
Notes on Fast Fourier Transform
Algorithms & Data Structures

Dr Mary Cryan

1 Introduction

The Discrete Fourier Transform (DFT) is a way of representing functions in terms of a point-value
representation (a very specific point-value representation).

We consider complex functions of a single variable throughout these notes, though often the
function we are really interested in may actually be a real function of a single variable (and we
just find it useful to evaluate the function at complex values as well as real values).

Suppose that we consider a polynomial p(x) = a0 + a1x+ . . . an−1x
n−1 over the field of complex

numbers C. We refer to the description of p(x) given in the last sentence as its coefficient form.
However, suppose we took n different complex numbers x0, . . . , xn−1 and then computed yj, for
every j = 0, . . . , n− 1 as follows:

yj = p(xj) =

n−1∑
i=0

ai(xj)
i

= a0 + a1(xj) + a2(xj)
2 + . . .+ an−1(xj)

n−1

The resulting set of input-output pairs

< (x0, y0), (x1, y1), . . . , (xn−1, yn−1) >

is called a point-value representation of the polynomial p. It is interesting to ask the question
- how much information does a point-value representation convey about the underlying poly-
nomial p? In fact we will see in Subsection 2.2 that the answer is EVERYTHING, if we have
evaluated the polynomial at n different xj points.

In this set of lecture notes we focus on the point-value representation obtained by looking at
a particular set of points, the nth roots of unity. In the field of complex numbers C, there are
exactly n different solutions to the equation xn = 1. We call these solutions the n-th roots of unity.
One of these roots of unity is ωn = cos(2π/n)+ i sin(2π/n), and this is called the principal nth root
of unity. It is not too difficult to show that ωn generates the entire set of nth roots of unity as
follows, for any n:

1,ωn,ω
2
n,ω

3
n, . . . ,ω

n−1
n .

The complex numbers in the list above are all nth roots of unity, and they are all different (see
Lemma 1 later for a proof).

The Discrete Fourier Transform (DFT) of a polynomial p(x) of degree AT MOST n−1 is defined to
be the point-value representation obtained by evaluating p(x) at each of the n-th roots of unity.
We may write the DFT as the list of values

p(1), p(ω), p(ω2), . . . , p(ωn−1),

where ωn is any primitive nth root of unity. A primitive nth root of unity is any nth root of unity ω
such that 1,ω,ω2, . . . ,ωn−1 are all different. It is not difficult to show that ω is a primitive nth
root of unity if ω = ωkn, for some value of k which is relatively prime to n (n and k have no
common factors). In practice, we adopt the convention that we work with the principal nth root
of unity ωn, unless we state otherwise. It is possible to write the operation of computing the DFT

1

Notes on Fast Fourier Transform ADS 2012

as a matrix multiplication. The DFT is the vector y = (y0, . . . , yn−1) such that

1 1 1 . . . 1

1 ωn ω2n . . . ω
(n−1)
n

1 ω2n ω4n . . . ω
2(n−1)
n

1 ω3n ω6n . . . ω
3(n−1)
n

...
...

...
...

1 ω
(n−1)
n ω

2(n−1)
n . . . ω

(n−1)2

n





a0
a1
a2
a3
...

an−1


=



y0
y1
y2
y3
...

yn−1


.

We will however see that it is not the best (most-efficient) approach to perform the matrix multi-
plication directly.

The Discrete Fourier Transform is a tool used in Signal Processing, It has many many appli-
cations (in Speech Recognition, Data Processing, Optics, Acoustics). It is used in any application
which performs Digital Signal Processing - to read about this, please follow the relevant links on
the ADS course webpage. The straightforward way of computing the DFT would be to consider
each root of unity separately. This would take Ω(n) time per root of unity, and therefore com-
puting the entire DFT would take Ω(n2) time by this näive method. However, there is an efficient
algorithm, called the Fast Fourier Transform (FFT), which uses the special relationship amongst
the roots of unity to compute the entire DFT in O(n lgn) time. Moreover, we will see that it is
possible to take the DFT and recover the original polynomial in its coefficient form in O(n lgn)
time, by using the FFT to compute the Inverse DFT.

Because of the many important applications of DFT, the Fast Fourier Transform is probably
the most important algorithm of the present day. It came to light as a tool for Signal processing
in 1965, when Cooley (of IBM) and Tukey (of Princeton) wrote a paper presenting the algorithm.
However the basics of the algorithm were known long before that, for example, it was known to
Gauss back in 1805.

