Algorithms and Data Structures: Minimum Spanning Trees I and II (Prim)

31st Oct & 4th Nov, 2014

ADS: lects 12 & 13 - slide 1 - 31st Oct & 4th Nov, 2014

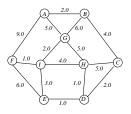
Weighted Graphs

Definition 1

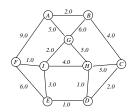
A weighted (directed or undirected graph) is a pair (\mathfrak{G}, W) consisting of a graph $\mathfrak{G} = (V, E)$ and a weight function $W : E \to \mathbb{R}$.

In this lecture, we always assume that weights are non-negative, i.e., that $W(e) \ge 0$ for all $e \in E$.

Example



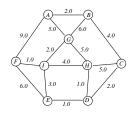
Representations of Weighted Graphs (as Matrices)



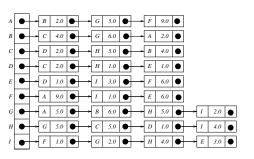
Adjacency Matrix

ADS: lects 12 & 13 - slide 3 - 31st Oct & 4th Nov, 2014

Representations of Weighted Graphs (Adjacency List)



Adjacency Lists



Connecting Sites

Problem

Given a collection of *sites* and *costs* of connecting them, find a minimum cost way of connecting all sites.

Our Graph Model

- ▶ Sites are vertices of a *weighted graph*, and (non-negative) weights of the edges represent the cost of connecting their endpoints.
- ▶ It is reasonable to assume that the graph is *undirected* and *connected*.
- ▶ The *cost* of a *subgraph* is the sum of the costs of its edges.
- ► The problem is to find a *subgraph of minimum cost* that *connects all vertices*.

ADS: lects 12 & 13 - slide 5 - 31st Oct & 4th Nov, 2014

Spanning Trees

 $\mathfrak{G}=(V,E)$ undirected connected graph and W weight function. $\mathfrak{H}=(V^H,E^H)$ with $V^H\subseteq V$ and $E^H\subseteq E$ subgraph of \mathfrak{G} .

▶ The *weight* of \mathcal{H} is the number

$$W(\mathcal{H}) = \sum_{e \in E^H} W(e).$$

▶ \mathcal{H} is a spanning subgraph of \mathcal{G} if $V^H = V$.

Observation 2

A connected spanning subgraph of minimum weight is a tree.

Minimum Spanning Trees

(9, W) undirected connected weighted graph

Definition 3

A minimum spanning tree (MST) of $\mathfrak G$ is a connected spanning subgraph $\mathfrak T$ of $\mathfrak G$ of minimum weight.

The minimum spanning tree problem:

Given: Undirected connected weighted graph (9, W)

Output: An MST of 9

ADS: lects 12 & 13 - slide 7 - 31st Oct & 4th Nov, 2014

Prim's Algorithm

Idea

"Grow" an MST out of a single vertex by always adding "fringe" (neighbouring) edges of minimum weight.

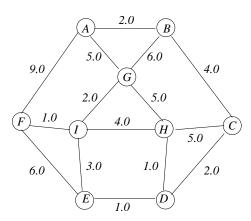
A *fringe edge* for a subtree \mathcal{T} of a graph is an edge with exactly one endpoint in \mathcal{T} (so e = (u, v) with $u \in \mathcal{T}$ and $v \notin \mathcal{T}$).

Algorithm $PRIM(\mathcal{G}, W)$

- 1. $\mathcal{T} \leftarrow$ one vertex tree with arbitrary vertex of \mathcal{G}
- 2. while there is a fringe edge do
- 3. add fringe edge of minimum weight to \mathfrak{T}
- 4. return \mathfrak{T}

Note that this is another use of the greedy strategy.

Example



ADS: lects 12 & 13 - slide 9 - 31st Oct & 4th Nov, 2014

Correctness of Prim's algorithm

- 1. Throughout the execution of PRIM, T remains a tree.
 - *Proof:* To show this we need to show that throughout the execution of the algorithm, \mathfrak{T} is (i) always connected and (ii) never contains a cycle.
 - (i) Only edges with an endpoint in ${\mathcal T}$ are added to ${\mathcal T},$ so ${\mathcal T}$ remains connected.
 - (ii) We never add any edge which has *both* endpoints in \mathcal{T} (we only allow a single endpoint), so the algorithm will never construct a cycle.

Correctness of Prim's algorithm (cont'd)

2. All vertices will eventually be added to \mathcal{T} .

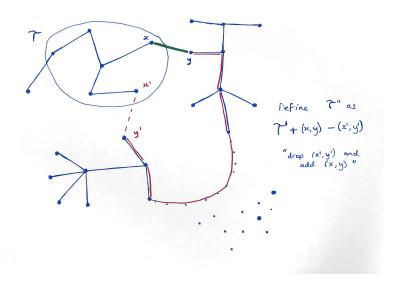
Proof: by contradiction ... (depends on our assumption that the graph $\mathfrak G$ was connected.)

