Algorithms and Data Structures:
Minimum Spanning Trees I and II (Prim)

31st Oct & 4th Nov, 2014
Weighted Graphs

Definition 1
A weighted (directed or undirected graph) is a pair \((G, W)\) consisting of a graph \(G = (V, E)\) and a weight function \(W : E \to \mathbb{R}\).

In this lecture, we always assume that weights are non-negative, i.e., that \(W(e) \geq 0\) for all \(e \in E\).

Example
Representations of Weighted Graphs (as Matrices)

Adjacency Matrix

\[
\begin{bmatrix}
0 & 2.0 & 0 & 0 & 0 & 9.0 & 5.0 & 0 & 0 \\
2.0 & 0 & 4.0 & 0 & 0 & 0 & 6.0 & 0 & 0 \\
0 & 4.0 & 0 & 2.0 & 0 & 0 & 0 & 5.0 & 0 \\
0 & 0 & 2.0 & 0 & 1.0 & 0 & 0 & 1.0 & 0 \\
0 & 0 & 0 & 1.0 & 0 & 6.0 & 0 & 0 & 3.0 \\
9.0 & 0 & 0 & 0 & 6.0 & 0 & 0 & 0 & 1.0 \\
5.0 & 6.0 & 0 & 0 & 0 & 0 & 5.0 & 2.0 & 0 \\
0 & 0 & 5.0 & 1.0 & 0 & 0 & 5.0 & 0 & 4.0 \\
0 & 0 & 0 & 3.0 & 1.0 & 2.0 & 4.0 & 0 & 0 \\
\end{bmatrix}
\]

Representations of Weighted Graphs (Adjacency List)

Adjacency Lists

Connecting Sites

Problem
Given a collection of sites and costs of connecting them, find a minimum cost way of connecting all sites.

Our Graph Model
- Sites are vertices of a weighted graph, and (non-negative) weights of the edges represent the cost of connecting their endpoints.
- It is reasonable to assume that the graph is undirected and connected.
- The cost of a subgraph is the sum of the costs of its edges.
- The problem is to find a subgraph of minimum cost that connects all vertices.
Spanning Trees

$G = (V, E)$ undirected connected graph and W weight function.
$H = (V^H, E^H)$ with $V^H \subseteq V$ and $E^H \subseteq E$ subgraph of G.

- The weight of H is the number

$$W(H) = \sum_{e \in E^H} W(e).$$

- H is a spanning subgraph of G if $V^H = V$.

Observation 2
A connected spanning subgraph of minimum weight is a tree.
Minimum Spanning Trees

\((G, W) \) undirected connected weighted graph

Definition 3

A **minimum spanning tree (MST)** of \(G \) is a connected spanning subgraph \(T \) of \(G \) of minimum weight.

The **minimum spanning tree problem**:

Given: *Undirected connected weighted graph* \((G, W) \)

Output: *An MST of* \(G \)
Prim’s Algorithm

Idea

“Grow” an MST out of a single vertex by always adding “fringe” (neighbouring) edges of minimum weight.

A fringe edge for a subtree T of a graph is an edge with exactly one endpoint in T (so $e = (u, v)$ with $u \in T$ and $v \notin T$).

Algorithm $\text{PRIM}(G, W)$

1. $T \leftarrow$ one vertex tree with arbitrary vertex of G
2. while there is a fringe edge do
3. add fringe edge of minimum weight to T
4. return T

Note that this is another use of the greedy strategy.
Example

Correctness of Prim’s algorithm

1. Throughout the execution of PRIM, T remains a tree.

 Proof: To show this we need to show that throughout the execution of the algorithm, T is (i) always connected and (ii) never contains a cycle.

 (i) Only edges with an endpoint in T are added to T, so T remains connected.

 (ii) We never add any edge which has both endpoints in T (we only allow a single endpoint), so the algorithm will never construct a cycle.
Correctness of Prim’s algorithm (cont’d)

2. All vertices will eventually be added to T.

 Proof: by contradiction ... (depends on our assumption that the graph G was connected.)

 ▶ Suppose w is a vertex that never gets added to T (as usual, in proof by contradiction, we suppose the opposite of what we want).
 ▶ Let $v = v_0 e_1 v_1 e_2 ... v_n = w$ be a path from some vertex v inside T to w (we know such a path must exist, because G is connected). Let v_i be the first vertex on this path that never got added to T.
 ▶ After v_{i-1} was added to T, $e_i = (v_{i-1}, v_i)$ would have become a fringe edge. Also, it would have remained as a fringe edge unless v_i was added to T.
 ▶ So eventually v_i must have been added, because Prims algorithm only stops if there are no fringe edges. So our assumption was wrong. So we must have w in T for every vertex w.