2 Complex Numbers

The Discrete Fourier Transform uses complex numbers. There are a few facts (but only a few)
about Complex numbers that we need to know for this course.

2.1 Working with Complex Numbers

The imaginary number i is defined to be the square root of −1: we write i =
√

−1. The field C
of Complex numbers is the set of all numbers of the form a + ib, for a, b ∈ R. It is easy to show
(and you will have seen it in math classes) that the set of complex numbers C forms a field under
the operations of multiplication and addition, just like the field R of real numbers forms a field
under those same operations. However, the complex numbers has an extra property that the real
numbers do not have:

For every element a + ib ∈ C, and for every natural number k, there are solutions for
the k-th root k

√
a+ ib in the set C (in fact there are k such solutions).

So the set of complex numbers has the special property of being closed under taking of roots,
which is not the case for real numbers - for example

√
−1 is not defined in R, even though

3
√

−1 = −1 is defined in R.

The main operations on Complex numbers are +,−,×, /. Let x = a + ib, y = c + id be any two
complex numbers throughout the following definitions:

• +: x+ y = (a+ c) + i(b+ d).

2

Notes on Fast Fourier Transform ADS 2012

• −: x− y = (a− c) + i(b− d).

• ×: x×y = (a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd = (ac− bd) + i(ad+ bc) (we are using the fact
that i2 = −1 to come up with the final representation).

• /: This one is tricky. We need to eliminate the”imaginary part” of the denominator y in order
to get a nice expression for x/y. Notice that if y = c + id, then if we define y ′ = c − id, then
y× y ′ = (c2 + d2). Therefore we can write

x

y
=
x× y ′

y× y ′
=

x× y ′

c2 + d2
=

(a+ ib)(c− id)

c2 + d2

=
(ac+ bd) + i(bc− ad)

c2 + d2
=
ac+ bd

c2 + d2
+ i
bc− ad

c2 + d2
.

Some examples of these:

• +: If x = (4+ 3i), y = (−1+ 0.5i), then x+ y = 3+ 3.5i.

• ×: If x = 1+ i, y = 2− i, then x× y = 3+ i.
If x = 1+ 3i, y = −2+ 6i, then x× y = (−2− 18) + i(−6+ 6) = −20.

• /: Let x = −1, y = i. Then x/y = (−1/i)× (i/i) = (−i/− 1) = i.
Let x = (4− i), y = (2+ 3i). Then x/y = (4− i)/(2+ 3i)× (2− 3i)/(2− 3i) = ((4− i)× (2− 3i))/13 =
(5− 14i)/13.

A special set of Complex Numbers are the roots of unity, that is, the numbers ω ∈ C such
that ωn = 1. For any given n, there are exactly n such roots in C (see the Fundamental Theorem
of Algebra in the next subsection). We define for any given n, the principal nth root of unity

ωn = cos(2π/n) + i sin(2π/n).

Lemma 1 (i) Each of the complex numbers 1 = ω0n,ω
1
n, . . . ,ω

n−1
n is a n-th root of unity.

(ii) For every 0 ≤ j < k ≤ n− 1, ωjn 6= ωkn (all the roots of unity are different).

Proof: (i) We use one interesting result relating ωn to the real number e. Recall the Taylor Series
expansion of ex, for any complex number x ∈ C:

ex =

∞∑
j=0

xj

j!

The Taylor series expansions for cos(x) and sin(x) are as follows:

cos(x) =

∞∑
j=0

(−1)j

(2j+ 1)!
x2j+1, sin(x) =

∞∑
j=0

(−1)j

2j!
x2j.

If you go to the trouble of checking (using the Taylor Series’ written above), you can show that
for any real number u, the following inequality holds:

eiu = cos(u) + i sin(u) (1)

Therefore, by (1), our definition of ωn implies that

ωn = e2πi/n = cos(2π/n) + i sin(2π/n).

Therefore for any power k = 0, . . . , n− 1,

ωkn = ek×2πi/n = cos(2πk/n) + i sin(2πk/n).

3

Notes on Fast Fourier Transform ADS 2012

Also for any power k = 0, 1, . . . , n− 1,

(ωkn)n = (ek×2πi/n)n = ek×2πi = cos(2πk) + i sin(2πk) = 1,

where the second-last step follows by (1), and the last step by cos(2πk) = 1 and sin(2πk) = 0.