- ▶ Suppose *w* is a vertex that *never* gets added to T (as usual, in proof by contradiction, we suppose the *opposite* of what we want).
- Let $v = v_0 e_1 v_1 e_2 ... v_n = w$ be a path from some vertex v inside \mathcal{T} to w (we know such a path must exist, because \mathcal{G} is connected). Let v_i be the first vertex on this path that never got added to \mathcal{T} .
- After v_{i-1} was added to \mathfrak{T} , $e_i = (v_{i-1}, v_i)$ would have become a fringe edge. Also, it would have remained as a fringe edge unless v_i was added to \mathfrak{T} .
- ▶ So eventually v_i must have been added, because Prims algorithm only stops if there are no fringe edges. So our assumption was wrong. So we must have w in \Im for every vertex w.

ADS: lects 12 & 13 - slide 11 - 31st Oct & 4th Nov, 2014

Correctness of Prim's algorithm (cont'd)

- 3. Throughout the execution of PRIM, \mathcal{T} is contained in some MST of \mathcal{G} . *Proof:* (by Induction)
 - ▶ Suppose that \mathcal{T} is contained in an MST \mathcal{T}' and that fringe edge e = (x, y) is then added to \mathcal{T} by PRIM. We shall prove that $\mathcal{T} + e$ is contained in some MST \mathcal{T}'' (not necessarily \mathcal{T}').
 - ▶ case (i): If e is contained in \mathfrak{T}' , our proof is easy, we simply let $\mathfrak{T}'' = \mathfrak{T}'$.
 - ▶ case (ii): Otherwise, if $e \notin \mathcal{T}'$, consider the unique path \mathcal{P} from x to y in \mathcal{T}' . Then \mathcal{P} contains *exactly one* fringe edge e' = (x', y').



ADS: lects 12 & 13 - slide 13 - 31st Oct & 4th Nov, 2014

Correctness of Prim's algorithm (cont'd)

3. case (ii) cont'd

- ► Then $W(e) \le W(e')$. (otherwise e' would *definitely* have been added before e)
- Let $\mathfrak{T}'' = \mathfrak{T}' + e e'$.
- ▶ T" is a tree.

We drop e'=(x',y'), which splits the MST into two components: $\mathfrak{T}'_{x'}$ and the other subtree $\mathfrak{T}'_{y'}=\mathfrak{T}'\setminus\mathfrak{T}'_{x'}$. We know x and y are now in different components after this split, because we have broken the unique path $\mathcal P$ between x and y in $\mathfrak T'$. Hence we can add (x,y) to re-join $\mathfrak{T}'_{x'}$ and $\mathfrak{T}'_{y'}$ without making a cycle.

 \mathfrak{T}'' has the same vertices as \mathfrak{T}' , thus it is a spanning tree.

▶ Moreover, $W(\mathfrak{T}'') \leq W(\mathfrak{T}')$, thus \mathfrak{T}'' is also a MST.

Towards an Implementation

Improvement

- ▶ Instead of fringe edges, we think about adding *fringe vertices* to the tree
- ▶ A *fringe vertex* is a vertex *y* not in 𝒯 that is an endpoint of a fringe edge.
- ▶ The *weight* of a fringe vertex *y* is

$$\min\{W(e) \mid e = (x, y) \text{ a fringe edge}\}\$$

(ie, the best weight that could "bring y into the MST")

➤ To be able to recover the tree, every time we "bring a fringe vertex y into the tree", we store its parent in the tree.

We will store the fringe vertices in a priority queue.

ADS: lects 12 & 13 - slide 15 - 31st Oct & 4th Nov, 2014

Priority Queues with Decreasing Key

A *Priority Queue* is an ADT for storing a collection of elements with an associated *key*. The following methods are supported:

- ▶ INSERT(e, k): Insert element e with key k.
- ► GET-MIN(): Return an element with minimum key; an error occurs if the priority queue is empty.
- ► EXTRACT-MIN(): Return and remove an element with minimum key; an error if the priority queue is empty.
- ► IS-EMPTY(): Return TRUE if the priority queue is empty and FALSE otherwise.

To update the keys during the execution of PRIM, we need priority queues supporting the following additional method:

▶ DECREASE-KEY(e, k): Set the key of e to k and update the priority queue. It is assumed that k is smaller than of equal to the old key of e.

Implementation of Prim's Algorithm

```
Algorithm PRIM(G, W)
  1. Initialise parent array \pi:
        \pi[v] \leftarrow \text{NIL} \text{ for all vertices } v
  2. Initialise weight array:
        \mathsf{weight}[v] \leftarrow \infty \mathsf{ for all } v
  3. Initialise inMST array:
       \mathsf{inMST}[v] \leftarrow \mathsf{false} \; \mathsf{for} \; \mathsf{all} \; v
  4. Initialise priority queue Q
  5. v \leftarrow \text{arbitrary vertex of } \mathcal{G}
        Q.INSERT(v, 0)
  7. weight[v] = 0;
        while not(Q.Is-Empty()) do
  9.
                  y \leftarrow Q.Extract-Min()
                  \mathsf{inMST}[y] \leftarrow \mathit{true}
 10.
 11.
                  for all z adjacent to y do
 12.
                             Relax(y,z)
 13. return \pi
```

```
Algorithm Relax(y, z)
  1. w \leftarrow W(y, z)
  2. if weight[z] = \infty then
  3.
               weight[z] \leftarrow w
  4.
               \pi[z] \leftarrow y
  5.
               Q.INSERT(z, w)
       else if (w < weight[z]) and
  7.
                   not (inMST[z])) then
  8.
               weight[z] \leftarrow w
  9.
               \pi[z] \leftarrow y
               Q.Decrease Key(z, w)
10.
```