Correctness of Prim’s algorithm (cont’d)

3. Throughout the execution of \(\text{PRIM} \), \(T \) is contained in some MST of \(G \).

Proof: (by Induction)

- Suppose that \(T \) is contained in an MST \(T' \) and that fringe edge \(e = (x, y) \) is then added to \(T \) by \(\text{PRIM} \). We shall prove that \(T + e \) is contained in some MST \(T'' \) (not necessarily \(T' \)).
- case (i): If \(e \) is contained in \(T' \), our proof is easy, we simply let \(T'' = T' \).
- case (ii): Otherwise, if \(e \notin T' \), consider the unique path \(P \) from \(x \) to \(y \) in \(T' \). Then \(P \) contains exactly one fringe edge \(e' = (x', y') \).
Correctness of Prim’s algorithm (cont’d)

Define \(\mathcal{T}’ \) as
\[
\mathcal{T}' + (x,y) - (x',y')
\]
"drop \((x',y')\) and add \((x,y)\)"
Correctness of Prim’s algorithm (cont’d)

3. case (ii) cont’d

▶ Then $W(e) \leq W(e')$.
 (otherwise e' would definitely have been added before e)
▶ Let $T'' = T' + e - e'$.
▶ T'' is a tree.
 We drop $e' = (x', y')$, which splits the MST into two components: T'_x, and the other subtree $T'_y, = T' \setminus T'_x$. We know x and y are now in different components after this split, because we have broken the unique path P between x and y in T'. Hence we can add (x, y) to re-join T'_x, and T'_y, without making a cycle.
 T'' has the same vertices as T', thus it is a spanning tree.
▶ Moreover, $W(T'') \leq W(T')$, thus T'' is also a MST.
Towards an Implementation

Improvement

- Instead of fringe edges, we think about adding fringe vertices to the tree.

- A fringe vertex is a vertex y not in T that is an endpoint of a fringe edge.

- The weight of a fringe vertex y is

$$\min\{W(e) \mid e = (x, y) \text{ a fringe edge}\}$$

(i.e., the best weight that could “bring y into the MST”)

- To be able to recover the tree, every time we “bring a fringe vertex y into the tree”, we store its parent in the tree.

We will store the fringe vertices in a priority queue.
Priority Queues with Decreasing Key

A *Priority Queue* is an ADT for storing a collection of elements with an associated *key*. The following methods are supported:

- **Insert**(e, k): Insert element e with key k.
- **Get-Min()**: Return an element with minimum key; an error occurs if the priority queue is empty.
- **Extract-Min()**: Return and remove an element with minimum key; an error if the priority queue is empty.
- **Is-Empty()**: Return **true** if the priority queue is empty and **false** otherwise.

To update the keys during the execution of **Prim**, we need priority queues supporting the following additional method:

- **Decrease-Key**(e, k): Set the key of e to k and update the priority queue. It is assumed that k is smaller than or equal to the old key of e.
Implementation of Prim's Algorithm

Algorithm \textsc{Prim}(G, W)

1. Initialise parent array \(\pi \):
 \(\pi[v] \leftarrow \text{NIL} \) for all vertices \(v \)
2. Initialise weight array:
 \(\text{weight}[v] \leftarrow \infty \) for all \(v \)
3. Initialise inMST array:
 \(\text{inMST}[v] \leftarrow \text{false} \) for all \(v \)
4. Initialise priority queue \(Q \)
5. \(v \leftarrow \text{arbitrary vertex of } G \)
6. \(Q.\text{Insert}(v, 0) \)
7. \(\text{weight}[v] = 0; \)
8. \textbf{while} \(\textbf{not}(Q.\text{Is-Empty}()) \) \textbf{do}
9. \(y \leftarrow Q.\text{Extract-Min}() \)
10. \(\text{inMST}[y] \leftarrow \text{true} \)
11. \textbf{for all } \(z \) adjacent to \(y \) \textbf{do}
12. \(\textsc{Relax}(y, z) \)
13. \textbf{return} \(\pi \)

Algorithm \textsc{Relax}(y, z)

1. \(w \leftarrow W(y, z) \)
2. \textbf{if} \(\text{weight}[z] = \infty \) \textbf{then}
3. \(\text{weight}[z] \leftarrow w \)
4. \(\pi[z] \leftarrow y \)
5. \(Q.\text{INSERT}(z, w) \)
6. \textbf{else if } (w < \text{weight}[z] \textbf{ and} \textbf{ not} (\text{inMST}[z])) \textbf{ then}
7. \(\text{weight}[z] \leftarrow w \)
8. \(\pi[z] \leftarrow y \)
9. \(Q.\text{DECREASE Key}(z, w) \)
Analysis of Prim’s algorithm

Let n be the number of vertices and m the number of edges of the input graph.

