Algorithms and Data Structures:
Network Flows

24th & 28th Oct, 2014
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Flow Networks

Definition 1
A flow network consists of

» A directed graph G = (V, E).

» A capacity function c: V x V — R such that c(u,v) > 0 if
(u,v) € E and c(u,v) =0 for all (u,v) ¢ E.

» Two distinguished vertices s,t € V called the source and the sink,
respectively.

We read (u, v) to mean u — v.
Assumption
Each vertex v € V is on some directed path from s to t.

This implies that G is connected (but not necessarily
strongly connected), and that |E| > |V|— 1.
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Example

For this graph, V ={s,r,u,v,w, x,y, z, t}. The edge set is

E ={(s,u),(s,r),(s,x), (u,v), (u,x), (v,x], (v,w), (r,w),
(r,y), (x,¥), (y, ), (y, 2), (2, w), (2, 1), (w, t)).

Some examples of capacities are c(s,x) = 10, c(r,y) =5, c(v,x) =20
and c(v, r) =0 (since there is no arc from v to r).
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Network Flows

Definition 2
Let N=(§=(V,E), c,s,t) be a flow network.
A flow in N is a function

f:VxV-oR

satisfying the following conditions:
Capacity constraint: f(u,v) < c(u,v) for all u,v € V.
Skew symmetry: f(u,v) = —f(v,u) for all u,v € V.

Flow conservation: For all u € V \ {s, t},

Z f(u,v) =0.

veV
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Network Flows (cont'd)
N=(§=(V,E),c,s,t) flow network, f : V x V — R flow in N.
» For u,v € V we call f(u,v) the net flow at (u, v).
» The value of the flow f is the number

=) f(s,v).

vev

Notice that our particular defn. of flow (the “skew-symmetry” constraint)
ensures that f(u, v) is truly the “net flow” in the usual sense of the word
(e.g. if (r,y) on slide 2 was to carry flow 3, and (y, r) to carry flow 4, we
will have f(r,y) = —1).
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Example

A flow of value 18.

Only positive net flows are shown.
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The Maximum-Flow Problem

Input: Network N
Output: Flow of maximum value in N

The problem is to find the flow f such that |[f| = 3 .\ f(s,v) is the
largest possible (over all “legal” flows).
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The Ford-Fulkerson Algorithm
Published in 1956 by Delbert Fulkerson and Lester Randolph Ford Jr.

Algorithm FORD-FULKERSON(N)

1. f « flow of value 0

2. while there exists an s — t path P in the “residual network” do
3. f—f+fp

4. Update the “residual network”.

5. return f

The “residual network” is N with the “used-up” capacity removed.

To make this precise, we need notation, and proofs - this lecture.
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Some Technical Observations Working with Flows

N=(§=(V,E),cs,t) flow network, f: V x V = R flowin N, u,v e V. Implicit summation notation: For X, Y C V put
1. f(u,u)=0forallue V. (X, y):ZZf(u,v): Z flu,v).
“Proof”: f(u,u) = —f(u,u) by skew symmetry. uex vey (u,v)eEXXY

2. Forany v e V\{s, t}, Abbreviations:

Zf(u, v) =0.

uev f(u,Y) stands for f({u}, Y) and

Proof: 3 ..\ flu,v)=—3 o\ f(v,u) =0 by skew symmetry and flow f(X,v) stands for f(X, {v}).

conservation.
3. If (u,v) ¢ E and (v, u) ¢ E then f(u,v) = f(v,u) =0.
Proof: Either f(u,v) or f(v,u) > 0 by skew symmetry. Say, f(u,v) > 0. flu,V)=0 forall ue V\{s,t}

Conservation of flow is now:

Then 0 < f(u,v) < c(u, v) =0 by the capacity constraint. So f(u,v) =0.
By skew symmetry, this shows 7 (v, u) = 0.
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One More Technical Observation Working with Flows (cont'd)
4. The positive net flow entering v is:
Lemma 3
Z Flu,v). N=(9=(V,E),c,s,t) flow network, f flow in N.
ueV Then for all X,Y,Z C V,
f(u,v)>0
1. f(X,X)=0.
The positive net flow leaving v is defined symmetrically. 2. f(X,Y)=—f(Y,X)
Flow conservation now says: 3 IFXAY =0 then
“positive net flow in = positive net flow out”.
fIXUuY,Z) = f(X,Z2)+f(Y,2),
All these observations are just to make it easy for us to talk about flows. fl(Z,XuY) = f(Z,X)+f(Z,Y).

