Algorithms and Data Structures
Strassen’s Algorithm
Tutorials

- Start in week (week 3)
- Tutorial allocations are linked from the course webpage
 http://www.inf.ed.ac.uk/teaching/courses/ads/
The Master Theorem for solving recurrences

Theorem

Let $n_0 \in \mathbb{N}$, $k \in \mathbb{N}_0$ and $a, b \in \mathbb{R}$ with $a > 0$ and $b > 1$, and let $T : \mathbb{N} \rightarrow \mathbb{R}$ satisfy the following recurrence:

$$T(n) = \begin{cases}
\Theta(1) & \text{if } n < n_0, \\
a \cdot T(n/b) + \Theta(n^k) & \text{if } n \geq n_0.
\end{cases}$$

Let $c = \log_b(a)$; we call c the critical exponent. Then

$$T(n) = \begin{cases}
\Theta(n^c) & \text{if } k < c \quad (I), \\
\Theta(n^c \cdot \lg(n)) & \text{if } k = c \quad (II), \\
\Theta(n^k) & \text{if } k > c \quad (III).
\end{cases}$$

Theorem also holds if we replace $a \cdot T(n/b)$ above by $a_1 \cdot T(\lfloor n/b \rfloor) + a_2 \cdot T(\lceil n/b \rceil)$ for any $a_1, a_2 \geq 0$ with $a_1 + a_2 = a$.
The Master Theorem (cont’d)

▶ We don’t have time to prove the Master Theorem in class. You can find the proof in Section 4.6 of [CLRS]. *Section 4.4 of [CLRS], 2nd ed.*

Their version of the M.T. is a bit more general than ours.

▶ Consider the following examples:

\[
T(n) = 4T(n/2) + n,
\]

\[
T(n) = 4T(\lfloor n/2 \rfloor) + n^2,
\]

\[
T(n) = 4T(n/2) + n^3.
\]

Could alternatively unfold-and-sum to prove the first and third of these (and to get an estimate for the second).

CLASS EXERCISE
Matrix Multiplication

Recall

The product of two \((n \times n)\)-matrices

\[A = (a_{ij})_{1 \leq i, j \leq n} \quad \text{and} \quad B = (b_{ij})_{1 \leq i, j \leq n} \]

is the \((n \times n)\)-matrix \(C = AB\) where \(C = (c_{ij})_{1 \leq i, j \leq n}\) with entries

\[c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}. \]

The Matrix Multiplication Problem

Input: \((n \times n)\)-matrices \(A\) and \(B\)

Output: the \((n \times n)\)-matrix \(AB\)
Matrix Multiplication

\[
\begin{array}{c}
\text{row } i \\
\hline
\hline
c_{ij} \\
\hline
\text{column } j \\
\hline
\end{array}

\begin{array}{c}
a_{i1} \ a_{i2} \ \cdots \ a_{in} \\
\hline
\hline
b_{1j} \ b_{2j} \\
\hline
\text{ } \ b_{nj} \\
\hline
\end{array}
\]

- there are \(n^2 \) different \(c_{ij} \) entries.
- there are \(n \) multiplications and \(n \) additions for each \(c_{ij} \).
Matrix Multiplication

- n multiplications and n additions for each c_{ij}.
- there are n^2 different c_{ij} entries.
A straightforward algorithm

Algorithm $\text{MatMult}(A, B)$

1. $n \leftarrow \text{number of rows of } A$
2. for $i \leftarrow 1$ to n do
3. for $j \leftarrow 1$ to n do
4. $c_{ij} \leftarrow 0$
5. for $k \leftarrow 1$ to n do
6. $c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$
7. return $C = (c_{ij})_{1 \leq i, j \leq n}$

Requires

$\Theta(n^3)$

arithmetic operations (additions and multiplications).
A naïve divide-and-conquer algorithm

Observe

If

\[
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}
\]

for \((n/2 \times n/2)\)-submatrices \(A_{ij}\) and \(B_{ij}\) then

\[
AB = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}
\]

\text{note: We are assuming } n \text{ is a power of 2.}
A naïve divide-and-conquer algorithm

\[c_{ij} = \sum_{k=1}^{n/2} a_{ik} b_{kj} + \sum_{k=n/2+1}^{n} a_{ik} b_{kj} \]

Suppose \(i \leq n/2 \) and \(j > n/2 \). Then

\[c_{ij} = \sum_{k=1}^{n/2} a_{ik} b_{kj} \]

\(\in A_{11} \)

\(\in A_{12} \)

\(\in A_{21} \)

\(\in A_{22} \)

\(\in B_{11} \)

\(\in B_{12} \)

\(\in B_{21} \)

\(\in B_{22} \)
A naïve divide-and-conquer algorithm

Suppose \(i \leq n/2 \) and \(j > n/2 \). Then

\[
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \sum_{k=1}^{n/2} a_{ik} b_{kj} + \sum_{k=n/2+1}^{n} a_{ik} b_{kj}
\]

\(\in A_{11}B_{12} \) \hspace{1cm} \(\in A_{12}B_{22} \)
A naïve divide-and-conquer algorithm (cont’d)

Assume \(n \) is a power of 2.