(ii): Equation (1) allows us to deduce the fact that all the elements 1,ωn, ω2n, . . . ,ω
n−1
n are

different. This follows directly from the fact that all the “angles” 1, 2π/n, 4π/n, 6π/n, . . . , (n−1)2π/n
are all less than 2π, and are all different. Therefore, by the properties of cos and sin, it is not
possible that we have both sin(2πj/n) = sin(2πk/n) and cos(2πj/n) = cos(2πk/n) for 0 ≤ j < k ≤
n− 1. Therefore the n principal roots of unity defined above are all different.

Corollary 1 If ω = ωkn is any primitive nth root of unity, then (i) and (ii) also hold for ω.

Proof: Check yourselves.

We can visualize the n-th roots of unity by interpreting complex numbers as points in the
two-dimensional plane. The x-axis represents the “real” part of the complex number and the
y-axis represents the “imaginary” part of the complex number. Then the nth roots of unity for
any given n correspond to n evenly-spaced points on the unit circle centred around the origin,
where ωkn is found at a clockwise angle of 2kπ/n from ω0n = 1 + 0i. Note that the principal nth
root of unity ωn is the closest anti-clockwise point to 1 on this wheel

8
w0 = 1

2

2pi/8

8w = ei*2pi/88w = i

= (1+i)/sqrt(2)
= (cos (2 pi/8), i*sin(2 pi/8))

For example, if we consider n = 4, then the 4-th roots-of-unity are 1,ω4 = i,ω24 = −1,ω34 = −i
(check using the sin and cos representation). It is nice to also check the 8-th roots of unity.

2.2 Fundamental Theorem of Algebra

The most important thing about the field of complex numbers is that it allows us to prove the
Fundamental Theorem of Algebra:

Theorem 1 (Fundamental Theorem of Algebra) Let p(x) be any polynomial of degree n − 1 over
the complex numbers (that is, let p(x) = a0 + a1x+ . . . an−1x

n−1, for a0, . . . , an−1 ∈ C and an−1 6= 0).
Then there exist roots α1, . . . , αn−1 ∈ C such that

p(x) = an−1(x− α1) . . . (x− αn).

That is, the polynomial p(x) has exactly n− 1 roots (counting multiple occurrences of the same root).

This Theorem does not hold for the field of real numbers (e.g p(x) = x2 + 1 has no real roots).

Clearly, if we are are told that the unknown polynomial p(x) has n − 1 roots (counting multi-
plicities) and we are given those roots and the leading co-efficient an−1, then we can construct
p(x). In fact, something stronger is true - we do not even need to know the roots of the polynomial
(and the leading coefficient) to recover it - it is enough to have a point-value representation of the
polynomial of size n:

4

Notes on Fast Fourier Transform ADS 2012

Theorem 2 (Interpolation) For any set {(x0, y0), (x1, y1), . . . , (xn−1, yn−1)} of n point-value pairs
such that the xj values are all different, there is a unique polynomial A(x) of degree at most n − 1
such that yj = A(xj) for all j = 0, 1, . . . , n − 1. Moreover it is possible to compute A(x) from the
point-value representation.

Note that this Theorem holds regardless of whether the point-value representation comes from an
actual polynomial or is just a list of made-up values. However, if the point-value representation
does come from an actual polynomial of degree at most n−1, then the point-value representation
determines that polynomial uniquely.

The general method for converting a point-value representation into a polynomial is based on
the idea of inverting a Vandermonde matrix. We will present the Matrix for the Special case when
the point-value representation of a polynomial A(x) (of degree at most n − 1) is calculated at the
set of n-th roots of unity.

Then we have a point-value representation of the form

< (1, y0), (ωn, y1), (ω
2
n, y2), . . . , (ω

n−1
n , yn−1) >,

where

yj =

n−1∑
k=0

ak(ω
j
n)k

for every j = 1, . . . , n− 1. We can write this in Matrix format:
1 1 1 . . . 1

1 ωn ω2n . . . ωn−1
n

...
...

...
...

1 ωn−1
n ω

2(n−1)
n . . . ω

(n−1)2

n




a0
a1
...

an−1

 =


y0
y1
...

yn−1

 .

