Algorithms and Data Structures: Average-Case Analysis of Quicksort
Quicksort

Divide-and-Conquer algorithm for sorting an array. It works as follows:

1. If the input array has less than two elements, nothing to do . . . Otherwise, do the following **partitioning** subroutine: Pick a particular key called the **pivot** and divide the array into two subarrays as follows:

| ≤ pivot | piv. | ≥ pivot |

2. Sort the two subarrays recursively.
Algorithm QUICKSORT\((A, p, r)\)

1. if \(p < r \) then
2. \(q \leftarrow \text{PARTITION}(A, p, r) \)
3. QUICKSORT\((A, p, q - 1)\)
4. QUICKSORT\((A, q + 1, r)\)
Partitioning

Algorithm PARTITION\((A, p, r)\)

1. \(pivot \leftarrow A[r]\)
2. \(i \leftarrow p - 1\)
3. **for** \(j \leftarrow p\) **to** \(r - 1\) **do**
4. \[\text{if } A[j] \leq pivot \text{ then}\]
5. \(i \leftarrow i + 1\)
6. **exchange** \(A[i], A[j]\)
7. **exchange** \(A[i + 1], A[r]\)
8. **return** \(i + 1\)

Same version as [CLRS]
Analysis of Quicksort

- The **size** of an instance \((A, p, r)\) is \(n = r - p + 1\).
- Basic operations for sorting are **comparisons of keys**. We let

\[
C(n)
\]

be the **worst-case number of key-comparisons** performed by \texttt{Quicksort}(\(A, p, r\)). We shall try to determine \(C(n)\) as precisely as possible.

- It is easy to verify that the worst-case running time \(T(n)\) of \texttt{Quicksort}(\(A, p, r\)) is \(\Theta(C(n))\) if a single comparison requires time \(\Theta(1)\).

 (i.e., for \texttt{Quicksort}, comparisons **dominate** the running time).

In any case,

\[
T(n) = \Theta(C(n) \cdot \text{cost per comparison}).
\]

ADS: lect 8 – slide 5
Analysis of Partition

- Partition(A, p, r) does exactly $n - 1$ comparisons for every input of size n.
 This is of course apart from any comparisons which may be done inside the recursive calls to Quicksort.
Worst-case Analysis of Quicksort

- We get the following recurrence for $C(n)$:

$$C(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
\max_{1 \leq k \leq n} \left(C(k - 1) + C(n - k) \right) + (n - 1) & \text{if } n \geq 2
\end{cases}$$

- Intuitively, worst-case seems to be $k = 1$ or $k = n$, i.e., everything falls on one side of the partition. This happens, e.g., if the array is sorted.
Worst-Case Analysis (cont’d)

▶ **Lower Bound:** $C(n) \geq \frac{1}{2}n(n + 1) = \Omega(n^2)$.

Proof: Consider the situation where we are presented with an array which is already sorted. Then on every iteration, we split into one array of length $(n - 1)$, and one of length 0.

\[
C(n) \geq C(n - 1) + (n - 1) \\
\geq C(n - 2) + (n - 2) + (n - 1) \\
\vdots \\
\geq \sum_{i=1}^{n-1} i = \frac{1}{2}n(n - 1).
\]

▶ **Upper Bound:** $C(n) \leq O(n^2)$.

Bit harder (must consider all possible inputs). By induction on n, using the recurrence. Case distinction whether $k \geq n/2$.

▶ Overall, we will show

\[
C(n) = \Theta(n^2).
\]

ADS: lect 8 – slide 8 –
Best-Case Analysis

- $B(n) =$ number of comparisons done by \textsc{Quicksort} in the best case.
- \textit{Recurrence:}

\[
B(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
\min_{1 \leq k \leq n} (B(k-1) + B(n-k)) + (n-1) & \text{if } n \geq 2
\end{cases}
\]

- Intuitively, the best case is if the array is always partitioned into two parts of the same size. This would mean

\[
B(n) \approx 2B(n/2) + \Theta(n),
\]

which implies $B(n) = \Theta(n \log(n))$.

\textit{ADS: lect 8 – slide 9 –}
Average-Case Analysis

- \(A(n) \) = number of comparisons done by **QUICKSORT** on average if all input arrays of size \(n \) are considered equally likely.

- **Intuition:** The average case is closer to the best case than to the worst case, because only **repeatedly very unbalanced** partitions lead to the worst case.