Algorithm \(D\&C\text{-MATMULT}(A, B) \)

1. \(n \leftarrow \) number of rows of \(A \)
2. if \(n = 1 \) then return \((a_{11} b_{11})\)
3. else
4. Let \(A_{ij}, B_{ij} \) (for \(i, j = 1, 2 \)) be \((n/2 \times n/2)\)-submatrices s.th.
 \[
 A = \begin{pmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
 \end{pmatrix}
 \quad \text{and} \quad
 B = \begin{pmatrix}
 B_{11} & B_{12} \\
 B_{21} & B_{22}
 \end{pmatrix}
 \]
5. Recursively compute \(A_{11} B_{11}, A_{12} B_{21}, A_{11} B_{12}, A_{12} B_{22}, \)
 \(A_{21} B_{11}, A_{22} B_{21}, A_{21} B_{12}, A_{22} B_{22} \)
6. Compute \(C_{11} = A_{11} B_{11} + A_{12} B_{21}, C_{12} = A_{11} B_{12} + A_{12} B_{22}, \)
 \(C_{21} = A_{21} B_{11} + A_{22} B_{21}, C_{22} = A_{21} B_{12} + A_{22} B_{22} \)
7. return \[
 \begin{pmatrix}
 C_{11} & C_{12} \\
 C_{21} & C_{22}
 \end{pmatrix}
 \]
Analysis of D&C-MatMult

\(T(n) \) is the number of operations done by D&C-MatMult.

- Lines 1, 2, 3, 4, 7 require \(\Theta(1) \) arithmetic operations.
- Line 5 requires \(8T(n/2) \) arithmetic operations.
- Line 6 requires \(4(n/2)^2 = \Theta(n^2) \) arithmetic operations.

Remember! Size of matrices is \(\Theta(n^2) \), NOT \(\Theta(n) \)

We get the recurrence

\[
T(n) = 8T(n/2) + \Theta(n^2).
\]

Since \(\log_2(8) = 3 \), the Master Theorem yields

\[
T(n) = \Theta(n^3).
\]
Analysis of D&C-MatMult

$T(n)$ is the number of operations done by D&C-MatMult.

- Lines 1, 2, 3, 4, 7 require $\Theta(1)$ arithmetic operations
- Line 5 requires $8T(n/2)$ arithmetic operations
- Line 6 requires $4(n/2)^2 = \Theta(n^2)$ arithmetic operations.

Remember! Size of matrices is $\Theta(n^2)$, NOT $\Theta(n)$

We get the recurrence

$$T(n) = 8T(n/2) + \Theta(n^2).$$

Since $\log_2(8) = 3$, the Master Theorem yields

$$T(n) = \Theta(n^3).$$

(No improvement over MatMult ... why? **CLASS?** ...)

Lecture 4 – slide 11
Assume n is a power of 2.

Let

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

We want to compute

$$AB = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Strassen’s algorithm uses a *trick* in applying Divide-and-Conquer.
Strassen’s algorithm (cont’d)

Let

\[P_1 = (A_{11} + A_{22})(B_{11} + B_{22}) \]
\[P_2 = (A_{21} + A_{22})B_{11} \]
\[P_3 = A_{11}(B_{12} - B_{22}) \]
\[P_4 = A_{22}(-B_{11} + B_{21}) \]
\[P_5 = (A_{11} + A_{12})B_{22} \]
\[P_6 = (-A_{11} + A_{21})(B_{11} + B_{12}) \]
\[P_7 = (A_{12} - A_{22})(B_{21} + B_{22}) \]
Strassen’s algorithm (cont’d)

Let

\[
\begin{align*}
P_1 & = (A_{11} + A_{22})(B_{11} + B_{22}) \\
P_2 & = (A_{21} + A_{22})B_{11} \\
P_3 & = A_{11}(B_{12} - B_{22}) \\
P_4 & = A_{22}(-B_{11} + B_{21}) \\
P_5 & = (A_{11} + A_{12})B_{22} \\
P_6 & = (-A_{11} + A_{21})(B_{11} + B_{12}) \\
P_7 & = (A_{12} - A_{22})(B_{21} + B_{22})
\end{align*}
\]

Then

\[
\begin{align*}
C_{11} & = P_1 + P_4 - P_5 + P_7 \\
C_{12} & = P_3 + P_5 \\
C_{21} & = P_2 + P_4 \\
C_{22} & = P_1 + P_3 - P_2 + P_6
\end{align*}
\]
Checking Strassen’s algorithm - C_{11}

We will check the equation for C_{11} is correct.
Strassen’s algorithm computes $C_{11} = P1 + P4 - P5 + P7$. We have

$$P1 = (A11 + A22)(B11 + B22)$$
$$= A11B11 + A11B22 + A22B11 + A22B22.$$

$$P4 = A22(-B11 + B21) = A22B21 - A22B11.$$

$$P7 = (A12 - A22)(B21 + B22)$$
$$= A12B21 + A12B22 - A22B21 - A22B22.$$
Checking Strassen’s algorithm - C_{11}

We will check the equation for C_{11} is correct.