However, if the n×n matrix on the left (which we call Vn, and which is actually the DFT matrix) is
invertible, we can recover the coefficients a0, . . . , an−1 from the y0, . . . , yn−1 values by computing
the inverse of the n × n Vandermonde matrix Vn above, and multiplying this inverse by the
y-vector.

It can be shown (using the properties of the nth roots of unity), that the matrix above does
have a inverse, and that this inverse is the following matrix V−1

n :

V−1
n =

1

n



1 1 1 . . . 1

1 ω−1
n ω−2

n . . . ω
−(n−1)
n

1 ω−2
n ω−4

n . . . ω
−2(n−1)
n

1 ω−3
n ω−6

n . . . ω
−3(n−1)
n

...
...

...
...

1 ω
−(n−1)
n ω

−2(n−1)
n . . . ω

−(n−1)2

n


It is not difficult to check that V−1

n truly is an inverse of Vn. Suppose we check the value of the
j, kth entry of VnV−1

n . By Matrix multiplication, this is defined as

(VnV
−1
n)jk =

1

n

n−1∑
h=0

ωjhω−hk

=
1

n

n−1∑
h=0

ω(j−k)h.

This is equal to 1 whenever j = k, because all the n terms have the value ω0 = 1, therefore we
get the value n/n = 1. Whenever j 6= k, then we can use the standard formula for the sum of a

5

Notes on Fast Fourier Transform ADS 2012

geometric series (
∑n
h=0 r

n = (1− rn+1)/(1− r)):

n−1∑
h=0

ω(j−k)h = (1−ω(j−k)n)/(1−ω)

= (1− 1)/(1−ω) = 0.

So V−1
n is the inverse of Vn. This implies that a straightforward method for converting from the

Discrete Fourier Transform back to the polynomial A(x) is to simply multiply the vector y of yj
values given by the DFT by V−1

n . This would take Ω(n2) time. We will be able to do better by
using the fast Fourier Transform.

3 The Fast Fourier Transform (FFT)

Definition 1 The Discrete Fourier Transform (DFT) of a sequence of n complex numbers a0, a1, a2,
. . . , an−1 is defined to be the sequence of n complex numbers

A(1), A(ωn), A(ω2n), . . . , A(ωn−1
n)

obtained by evaluating the polynomial

A(x) = a0 + a1(x) + a2x
2 + . . .+ an−1x

n−1

at each of the nth roots of unity.

Consider the task of computing A(ωjn) for every j = 0, . . . , n−1. We are going to use the Divide-
and-Conquer approach to set up a recursion for the DFT. Therefore we need to decompose the
problem into a number of smaller instances of the DFT. The key to solving the problem lies in
making sure that the subproblems that we construct are strictly instances of the DFT problem.
We will assume throughout this section that n is a power of 2 (this is ok, if n is not a power of
two, we just have a polynomial with some leading zeros at the higher-order coefficients).

We are interested in evaluating:

A(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1.

Assume that n is even, and partition A(x) into its even parts and its odd parts:

A(x) = (a0 + a2x
2 + · · ·+ an−2x

n−2) +

(a1x+ a3x
3 + · · ·+ an−1x

n−1).

Note that we can also write the sum of odd terms as

x(a1 + a3x
2 + · · ·+ an−1x

n−2),

so that we have a sum of even powers of x (multiplied by one extra x). Now make the change of
variable from x2 to y. Therefore we can write

Aeven(y) = a0 + a2y+ · · ·+ an−2y
n/2−1,

Aodd(y) = a1 + a3y+ · · ·+ an−1y
n/2−1.

and

A(x) = Aeven(x2) + xAodd(x2). (2)

To evaluate A(x) at each of the nth roots of unity, it is enough to evaluate Aeven(y) and Aodd(y)

at each of the points 1,ω2n,ω
4
n, . . . ,ω

2(n−1)
n . Once we have done that, then we can use (2) to

compute the DFT of A(x) in O(n) extra time (for all roots of unity).

6

Notes on Fast Fourier Transform ADS 2012

In order to be able to set up a recurrence for the problem, we need to show that each of our
two subproblems is a Discrete Fourier Transform problem (as described in Definition 1).

Claim: The following two problems are Discrete Fourier Transforms:
(i) The problem of evaluating Aeven = a0+a2y+. . .+an−2y

n/2−1 at the points 1,ω2n,ω
4
n, . . . ,ω

2(n−1)
n .

