QuickSort

Divide-and-Conquer algorithm for sorting an array. It works as follows:

1. If the input array has less than two elements, nothing to do . . .
 Otherwise, do the following partitioning subroutine: Pick a particular key called the pivot and divide the array into two subarrays as follows:

 \[
 \begin{array}{cc}
 \leq \text{pivot} & \text{piv.} \\
 \geq \text{pivot} &
 \end{array}
 \]

2. Sort the two subarrays recursively.

QuickSort Algorithm

\begin{algorithm}
\textbf{Algorithm} Quicksort(A, p, r)
1. \textbf{if} \ p < r \ \textbf{then}
2. \quad q \leftarrow \text{Partition}(A, p, r)
3. \quad \textbf{Quicksort}(A, p, q - 1)
4. \quad \textbf{Quicksort}(A, q + 1, r)
\end{algorithm}

Partitioning

\begin{algorithm}
\textbf{Algorithm} Partition(A, p, r)
1. pivot \leftarrow A[r]
2. \quad i \leftarrow p - 1
3. \quad \textbf{for} j \leftarrow p \ \textbf{to} \ r - 1 \ \textbf{do}
4. \quad \quad \textbf{if} \ A[j] \leq pivot \ \textbf{then}
5. \quad \quad \quad i \leftarrow i + 1
6. \quad \quad \textbf{exchange} \ A[i], A[j]
7. \quad \textbf{exchange} \ A[i + 1], A[r]
8. \quad \textbf{return} \ i + 1
\end{algorithm}

Same version as [CLRS]
Analysis of Quicksort

- The size of an instance \((A, p, r)\) is \(n = r - p + 1\).
- Basic operations for sorting are comparisons of keys. We let \(C(n)\) be the worst-case number of key-comparisons performed by \textsc{Quicksort}(A, p, r). We shall try to determine \(C(n)\) as precisely as possible.

It is easy to verify that the worst-case running time \(T(n)\) of \textsc{Quicksort}(A, p, r) is \(\Theta(C(n))\) if a single comparison requires time \(\Theta(1)\). (i.e., for \textsc{Quicksort}, comparisons dominate the running time). In any case,

\[T(n) = \Theta(C(n) \cdot \text{cost per comparison}). \]

Worst-case Analysis of Quicksort

- We get the following recurrence for \(C(n)\):

\[C(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
\max_{1 \leq k \leq n} (C(k - 1) + C(n - k)) + (n - 1) & \text{if } n \geq 2
\end{cases} \]

Intuitively, worst-case seems to be \(k = 1\) or \(k = n\), i.e., everything falls on one side of the partition. This happens, e.g., if the array is sorted.

Worst-Case Analysis (cont’d)

- Lower Bound: \(C(n) \geq \frac{1}{2}n(n + 1) = \Omega(n^2)\).
 Proof: Consider the situation where we are presented with an array which is already sorted. Then on every iteration, we split into one array of length \((n - 1)\), and one of length 0.

\[C(n) \geq C(n - 1) + (n - 1) \]
\[\geq C(n - 2) + (n - 2) + (n - 1) \]
\[\vdots \]
\[\geq \sum_{i=1}^{n-1} i = \frac{1}{2}n(n - 1). \]

- Upper Bound: \(C(n) \leq O(n^2)\).
 Bit harder (must consider all possible inputs). By induction on \(n\), using the recurrence. Case distinction whether \(k \geq n/2\).

Overall, we will show \(C(n) = \Theta(n^2)\).
Best-Case Analysis

- $B(n) =$ number of comparisons done by QUICKSORT in the best case.

- Recurrence:

 $$B(n) = \begin{cases}
 0 & \text{if } n \leq 1 \\
 \min_{1 \leq k \leq n} \left(B(k-1) + B(n-k) \right) + (n-1) & \text{if } n \geq 2
 \end{cases}$$

- Intuitively, the best case is if the array is always partitioned into two parts of the same size. This would mean

 $$B(n) \approx 2B(n/2) + \Theta(n),$$

 which implies $B(n) = \Theta(n \log(n))$.

Average-Case Analysis

- $A(n) =$ number of comparisons done by QUICKSORT on average if all input arrays of size n are considered equally likely.

- Intuition: The average case is closer to the best case than to the worst case, because only repeatedly very unbalanced partitions lead to the worst case.

- Recurrence:

 $$A(n) = \begin{cases}
 0 & \text{if } n \leq 1 \\
 \sum_{k=1}^{n} \frac{1}{n} \left(A(k-1) + A(n-k) \right) + (n-1) & \text{if } n \geq 2
 \end{cases}$$

- Solution:

 $$A(n) \approx 2n \ln(n).$$

Average Case Analysis in Detail

We shall prove that for all $n \geq 1$ ("sufficiently large") we have

$$A(n) \leq 2 \ln(n)(n+1).$$

(Note (*) holds trivially for $n = 1$, because $\ln(1) = 0$)
Average Case Analysis in Detail

We shall prove that for all $n \geq 1$ ("sufficiently large") we have

$$A(n) \leq 2 \ln(n)(n + 1).$$

(Note \((\star)\) holds trivially for $n = 1$, because $\ln(1) = 0$)