- **Recurrence:**

 \[
 A(n) = \begin{cases}
 0 & \text{if } n \leq 1 \\
 \sum_{k=1}^{n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1) & \text{if } n \geq 2
 \end{cases}
 \]

- **Solution:**

 \[
 A(n) \approx 2n \ln(n).
 \]
Average Case Analysis in Detail

We shall prove that for all $n \geq 1$ ("sufficiently large") we have

$$A(n) \leq 2 \ln(n)(n + 1)\text{.}$$

\((\ast)\)
Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) (“sufficiently large”) we have

\[
A(n) \leq 2 \ln(n)(n + 1).
\]

(Note (⋆) holds trivially for \(n = 1 \), because \(\ln(1) = 0 \))
Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have

\[
A(n) \leq 2 \ln(n) (n + 1). \tag{*}
\]

(Note (*) holds trivially for \(n = 1 \), because \(\ln(1) = 0 \))

So assume that \(n \geq 2 \). We have

\[
A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1)
\]
Average Case Analysis in Detail

We shall prove that for all $n \geq 1$ ("sufficiently large") we have

$$A(n) \leq 2 \ln(n)(n + 1).$$

(Note \ast holds trivially for $n = 1$, because $\ln(1) = 0$)

So assume that $n \geq 2$. We have

$$A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1)$$

$$= 2 \sum_{k=0}^{n-1} A(k) + (n - 1).$$
Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) (“sufficiently large”) we have

\[
A(n) \leq 2 \ln(n)(n + 1). \tag{*}
\]

(Note (\(*\)) holds trivially for \(n = 1 \), because \(\ln(1) = 0 \))

So assume that \(n \geq 2 \). We have

\[
A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1)
\]

\[
= \frac{2}{n} \sum_{k=0}^{n-1} A(k) + (n - 1).
\]

Thus

\[
nA(n) = 2 \sum_{k=0}^{n-1} A(k) + n(n - 1). \tag{**}
\]
We shall prove that for all $n \geq 1$ ("sufficiently large") we have

$$A(n) \leq 2 \ln(n)(n + 1).$$

(Note (*) holds trivially for $n = 1$, because $\ln(1) = 0$)

So assume that $n \geq 2$. We have

$$A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1)$$

$$= \frac{2}{n} \sum_{k=0}^{n-1} A(k) + (n - 1).$$

Thus

$$nA(n) = 2 \sum_{k=0}^{n-1} A(k) + n(n - 1).$$

(Note (**) holds trivially for $n = 1$, because $\ln(1) = 0$)
Applying \((\star\star)\) to \((n - 1)\) for \(n \geq 3\), we obtain

\[
(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).
\]
Applying (⋆⋆) to \((n - 1)\) for \(n \geq 3\), we obtain

\[
(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).
\]

Subtracting this equation from (⋆⋆) (when \(n \geq 3\))

\[
nA(n) - (n - 1)A(n - 1) = 2A(n - 1) + n(n - 1) - (n - 1)(n - 2),
\]
Average Case Analysis in Detail (cont’d)

Applying (⋆⋆) to \((n - 1)\) for \(n \geq 3\), we obtain

\[(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2)\.

Subtracting this equation from (⋆⋆) (when \(n \geq 3\))

\[nA(n) - (n - 1)A(n - 1) = 2A(n - 1) + n(n - 1) - (n - 1)(n - 2),\]

thus

\[nA(n) = (n + 1)A(n - 1) + 2n - 2,\]
Average Case Analysis in Detail (cont’d)

Applying (⋆⋆) to \((n - 1)\) for \(n \geq 3\), we obtain

\[(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).\]

Subtracting this equation from (⋆⋆) (when \(n \geq 3\))

\[nA(n) - (n - 1)A(n - 1) = 2A(n - 1) + n(n - 1) - (n - 1)(n - 2),\]

thus

\[nA(n) = (n + 1)A(n - 1) + 2n - 2,\]

and therefore

\[\frac{A(n)}{n + 1} = \frac{A(n - 1)}{n} + \frac{2n - 2}{n(n + 1)} \leq \frac{A(n - 1)}{n} + \frac{2}{n}.\]
Average Case Analysis in Detail (cont’d)

Applying \(*\star\) to \((n - 1)\) for \(n \geq 3\), we obtain

\[
(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).
\]

Subtracting this equation from \(*\star\) (when \(n \geq 3\))

\[
nA(n) - (n - 1)A(n - 1) = 2A(n - 1) + n(n - 1) - (n - 1)(n - 2),
\]

thus

\[
nA(n) = (n + 1)A(n - 1) + 2n - 2,
\]

and therefore

\[
\frac{A(n)}{n + 1} = \frac{A(n - 1)}{n} + \frac{2n - 2}{n(n + 1)} \leq \frac{A(n - 1)}{n} + \frac{2}{n}
\]

We now apply unfold-and-sum to this recurrence (stopping at \(n = 2\)):

\[
\frac{A(n)}{n + 1} \leq \frac{A(n - 1)}{n} + \frac{2}{n} \\
\vdots
\]

