» Each set S; is identified by some representative, which is some
member of that set.

Operations:

» MAKE-SET(x): Creates new set whose only member is x. The
representative Is x.

» UNION(x, y): Unites set S, containing x and set S, containing y
into a new set S and removes Sy and S, from the collection.

» FIND-SET(x): Returns representative of the set holding x.
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Implementation of Kruskal's Algorithm

Algorithm KRUSKAL(G, W)
1. F«Q0

for all vertices v of G do
MAKE-SET(v)
sort edges of G into non-decreasing order by weight
for all edges (u, v) of G in non-decreasing order by weight do
if FIND-SET(u) # FIND-SET(v) then
F— FU{(u,v)}
UNION(u, v)

O 0NS R W

return F
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Analysis of KRUSKAL

Let n be the number of vertices and m the number of edges of the input
graph
» Line 1: ©(1)

» Loop in Lines 2-3: O(n - Tyiake-ser(n))

» Line 4: ©(mlgm)

» Loop in Lines 5-8: @(m- Temp-ser(n) +n- TUNION(n)).
» Line 9: ©(1)

Overall:

@(n(TMAKE—SET(n) + TUNION(”)) + m( |g m —+ TFIND—SET(n)))
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Analysis of KRUSKAL (overview)

T'(n,m) = @(n(TMAKE—SET(n) + TUNION(”)) + m( lg m+ TFIND—SET(”)))
With standard efficient implementations of disjoint sets this amounts to

T'(n,m) =0(mlg(m)).

» NOT better than the standard Heap implementation of PRIM for
typical implementations of disjoint sets.

» Always have to sort the weights when using KRUSKAL:
» O(mlg(m)) if the weights are arbitrarily large.
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Linked List Implementation of Disjoint Sets

Each element represented by a pointer to a cell:

] /

Use a linked list for each set.
Representative of the set is at the head of the list.
Each cell has a pointer direct to the representative (head of the list).
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Example

Linked list representation of

la,f}, b}, 1g,c e, 1dj:

T3

The hrelor\ase«&a&(\f_s “ are aqb, g ad d r‘eSpecE\ve(\uB

last[ ) poinkers are i red
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Analysis of Linked List Implementation

MAKE-SET: constant (©(1)) time.
FIND-SET: constant (©(1)) time.
UNION: Naive implementation of

UNION(x, y)

appends x's list onto end of y's list.
Assumption: Representative y of each set has attribute
lasty]: a pointer to last cell of y's list.
Snag: have to update “representative pointer” in each cell
of x's list to point to the representative (head) of y's list.
Cost is:

O(length of x's list).
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Notation for Analysis

Express running time in terms of:
n : the number of MAKE-SET operations,

m : the number of MAKE-SET, UNION and FIND-SET
operations overall.

Note
1. After n — 1 UNION operations only one set remains.

2. m>n.
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Weighted-Union Heuristic

ldea
Maintain a “length” field for each list. To execute
UNION(x, y)
append shorter list to longer one (breaking ties arbitrarily).
Theorem 1

Using the linked-list representation of disjoint sets and the weighted-union

heuristic, a sequence of m MAKE-SET, UNION & FIND-SET operations, n of
which are MAKE-SET operations, takes

O(m + nlgn)
time.

“Proof”: Each element appears at most Ign times in the short list of a UNION.
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Example (UNION(g, b)))
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KRUSKAL with Linked lists (weighted union)
The run-time for KRUSKAL (for § = (V, E) with |V| = n,|E| = m) is
T(n,m) = @(n(TMAKE—SET(n) + TUNION(”)) + m( lg m+ TFIND—SET(”)))

In terms of the collection of “Disjoint-sets” operations, we have m =
2n + 2m operations, n = n which are UNION. So

T(n, m) O(mlg(m) 4+ (2n+ 2m) + nlg(n))

= O(mlg(m))
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