(ii) The problem evaluating Aodd = a1 + a3y+ . . .+ an−1y
n/2−1 at the same points.

We will show that the claim holds for (i) (the second case, (ii), is identical). In order to prove
that (i) is a DFT, it is necessary to show that for every k = 0, . . . , n − 1, the value ω2kn is a n/2-th
root of unity (not just an n-th root). Also it is neccessary to show the values ω2kn , k = 0, . . . , n − 1
are all different (though I’ll leave that to the reader). Then the problem of evaluating Aeven at the
given values will satisfy the definition of a DFT.

Lemma 2 For any k = 0, . . . , n− 1, (ωkn)2 is an n/2-th root-of-unity.

Proof:
For any k = 0, . . . , n− 1, the relationship between ωn and e gives:

ω2kn = e(2πin)2k = e
2πi
n/2

k
,

= ωkn/2.

Therefore for every k = 0, 1, . . . , n/2 − 1, certainly it is the case that ω2kn is a n/2-th root of unity -
it is equal to ωkn/2.

Some particular examples of these squares for k = 0, . . . , n/2− 1 are k = 1 and k = n/4:

• ω2n = (e
2πi
n)2 = e

2πi
n/2 = ωn/2, and ωn/2n = (e

2πi
n)n/2 = eπi = −1.

Alternatively, if k = n/2, n/2 + 1, . . . , n − 1, we have ω2kn = ωkn/2 = ω
n/2
n/2ω

k−n/2
n/2 , which is equal to

ω
k−n/2
n/2 (because ωn/2n/2 = 1). For these cases we are guaranteed that k−n/2 satisfies 0 ≤ (k−n/2) ≤

n/2 − 1, and therefore ω2kn = ω
k−n/2
n/2 is a n/2th root of unity. We can represent the relationships

between ωn and ωn/2 diagrammatically:

1 ω2n . . . ωn−2
n ωnn ωn+2

n . . . ω
2(n−1)
n

‖ ‖ . . . ‖ ‖ ‖ . . . ‖
1 ωn/2 . . . ω

n/2−1
n/2 1 ωn/2 . . . ω

n/2−1
n/2

Therefore, all of our evaluation points 1,ω2n,ω
4
n, . . . ,ω

2(n−1)
n are n/2th roots of unity, and we have

proved Lemma 2.

Once we have solved the two DFT subproblems of size n/2, we can now use (2), and the results
of Lemma 2, to compute the DFT values for A(x). The evaluation of A(x) for the first n/2 − 1 nth
roots of unity is straightforward:

A(1) = Aeven(1) + 1 ·Aodd(1)

A(ωn) = Aeven(ωn/2) +ωnAodd(ωn/2)

A(ω2n) = Aeven(ω2n/2) +ω2nAodd(ω2n/2)

...

A(ωn/2−1n) = Aeven(ω
n/2−1
n/2) +ωn/2−1n Aodd(ω

n/2−1
n/2)

7

Notes on Fast Fourier Transform ADS 2012

The evaluation of A(x) for the last n/2 roots of unity is also straightforward. However, notice
that we can replace ωkn by −ω

k−n/2
n because k ≥ n/2 for these cases:

A(ωn/2n) = Aeven(1) − 1 ·Aodd(1)

A(ωn/2+1n) = Aeven(ωn/2) −ωnAodd(ωn/2)

...

A(ωn−1
n) = Aeven(ω

n/2−1
n/2) −ωn/2−1n Aodd(ω

n/2−1
n/2)

Observe that the total time to convert the DFT values for Aeven and Aodd into the DFT for
the original polynomial A is O(n). Using (2), for each n-th root-of-unity we have to do one
multiplication and one addition. The terms being added and multiplied are things that have
been given to us by the recursive calls to the two DFTs of size n/2, as well as the term ωkn (we
maintain this by multiplying by another ωn at every step). So we use a constant extra number
of steps for every n-th root-of-unity.

3.1 Fast Fourier Transform (FFT) Algorithm

Here is the Fast Fourier Transform (FFT) algorithm, for n a power of 2.

1. If n = 1 then the degree of A(x) is at most 0, so A(x) = a0 for a constant a0. Output is a0.

2. Alternatively, assume n ≥ 2.

(a) Split A into Aeven and Aodd.