ADS: lects 12 & 13 - slide 17 - 31st Oct & 4th Nov, 2014

Analysis of PRIM's algorithm

Let n be the number of vertices and m the number of edges of the input graph.

- ▶ Lines 1-7, 13 of Prim require $\Theta(n)$ time altogether.
- ▶ Q will extract each of the n vertices of G once. Thus the loop at lines 8-12 is iterated n times.

Thus, disregarding (for now) the time to execute the inner loop (lines 11-12) the execution of the loop requires time

$$\Theta(n \cdot T_{\text{EXTRACT-MIN}}(n))$$

► The inner loop is executed at most *once for each edge* (and *at least once* for each edge). So its execution requires time

$$\Theta(m \cdot T_{\text{Relax}}(n, m)).$$

Analysis of PRIM's algorithm (RELAX)

- ▶ Decreasing the time needed to execute INSERT and DECREASE-KEY, the execution of Relax requires time $\Theta(1)$.
- ▶ INSERT is executed once for every vertex, which requires time

$$\Theta(n \cdot T_{\text{INSERT}}(n))$$

 \blacktriangleright Decrease-Key is executed at most once for every edge. This can require time of size

$$\Theta(m \cdot T_{\text{Decrease-key}}(n))$$

Overall, we get

$$T_{\text{PRIM}}(n, m) = \Theta\left(n\left(T_{\text{EXTRACT-MIN}}(n) + T_{\text{INSERT}}(n)\right) + mT_{\text{DECREASE-KEY}}(n)\right)$$

ADS: lects 12 & 13 - slide 19 - 31st Oct & 4th Nov, 2014

Priority Queue Implementations

- ► *Array:* Elements simply stored in an array.
- ▶ Heap: Elements are stored in a binary heap (see Inf2B (ADS note 7), [CLRS] Section 6.5)
- ► Fibonacci Heap: Sophisticated variant of the simple binary heap (see [CLRS] Chapters 19 and 20)

method		r	running time	
	Array	Неар	Fibonacci Heap	
Insert	$\Theta(1)$	$\Theta(\lg n)$	$\Theta(1)$	
Extract-Min	$\Theta(n)$	$\Theta(\lg n)$	$\Theta(\lg n)$	
Decrease-Key	$\Theta(1)$	$\Theta(\lg n)$	$\Theta(1)$ (amortised)	

Running-time of PRIM

 $T_{\text{PRIM}}(n, m) = \Theta\left(n\left(T_{\text{EXTRACT-MIN}}(n) + T_{\text{INSERT}}(n)\right) + mT_{\text{DECREASE-KEY}}(n)\right)$

Which Priority Queue implementation?

▶ With array implementation of priority queue:

$$T_{\text{PRIM}}(n, m) = \Theta(n^2).$$

▶ With heap implementation of priority queue:

$$T_{\text{PRIM}}(n, m) = \Theta((n + m) \lg(n)).$$

▶ With Fibonacci heap implementation of priority queue:

$$T_{\text{PRIM}}(n, m) = \Theta(n \lg(n) + m).$$

(n being the number of vertices and m the number of edges)

ADS: lects 12 & 13 - slide 21 - 31st Oct & 4th Nov, 2014

Remarks

- ► The Fibonacci heap implementation is mainly of theoretical interest. It is not much used in practice because it is very complicated and the constants hidden in the Θ-notation are large.
- ▶ For dense graphs with $m = \Theta(n^2)$, the array implementation is probably the best, because it is so simple.
- ▶ For sparser graphs with $m \in O(\frac{n^2}{\lg n})$, the heap implementation is a good alternative, since it is still quite simple, but more efficient for smaller m.
 - Instead of using binary heaps, the use of d-ary heaps for some $d \geq 1$ can speed up the algorithm (see [Sedgewick] for a discussion of practical implementations of Prims algorithm).

Reading Assignment

[CLRS] Chapter 23.

Problems

- 1. Exercises 23.1-1, 23.1-2, 23.1-4 of [CLRS]
- 2. In line 3 of Prim's algorithm, there may be more than one fringe edge of minimum weight. Suppose we add all these minimum edges in one step. Does the algorithm still compute a MST?
- 3. Prove that our *implementation* of Prim's algorithm on slide 6 is correct ie, that it computes an MST. What is the difference between this and the suggested algorithm of Problem 4?

ADS: lects 12 & 13 - slide 23 - 31st Oct & 4th Nov, 2014