- Lines 1-7, 13 of Prim require $\Theta(n)$ time altogether.
- Q will extract each of the n vertices of \mathcal{G} once. Thus the loop at lines 8-12 is iterated n times.

Thus, disregarding (for now) the time to execute the inner loop (lines 11-12) the execution of the loop requires time

$$\Theta(n \cdot T_{\text{EXTRACT-MIN}}(n))$$

- The inner loop is executed at most once for each edge (and at least once for each edge). So its execution requires time

$$\Theta(m \cdot T_{\text{RELAX}}(n, m)).$$
Analysis of Prim's algorithm (Relax)

- Decreasing the time needed to execute Insert and Decrease-Key, the execution of Relax requires time $\Theta(1)$.
- Insert is executed once for every vertex, which requires time
 \[\Theta(n \cdot T_{\text{Insert}}(n)) \]
- Decrease-Key is executed at most once for every edge. This can require time of size
 \[\Theta(m \cdot T_{\text{Decrease-Key}}(n)) \]

Overall, we get

\[T_{\text{Prim}}(n, m) = \Theta(n(T_{\text{Extract-Min}}(n) + T_{\text{Insert}}(n)) + mT_{\text{Decrease-Key}}(n)) \]
Priority Queue Implementations

- **Array**: Elements simply stored in an array.
- **Heap**: Elements are stored in a binary heap (see Inf2B (ADS note 7), [CLRS] Section 6.5)
- **Fibonacci Heap**: Sophisticated variant of the simple binary heap (see [CLRS] Chapters 19 and 20)

<table>
<thead>
<tr>
<th>method</th>
<th>Array</th>
<th>Heap</th>
<th>Fibonacci Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>$\Theta(1)$</td>
<td>$\Theta(lg n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$\Theta(n)$</td>
<td>$\Theta(lg n)$</td>
<td>$\Theta(lg n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$\Theta(1)$</td>
<td>$\Theta(lg n)$</td>
<td>$\Theta(1)$ (amortised)</td>
</tr>
</tbody>
</table>

Running-time of \textsc{Prim}

\[
T_{\textsc{Prim}}(n, m) = \Theta \left(n \left(T_{\text{Extract-Min}}(n) + T_{\text{Insert}}(n) \right) + m T_{\text{Decrease-Key}}(n) \right)
\]

Which Priority Queue implementation?

- With array implementation of priority queue:
 \[
 T_{\textsc{Prim}}(n, m) = \Theta(n^2).
 \]

- With heap implementation of priority queue:
 \[
 T_{\textsc{Prim}}(n, m) = \Theta((n + m) \log(n)).
 \]

- With Fibonacci heap implementation of priority queue:
 \[
 T_{\textsc{Prim}}(n, m) = \Theta(n \log(n) + m).
 \]

\((n \text{ being the number of vertices and } m \text{ the number of edges})\)
Remarks

- The Fibonacci heap implementation is mainly of theoretical interest. It is not much used in practice because it is very complicated and the constants hidden in the Θ-notation are large.
- For dense graphs with $m = \Theta(n^2)$, the array implementation is probably the best, because it is so simple.
- For sparser graphs with $m \in O\left(\frac{n^2}{\lg n}\right)$, the heap implementation is a good alternative, since it is still quite simple, but more efficient for smaller m.

Instead of using binary heaps, the use of d-ary heaps for some $d \geq 1$ can speed up the algorithm (see [Sedgewick] for a discussion of practical implementations of Prims algorithm).
Reading Assignment

[CLRS] Chapter 23.

Problems

1. Exercises 23.1-1, 23.1-2, 23.1-4 of [CLRS]

2. In line 3 of Prim’s algorithm, there may be more than one fringe edge of minimum weight. Suppose we add all these minimum edges in one step. Does the algorithm still compute a MST?

3. Prove that our implementation of Prim’s algorithm on slide 6 is correct - ie, that it computes an MST. What is the difference between this and the suggested algorithm of Problem 4?