Lemma “lifts” Network flow properties to sets-of-vertices.

ADS: lects 10 & 11 — slide 10 — 24th & 28th Oct, 2014 ADS: lects 10 & 11 — slide 12 — 24th & 28th Oct, 2014



Proof of Lemma 3

1.

2.

F(X,X) =

f(X,Y)

Z f(u,v) by defn. of f(X,X)
(u,v) EXXX
Z (f(u, v)+ f(v, u)) take (u,v), (v, u) together
{u,v}CX
0. by skew-symm
Z f(u,v) by defn of f(X,Y)
(u,v)EXXY
Z —f(v,u) by skew-symmetry
(u,V)EXXY
— Z f(v,u) take — outside the summation
(viu)eYx X
—f(Y, X). by defn of (Y, X)
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Proof of Lemma 3 (cont'd)

3.

FIXUY,Z)

Moreover,

Z Zf(u, v)

ueXUY veZ

ZZf(u,v)JrZZf(u,v)f Z Zf(u,v)

ueXveZ ueYveZ ueXNY vezZ
(expand sum into X and Y, subtract duplicates in X N'Y)

ZZf(u,v)—i—ZZf(u,v)

ueX vez ueyY vez
(but X N'Y =, so third term disappears)

f(X,Z)+f(Y,2).

FIZ,XUY)=—f(XUY,Z)=—(FX,Z)+f(Y,2)) = F(Z,X) + F(Z,Y).
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Working with Flows (cont'd)

Corollary 4
N=(G5=(V,E),c,s,t) flow network, f flow in N. Then
il =f(V,1).
Proof:
fl = f(s,V) (by definition)
= f(V,V)—=f(V\{s}V) (by Lemma 3 (3.))
= —f(V\{s},V) (by Lemma 3 (1.))
= f(V,V\{s}) (by Lemma 3 (2.))

(
— f{
- f(
— ff

V,t)+ f(V,V\{s,t}) (by Lemma 3 (3.))
V) t) + ZVEV\{SJ:} f( V, V) (by Definition)
V. t) (by flow conservation)
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Residual Networks

Idea is to capture possible extra flow given current flow.

Definition 5
N=(G5=(V,E), c,s,t) flow network, f flow in N.

1. For all u,v € V x V, the residual capacity of (u,v) is
crlu,v) =clu,v) — f(u,v).
2. The residual network of N induced by f is
Ne((V, Ef), crys,t),

where
Er ={(u,v) € VxV]celu,v) >0}

Notice that Ef may contain edges not originally in E ( “back-edges”).

ADS: lects 10 & 11 — slide 16 — 24th & 28th Oct, 2014



Example

A flow and the corresponding residual network

ADS: lects 10 & 11 — slide 17 — 24th & 28th Oct, 2014

Adding Flows

Lemma 6
Let N=(G=(V,E), c,s,t) be a flow network.

Let f be a flow in N.
Let g:V x V = R be a flow in the residual network Ny.
Then the function f + g : V x V — R defined by

(f +g)(u,v) = f(u,v) + glu,v)

is a flow of value |f| + |g| in N.

ADS: lects 10 & 11 — slide 18 — 24th & 28th Oct, 2014

Proof of Lemma 6

First we have to check that f + g is actually a flow in N.

Capacity constraints:

IA
BRI . .
=
T2 =

(f +g)(u,v)

|
-

Skew symmetry:
(F+g)(u,v) =flu,v)+glu,v) =—Ff(v,u)—glv,u) = —(f+g)(v,u).