(b) By making two recursive calls to FFT (of size n/2) compute the values of Aeven(y) and
Aodd(y) at the (n/2) points 1,ωn/2,ω2n/2, . . . ,ω

n/2−1
n/2 .

(c) Compute the values of A(x) for every n-th root of unity 1,ωn, . . . ,ωn−1
n , using the equa-

tion
A(x) = Aeven(x2) + xAodd(x2),

and our precomputed results for Aeven and Aodd.

(d) Output these A(ωkn) values in order of increasing k.

We can derive the following recurrence for the running time T(n) of the FFT:

T(n) =

{
Θ(1) if n = 1

2T(n/2) +Θ(n) if n ≥ 2

We can now apply the Master Theorem directly to find the running-time of the FFT. For this
case, the critical exponent of the Master Theorem, which is c = logb a, is c = log2 2 = 1. and the
exponent k from our “extra-work” term Θ(n) is k = 1. Therefore we are in the “middle case” of the
Master Theorem (the c = k case), and therefore the running time satisfies

T(n) = Θ(nc logn) = Θ(n logn) = Θ(n lgn),

as required.

8

Notes on Fast Fourier Transform ADS 2012

4 Using FFT to multiply polynomials in O(n lgn) time

We now show how to use the Discrete Fourier transform to multiply two polynomials of degree at
most n− 1 in Θ(n lgn) time.

Suppose that we are given two polynomials p(x) and q(x), where

p(x) = a0 + a1x+ . . .+ an−1x
n−1 and

q(x) = b0 + b1x+ . . .+ an−1x
m−1,

and max{m,n} = n. If we multiply the polynomials together, clearly the polynomial pq will have
degree n+m− 2. Suppose that the polynomial pq(x) has the coefficient representation

pq(x) = c0 + c1x+ . . .+ cn+m−2x
n+m−2

If we think about the straightforward method for polynomial multiplication, we know that the cj
coefficients will follow the following pattern:

c0 = a0b0

c1 = a1b0 + a0b1

c2 = a2b0 + a1b1 + a0b2

...
...

cn+m−3 = an−1bm−2 + an−2bm−1

cn+m−2 = an−1bm−1

However to do the multiplication in this näive way is computationally expensive - it takes Θ(nm)
time, which could be as bad as Θ(n2) when n is about the same size as m. We will show how to
compute pq in O(n lgn) time (assuming m ≤ n).

Now recall Theorem 2, and the remarks after it. This gives us a hint that there may be a
different approach. Remember that Theorem 2 tells us that if we have a point-value represen-
tation of size at least n +m − 1 (the size of the degree plus 1) for pq(X), then we can recover the
polynomial pq(X). So there is an alternative method . . .

Moreover, the discussion after Theorem 2 tells us that if n ′ is the value of the smallest power
of 2 which is greater than n+m− 1, then if we consider the n ′-th roots-of-unity, and if we have a
point-value representation of pq(x) in terms of the n ′-th roots-of-unity, then we can recover the
coefficients of pq by performing the “Inverse DFT”. The interesting thing is that we do not need
to know the polynomial pq in order to evaluate pq(1), pq(ωn ′), . . . , pq(ωn

′−1
n ′) (a good thing since

we are hoping to use the point-value representation to find the polynomial pq). If we know the
value of p(ωkn ′) and q(ωkn ′) for any k ∈ {0, . . . , n ′ − 1}, then we have pq(ωkn ′) = p(ωkn ′)q(ωkn ′).

Therefore it seems that a good first step is to compute the DFT for p on all n ′-th roots of
unity, and also to compute the DFT for q on all n ′-roots of unity. Both of these steps will take
O(n ′ lgn ′) = O(n lgn) time, so they are good as a first approach.
We can then compute the DFT for pq on all n ′ roots of unity by setting pq(ωkn ′) = p(ωkn ′)q(ωkn ′).
This takes O(n) extra time. Let y0, y1, . . . , yn ′−1 be the values that we get as a result.
Now recall from Subsection 2.2 that we can recover the coefficients c0, c1, . . . , cn ′−1 of the polyno-
mial pq (if n ′ is strictly greater than n +m − 1, then some of these leading coefficients will be 0)
by evaluating the result of multiplying the inverse DFT V−1

n ′ by (y0, y1, . . . , yn ′−1)
T . We know from

Subsection 2.2 that

V−1
n ′ y

T =
1

n ′



1 1 1 . . . 1

1 ω−1
n ′ ω−2

n ′ . . . ω
−(n ′−1)
n ′

1 ω−2
n ′ ω−4

n ′ . . . ω
−2(n ′−1)
n ′

1 ω−3
n ′ ω−6

n ′ . . . ω
−3(n ′−1)
n ′

...
...