So assume that $n \geq 2$. We have

$$A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1)$$

$$= \frac{2}{n} \sum_{k=0}^{n-1} A(k) + (n - 1).$$

Thus

$$nA(n) = 2 \sum_{k=0}^{n-1} A(k) + n(n - 1).$$

\((\star\star)\)
Applying (⋆⋆) to \((n−1)\) for \(n \geq 3\), we obtain
\[
(n−1)A(n−1) = 2 \sum_{k=0}^{n−2} A(k) + (n−1)(n−2).
\]
Subtracting this equation from (⋆⋆) (when \(n \geq 3\))
\[
nA(n) − (n−1)A(n−1) = 2A(n−1) + n(n−1) − (n−1)(n−2),
\]
thus
\[
nA(n) = (n+1)A(n−1) + 2n−2,
\]
and therefore
\[
\frac{A(n)}{n+1} = \frac{A(n−1)}{n} + \frac{2n−2}{n(n+1)} \leq \frac{A(n−1)}{n} + \frac{2}{n}.
\]
We now apply unfold-and-sum to this recurrence (stopping at $n = 2$):

$$A(n) = a + b n + \sum_{k=0}^{n-2} A(k) + (n-1)(n-2).$$

Subtracting this equation from (**) (when $n \geq 3$)

$$nA(n) - (n-1)A(n-1) = 2A(n-1) + n(n-1) - (n-1)(n-2),$$

thus

$$nA(n) = (n+1)A(n-1) + 2n - 2,$$

and therefore

$$\frac{A(n)}{n+1} = \frac{A(n-1)}{n} + \frac{2n - 2}{n(n+1)} \leq \frac{A(n-1)}{n} + \frac{2}{n}.$$

We now apply unfold-and-sum to this recurrence (stopping at $n = 2$):

$$\frac{A(n)}{n+1} \leq \frac{A(n-1)}{n} + \frac{2}{n}$$

$$\vdots$$

$$\frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k}$$

Multiplying by $(n+1)$ completes the proof of \star.

Average Case Analysis in Detail (cont’d)

Multiplying by $(n+1)$ completes the proof of \star.

Average Case Analysis in Detail (cont’d)
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n+1} \leq \frac{A(n-2)}{n-1} + \frac{2}{n} \leq \frac{A(n-3)}{n-2} + \frac{2}{n-2} + \frac{1}{k} = \frac{A(n-3)}{n-2} + \frac{2}{n-2} + \frac{1}{k} = \frac{A(n-3)}{n-2} + \frac{2}{n-2} + \frac{1}{k}.
\]

It is easy to verify this result by induction. Thus

\[
\frac{A(n)}{n+1} \leq 2 \sum_{k=2}^{n} \frac{1}{k} = 2 \sum_{k=1}^{n-1} \frac{1}{k+1} \leq 2 \int_{1}^{n} \frac{1}{x} = 2 \ln(n).
\]

Multiplying by \((n+1)\) completes the proof of \((\ast)\).

Median-of-Three Partitioning

Idea: Use the median of the first, middle, and last key as the pivot.

Algorithm \text{M3Partition} \((A, p, r)\)

1. exchange \(A[(p + r)/2], A[r - 1]\)
5. \text{Partition} \((A, p + 1, r - 1)\)

Note that \text{M3Partition} \((A, p, r)\) only requires 1 more comparison than \text{Partition} \((A, p, r)\)

Algorithm \text{M3Quicksort} \((A, p, r)\)

1. if \(p < r\) then
2. \(q \leftarrow \text{M3Partition} \((A, p, r)\)\)
3. \text{M3Quicksort} \((A, p, q - 1)\)
4. \text{M3Quicksort} \((A, q + 1, r)\)

In can be shown that the worst-case running time of \text{M3Quicksort} is still \(\Theta(n^2)\), but at least in the case of an almost sorted array (and in most other cases that are relevant in practice) it is very efficient.

Improvements

- Use insertion sort for small arrays.
- Iterative implementation.

Main Question

Is there a way to avoid the bad worst-case performance, and in particular the bad performance on sorted (or almost sorted) arrays?

Different strategies for choosing the pivot-element help (in practice).
Randomized Quicksort

Idea: Use key of random element as the pivot.

Algorithm RPartition(A, p, r)
1. k ← Random(p, r) ⊿ choose k randomly from \{p, ..., r\}
2. exchange A[k], A[r]
3. Partition(A, p, r)

Algorithm Randomized Quicksort(A, p, r)
1. if p < r then
2. q ← RPartition(A, p, r)
3. Randomized Quicksort(A, p, q − 1)
4. Randomized Quicksort(A, q + 1, r)

Analysis of Randomized Quicksort

The running time of Randomized Quicksort on an input of size n is a random variable.

An analysis similar to the average case analysis of Quicksort shows:

Theorem
For all inputs (A, p, r), the expected number of comparisons performed during a run of Randomized Quicksort on input (A, p, r), is at most $2 \ln(n)(n + 1)$, where $n = r - p + 1$.

Corollary
Thus the expected running time of Randomized Quicksort on any input of size n is $\Theta(n \lg(n))$.

Reading Assignment
Sections 7.2, 7.3, 7.4 of [CLRS] (edition 2 or 3)

Problems

1. Convince yourself that Partition works correctly by working a few examples, or (better) try to prove that it works correctly.
2. In our proof of the Average-running time $A(n)$, we can think of the input as being some permutation of \(1, \ldots, n\), and assume all permutations are equally likely. Why does this explain the $1/n$ factor in the recurrence on slide 10?
3. Show that if the array is initially in decreasing order, then the running time is $\Theta(n^2)$.

$O(n^2)$ from slide 8. $\Omega(n^2)$ involves considering Partition on a decreasing array.