Flow Conservation: For every u € V \ {s, t}:

Zr’+g querZguv—OJrO—O

veVv veV veV
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Proof of Lemma 6 (cont'd)
Next we have to check that f + g does have the value that we claimed for it.

Value:

If + gl

S (F+g)s,v)

vev

Z f(s,v)+ Z gls,v)

vev veVv
I + |gl-
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Augmenting Paths

Definition 7
N=(G5=(V,E), c,s,t) flow network, f flow in N.

Then an augmenting path for f is a path P from s to t in the residual
network Nt.

The residual capacity of P is

cr(P) = min{cs(u, v) | (u,v) edge on P}.

Note that ¢f(P) > 0, by definition of Ef (recall that we only keep edges
in Es if their residual capacity is strictly positive).
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Example
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Pushing Flow through an Augmenting Path

Lemma 8
N=(G5=(V,E),c,s,t) flow network, f flow in N.
P augmenting path. Then fp:V x V — R defined by

cr(P) if (u,v) is an edge of P,
fp(u,v) =< —c¢(P) if (v,u) is an edge of P,

0 otherwise

is a flow in N¢ of value c¢(P).

Proof left as an exercise. It is not too difficult - just have to check that
the three conditions of a flow are satisfied (and that the value is ¢f(P)).
Similar to Lemma 6.
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Augmenting a Flow
Corollary 9

N=(G5=(V,E),c,s,t) flow network, f flow in N. Let P be an
augmenting path. Then f + fp is a flow in N of value

[+ ce (P) > [f].

Proof: Follows from Lemma 6 and Lemma 8.
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The Ford-Fulkerson Algorithm

Algorithm FORD-FULKERSON(N)
1. f « flow of value 0

2. while there exists an augmenting path P in N¢ do
3. fe—f+fp
4. return f

To prove that FORD-FULKERSON correctly solves the Maximum Flow
problem, we have to prove that:

1. The algorithm terminates.

2. After termination, f is a maximum flow.
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Cuts

Definition 10
N=(§G=(V,E), c,s,t) flow network.
A cut of N is a pair (S, T) such that:

l.seSandte T,
2. V=SUTand SNT =0.
The capacity of the cut (S, T) is

S, T)= > cluv).

ueS,veT
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Example

A cut of capacity 45.

10
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Example

A cut of capacity 25.
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Cuts and Flows

Lemma 11
N=(9=(V,E),c,s,t) flow network, f flow in N, (S, T) cut of N.
Then

Ifl=f(5,T).

Proof: We apply Lemma 3:

fl = f
+(S—{sh V) [tg€S=F(S—{s},V)=0]

SV
S, T)+f(S5,5)
ST
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Cuts and Flows (cont'd)

Corollary 12

The value of any flow in a network is bounded from above by the
capacity of any cut.

Proof: Let f be a flow and (S, T) a cut. Then

Ifl=f(5T)<c(S5T).
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The Max-Flow Min-Cut Theorem

Theorem 13

Let N=(G=(V,E), c,s,t) be a flow network.

Then the maximum value of a flow in N is equal to the minimum
capacity of a cut in N.
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Proof of the Max-Flow Min-Cut Theorem

Let f be a flow of maximum value and (S, T) a cut of minimum capacity in N. We
shall prove that
[fl =c(S, T).

1. |f] < ¢(S, T) follows from Corollary 12.
So all we have to prove is that there is a cut (S, T) such that

c(s, T) < If].

2. First remember that |f| has no augmenting path.

Proof: If P was an augmenting path, then f + f» would be a flow of larger value
(because by definition of Ny, all edges in Ny have strictly positive weights).

3. Thus there is no path from s to t in N¢. Let
S ={v | there is a path from s to v in N¢}

and T=V\S. Then (S5, T) is a cut.
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Proof of the Max-Flow Min-Cut Theorem (cont'd)

4. By definition of S, and because reachability in graphs is a transitive relation,
there cannot be any edge from S to T in N¢. Thus forallu € S, v € T we have
c(u,v)—f(u,v) =0.