ADS: lect 8 – slide 12 –
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n+1} \leq \frac{A(n-2)}{n-1} + \frac{2}{n} + \frac{2}{n-1}
\]
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n+1} \leq \frac{A(n-2)}{n-1} + \frac{2}{n} + \frac{2}{n-1}
\]

\[
\vdots
\]

\[
\leq \frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k}
\]
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n+1} \leq \frac{A(n-2)}{n-1} + \frac{2}{n} + \frac{2}{n-1}
\]

\[
\vdots
\]

\[
\leq \frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k}
\]

\[
= \frac{3}{3} + 2 \sum_{k=3}^{n} \frac{1}{k} = 2 \sum_{k=2}^{n} \frac{1}{k}.
\]
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n+1} \leq \frac{A(n-2)}{n-1} + \frac{2}{n} + \frac{2}{n-1}
\]

\[
\frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k}
\]

\[
= \frac{3}{3} + 2 \sum_{k=3}^{n} \frac{1}{k} = 2 \sum_{k=2}^{n} \frac{1}{k}.
\]

It is easy to verify this result by induction. Thus

\[
\frac{A(n)}{n+1} \leq 2 \sum_{k=2}^{n} \frac{1}{k} = 2 \sum_{k=1}^{n-1} \frac{1}{k+1} \leq 2 \int_{1}^{n} \frac{1}{x} = 2 \ln(n).
\]

Multiplying by \((n+1)\) completes the proof of (⋆).
Improvements

- Use insertion sort for small arrays.
- Iterative implementation.

Main Question

Is there a way to avoid the bad worst-case performance, and in particular the bad performance on sorted (or almost sorted) arrays?

Different strategies for choosing the pivot-element help (in practice).
Median-of-Three Partitioning

Idea: Use the median of the first, middle, and last key as the pivot.

Algorithm \texttt{M3Partition}(A, p, r)

1. exchange $A[(p + r)/2], A[r - 1]$
5. \texttt{Partition}(A, p + 1, r - 1)$

Note that \texttt{M3Partition}(A, p, r) only requires 1 more comparison than \texttt{Partition}(A, p, r)
Algorithm \texttt{M3Quicksort}(A, p, r)

1. \textbf{if} \(p < r \) \textbf{then}
2. \(q \leftarrow \texttt{M3Partition}(A, p, r) \)
3. \texttt{M3Quicksort}(A, p, q - 1)
4. \texttt{M3Quicksort}(A, q + 1, r)

In can be shown that the worst-case running time of \texttt{M3Quicksort} is still \(\Theta(n^2) \), but at least in the case of an almost sorted array (and in most other cases that are relevant in practice) it is very efficient.
Randomized Quicksort

Idea: Use key of random element as the pivot.

Algorithm \texttt{RPartition}(A, p, r)

1. \(k \leftarrow \texttt{Random}(p, r) \) \quad \triangleright \text{choose } k \text{ randomly from } \{p, \ldots, r\}
2. exchange \(A[k], A[r] \)
3. \texttt{Partition}(A, p, r)

Algorithm \texttt{Randomized Quicksort}(A, p, r)

1. \textbf{if } p < r \textbf{ then}
2. \(q \leftarrow \texttt{RPartition}(A, p, r) \)
3. \texttt{Randomized Quicksort}(A, p, q - 1)
4. \texttt{Randomized Quicksort}(A, q + 1, r)
Analysis of Randomized Quicksort

The running time of Randomized Quicksort on an input of size n is a random variable.

An analysis similar to the average case analysis of Quicksort shows:

Theorem

For all inputs (A, p, r), the expected number of comparisons performed during a run of Randomized Quicksort on input (A, p, r), is at most $2 \ln(n)(n + 1)$, where $n = r - p + 1$.

Corollary

Thus the expected running time of Randomized Quicksort on any input of size n is $\Theta(n \lg(n))$.

ADS: lect 8 – slide 18 –
Reading Assignment

Sections 7.2, 7.3, 7.4 of [CLRS] (edition 2 or 3)

Problems

1. Convince yourself that \textsc{Partition} works correctly by working a few examples, or (better) try to prove that it works correctly.

2. In our proof of the Average-running time \(A(n)\), we can think of the input as being some permutation of \((1, \ldots, n)\), and assume all permutations are equally likely. Why does this explain the \(1/n\) factor in the recurrence on slide 10?

3. Show that if the array is initially in decreasing order, then the running time is \(\Theta(n^2)\).

\(O(n^2)\) from slide 8. \(\Omega(n^2)\) involves considering \textsc{Partition} on a decreasing array.