...
...

1 ω
−(n ′−1)
n ′ ω

−2(n ′−1)
n ′ . . . ω

−(n ′−1)2

n ′





y0
y1
y2
y3
...

yn ′−1


=



c0
c1
c2
c3
...

cn ′−1


.

9

Notes on Fast Fourier Transform ADS 2012

We do not want to evaluate this multiplication directly as it would take Θ(n ′
2
) = Θ(n2) time.

However we do not have to evaluate it directly, because it is actually another DFT!!

Examine the rows of the square matrix. Note that each row is 1 ω−k
n ′ ω−2k

n ′ . . . ω
−k(n ′−1)
n ′ for

some k. But for any 0 ≤ k ≤ n ′ − 1,

ω−k
n ′ = ωn

′−k
n ′ /ωn

′

n ′ = ωn
′−k

n ′ ,

where the last step follows by ωn
′

n ′ = 1 (since ωn ′ is a n ′-th root of unity). Observe that although
ω−1
n ′ is not the principal n ′th root of unity, it is a primitive n ′th root of unity. Moreover, if we

examine the k + 1-th row of the Inverse DFT (forgetting the 1/n ′ term outside), this is equivalent
to the n ′ − k+ 1th row of the original DFT table.

Therefore the Inverse DFT matrix is exactly the same as the DFT with row 1 (for ω0n = ω−0
n = 1)

fixed and with the rows 2, . . . , n ′ flipped, all divided by n ′.

4.1 The Θ(n lg(n)) Inverse FFT Algorithm

Therefore we can compute the inverse DFT (for n ′) of (y0, y1, . . . , yn ′−1) as follows:

• Compute the DFT (yes, that’s right) of (y0, y1, . . . , yn ′−1) (for n ′). Assume the result of this is
d0, d1, d2, . . . , dn ′−1.

• Now reverse the sequence of terms d1, d2, . . . , dn ′−1 in this result, keeping d0 fixed, and then
divide every term by n ′, to obtain c0, c1, . . . , cn ′−1. So we have

ci =

{
d0
n ′ if i = 0
dn ′−i

n ′ if 1 ≤ i ≤ n ′ − 1

• This all takes Θ(n ′ lgn ′) = Θ(n lgn) time.

4.2 The Θ(n lg(n)) Polynomial Multiplication Algorithm

Here is the FFT multiplication algorithm:

1. (i) Consider the two polynomials p (of degree n − 1) and q (of degree m − 1). Let n ′ be the
smallest power of 2 satisfying n ′ ≥ n+m− 1.
(ii) Call the FFT algorithm on the polynomial p to calculate the values of p(ωkn ′) for all the
n ′-th roots of unity (ie for all 0 ≤ k ≤ n ′ − 1).
(iii) Call the FFT algorithm on the polynomial q to calculate the values of q(ωkn ′) for all
the n ′-th roots of unity (ie for all 0 ≤ k ≤ n ′ − 1).

2. Compute yk = pq(ωkn ′) = p(ωkn ′)q(ωkn ′) for every k = 0, 1, . . . , n ′ − 1. This is the DFT for pq.

3. Compute the inverse DFT by a single application of the FFT algorithm. To do this, first
compute the standard DFT on the pointwise representation < y0, y1, . . . , yn ′−1 >, to obtain
the vector < z0, z1, . . . , zn ′−1 >. Then we use this to get the inverse DFT z ′ as follows:

z ′j =

{
z0/(n

′) if j = 0

zn ′−j/(n
′) for j = 1, . . . , n ′ − 1

.

The special case for the first entry of z ′ is due to the fact that the initial row of the inverse
DFT matrix V−1

n ′ is exactly 1/(n ′) of the first row of the DFT matrix Vn ′ (the “all-1s” row). For
every j = 1, . . . , n ′ − 1, the j+ 1 row of V−1

n ′ (which is written in terms of ω−j
n ′) instead matches

the n ′ − j+ 1 row of Vn ′ (written for ωn
′−j

n ′ , which is equal to ω−j
n ′ = ωn

′

n ′ω
−j
n ′).