5. Thus
S, T)=) > cluv)=) > fluv)=F(ST)=If

ueSveT ueSveT
(by Lemma 11).
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Corollaries

Corollary 14

A flow is maximum if, and only if, it has no augmenting path.

Proof: This follows from the proof of the Max-Flow Min-Cut theorem.

Corollary 15

If the Ford-Fulkerson algorithm terminates, then it returns a maximum
flow.

Proof:  The flow returned by FORD-FULKERSON has no augmenting
path.

ADS: lects 10 & 11 — slide 34 — 24th & 28th Oct, 2014

Termination

Let f* be a maximum flow in a network N.

» If all capacities are integers, then FORD-FULKERSON stops after at
most

7]
iterations of the main loop.

» If all capacities are rationals, then FORD-FULKERSON stops after at
most

q-If

iterations of the main loop, where g is the least common multiple of
the denominators of all the capacities.

» For arbitrary real capacities, it may happen that FORD-FULKERSON
does not stop.

ADS: lects 10 & 11 — slide 35 — 24th & 28th Oct, 2014

A Nasty Example

999,999
1,000,000

1,000,000 1,000,000
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The Edmonds-Karp Heuristic

Idea
Always choose a shortest augmenting path.

n number of vertices, m number of edges. Recall that n < m+1

A shortest augmenting path can be found by Breadth-First-Search (reading
assignment) in time O(n+ m) = O(m).

Theorem 16

The Ford-Fulkerson algorithm with the Edmonds-Karp heuristic stops
after at most O(nm) iterations of the main loop.
Thus the running time is O(nm?).
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Interesting Example

O, (W

10 20
u
10
20 20
10
(r) 10
© @
10 15

We will run Ford-Fulkerson (with the Edmonds-Karp heuristic) on this
network. This is interesting because we will see the “back-edges” being
used to “undo” part of an previous augmenting path.

15
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Interesting Example cont.

1st augmenting path: s -5 r - w — t.

Length is 3 (so we satisfy Edmonds-Karp rule to take a shortest possible

path). Min capacity is 10, so we push flow of 10 along the path. Starting
flow becomes 10.
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Interesting Example cont.

Residual network after adding first flow of value 10 alongs — r — w — t.

The newly-created “back-edges” are shown in red.
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Interesting Example cont.

There is no longer any augmenting path of length < 3, and the only one
of length 4 iss — x — y — z — t, which has a minimum capacity
min{10, 10, 15, 15}, ie 10.

We push this extra flow of value 10 along s — x — y — z — t, bringing
overall flow to 20.
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Interesting Example cont.

Residual network after adding flow from second augmenting path s —
X — y — z — t, overall flow now 20.
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Interesting Example cont.

Now there is only one simple augmenting path-s s v —>v —>w —r —
y — z — t, with minimum residual capacity 5.

Notice we use the “back-edge” w — r in our path. This is essentially
“re-shipping” 5 units from the first flow-path away from r — w — t and
along r —» y — z — t instead.
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Interesting Example

Residual network after adding 3rd flow, of value 5 = total flow 25.

There is no longer any augmenting path in our residual network (set of
vertices “reachable” from s is {s, u, v, x, w, r}).
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Reading and Problems

[CLRS] Chapter 26
For breadth-first search: [CLRS], Section 22.2.

Problems

1. Exercise 26.1-5 of [CLRS] (ed 2).

Not in [CLRS] (ed 3). Question is: consider Figure 26.1(b) and find
a pair of subsets X, Y C V such that f(X,Y)=—f(V\ X, Y).
After that, find a pair of subsets X', Y’ C V for which
f(X/» Y/) 7£ _f(V\XI> Y/)
2. Exercise 26.2-2 of [CLRS] (2nd ed), Ex 26.2-3 of [CLRS] (3rd ed).
3. Prove Lemma 8.

4. Problem 26-4 of [CLRS].
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