Then z ′ =< z0/(n ′), zn ′−1/(n
′), . . . , z2/(n

′), z1/(n
′) > is the list of co-efficients c0, c1, . . . , cn ′−1

of the product polynomial pq.

10

Notes on Fast Fourier Transform ADS 2012

Steps (1) and (4) take O(n ′) time altogether. Steps (2), (3) and (5) take O(n ′ lgn ′) time each. Hence
the entire algorithm takes O(n ′ lgn ′) = O(n lgn) time.

4.3 Using the Multiplication Algorithm

Sometimes you will get a question asking you to multiply two polynomials p and q using the
O(n lgn) FFT algorithm.

To answer these questions you do not usually have to perform all the recursive steps of the
FFT (unless you are explicitly told to), you can evaluate the DFTs directly using your knowledge
of basic arithmetic of complex numbers. However, you do have to carry out the three main steps
of the algorithm described in the last section:

Here is an example.

Step 1:
I will not do the first step of computing the DFTs of p and q, since this is an easier step. But
suppose we had originally some polynomial p of degree n − 1 = 2 and another polynomial of
degree m − 1 = 1. Then n +m − 1 = 4 and therefore our n ′ (the smallest power of two of size at
least n +m − 1) is also 4. Therefore Step 1 (not done here) will have done the task of computing
the DFT of p on all the 4-th roots-of-unity, and of computing the DFT of q on all the 4-th roots-
of-unity.

Step 2:
Suppose that we have got the values (4, i+1, 2, 1−i) for the DFT of p, and the values (4, i+3, 2,−i+3)
for the DFT of q. This corresponds to the following point-value representations (using ω14 = i,
ω24 = −1, ω34 = −i) for p and q respectively:

< (1, 4), (i, i+ 1), (−1, 2), (−i, 1− i) > DFT for p

< (1, 4), (i, i+ 3), (−1, 2), (−i,−i+ 3) > DFT for q

We construct the DFT/point-value representation for pq by taking the component-wise multipli-
cation: for 1, we have 4×4 = 16; for ω4 = i, we have (i+1)× (i+3) = i2+4i+3 = −1+4i+3 = 4i+2;
for ω24 = −1, we have 2×2 = 4; and for ω34 = −i, we have (1− i)(3− i) = 3−4i+ i2 = 3−4i−1 = 2−4i.
Therefore we have the following DFT for our unknown polynomial pq:

< (1, 16), (i, 4i+ 2), (−1, 4), (−i, 2− 4i) > DFT for pq

Step 3:
To find the polynomial pq(x) = c0 + c1x+ c2x

2 + c3x
3, we only need to evaluate the product of the

inverse DFT with the matrix (16 4i+ 2 4 2− 4i)T , which is

1

4


1 1 1 1

1 ω−1
4 ω−2

4 ω−3
4

1 ω−2
4 ω−4

4 ω−6
4

1 ω−3
4 ω−6

4 ω−9
4




16

4i+ 2
4

2− 4i

 =


c0
c1
c2
c3

 .

We work out the rows one by one:

c0 = 1/4(16+ 4i+ 2+ 4+ 2− 4i) = 1/4(24) = 6.

c1: Note that ω−1
4 = ω34 = −i. So we have c1 = 1/4(16 + (−i)(4i + 2) + (−i)2(4) + (−i)3(2 − 4i)) =

(1/4)(16+ (4− 2i) + (−4) + (2i+ 4)) = (1/4)(20) = 5.

c2: Note that ω−2
4 = ω24 = −1. So we have c2 = (1/4)(16 + (−1)(4i + 2) + (−1)2(4) + (−1)3(2 − 4i)) =

(1/4)(16− 4i− 2+ 4− 2+ 4i) = (1/4)(16) = 4.

c3: Note that ω−3
4 = ω4 = i. So we have c3 = (1/4)(16 + i(4i + 2) + (i)2(4) + (i)3(2 − 4i)) = (1/4)(16 −

4+ 2i− 4− 2i− 4) = (1/4)(4) = 1.

Therefore pq(x) = x3 + 4x2 + 5x+ 6, and we have our result.

11

Notes on Fast Fourier Transform ADS 2012

When you are given one of these questions as an exercise, you (of course) have to perform
Step 1, which I assumed.

Mary Cryan

12