Strassen’s algorithm computes $C_{11} = P_1 + P_4 - P_5 + P_7$. We have

\[P_1 = (A_{11} + A_{22})(B_{11} + B_{22}) = A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22}. \]

\[P_4 = A_{22}(-B_{11} + B_{21}) = A_{22}B_{21} - A_{22}B_{11}. \]

\[P_5 = (A_{11} + A_{12})B_{22} = A_{11}B_{22} + A_{12}B_{22}. \]

\[P_7 = (A_{12} - A_{22})(B_{21} + B_{22}) = A_{12}B_{21} + A_{12}B_{22} - A_{22}B_{21} - A_{22}B_{22}. \]

Then $P_1 + P_4 = A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{22} + A_{22}B_{21}$.
Checking Strassen’s algorithm - C11

We will check the equation for C_{11} is correct. Strassen’s algorithm computes $C_{11} = P1 + P4 - P5 + P7$. We have

\[
P1 = (A11 + A22)(B11 + B22)
= A11B11 + A11B22 + A22B11 + A22B22.
\]

\[
P4 = A22(-B11 + B21) = A22B21 - A22B11.
\]

\[
\]

\[
P7 = (A12 - A22)(B21 + B22)
= A12B21 + A12B22 - A22B21 - A22B22.
\]

Then $P1 + P4 = A11B11 + A11B22 + A22B22 + A22B21$.
Then $P1 + P4 - P5 = A11B11 + A22B22 + A22B21 - A12B22$.

Homework: check other 3 equations.
Checking Strassen’s algorithm - \(C_{11} \)

We will check the equation for \(C_{11} \) is correct. Strassen’s algorithm computes \(C_{11} = P_1 + P_4 - P_5 + P_7 \). We have

\[
P_1 = (A_{11} + A_{22})(B_{11} + B_{22}) = A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22}.
\]
\[
P_4 = A_{22}(-B_{11} + B_{21}) = A_{22}B_{21} - A_{22}B_{11}.
\]
\[
P_5 = (A_{11} + A_{12})B_{22} = A_{11}B_{22} + A_{12}B_{22}.
\]
\[
P_7 = (A_{12} - A_{22})(B_{21} + B_{22}) = A_{12}B_{21} + A_{12}B_{22} - A_{22}B_{21} - A_{22}B_{22}.
\]

Then \(P_1 + P_4 = A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{22} + A_{22}B_{21} \).

Then \(P_1 + P_4 - P_5 = A_{11}B_{11} + A_{22}B_{22} + A_{22}B_{21} - A_{12}B_{22} \).

Then \(P_1 + P_4 - P_5 + P_7 = A_{11}B_{11} + A_{12}B_{21} \), which is \(C_{11} \).
Checking Strassen’s algorithm - C_{11}

We will check the equation for C_{11} is correct. Strassen’s algorithm computes $C_{11} = P_1 + P_4 - P_5 + P_7$. We have

\[
P_1 = (A_{11} + A_{22})(B_{11} + B_{22})
= A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22}.
\]

\[
P_4 = A_{22}(-B_{11} + B_{21}) = A_{22}B_{21} - A_{22}B_{11}.
\]

\[
P_5 = (A_{11} + A_{12})B_{22} = A_{11}B_{22} + A_{12}B_{22}.
\]

\[
P_7 = (A_{12} - A_{22})(B_{21} + B_{22})
= A_{12}B_{21} + A_{12}B_{22} - A_{22}B_{21} - A_{22}B_{22}.
\]

Then $P_1 + P_4 = A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{22} + A_{22}B_{21}$. Then $P_1 + P_4 - P_5 = A_{11}B_{11} + A_{22}B_{22} + A_{22}B_{21} - A_{12}B_{22}$. Then $P_1 + P_4 - P_5 + P_7 = A_{11}B_{11} + A_{12}B_{21}$, which is C_{11}.

Homework: check other 3 equations.
Strassen’s algorithm (cont’d)

Crucial Observation

Only 7 multiplications of \((n/2 \times n/2)\)-matrices are needed to compute \(AB\).

Algorithm \(\text{STRASSEN}(A, B)\)

1. \(n \leftarrow\) number of rows of \(A\)
2. \textbf{if }\ n = 1 \textbf{ then return } (a_{11}b_{11})
3. \textbf{else}
4. Determine \(A_{ij}\) and \(B_{ij}\) for \(i, j = 1, 2\) (as before)
5. Compute \(P_1, \ldots, P_7\) as in (*)
6. Compute \(C_{11}, C_{12}, C_{21}, C_{22}\) as in (**)
7. return \[
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix}
\]
Analysis of Strassen’s algorithm

Let $T(n)$ be the number of arithmetic operations performed by \textsc{Strassen}.

- Lines 1 – 4 and 7 require $\Theta(1)$ arithmetic operations
- Line 5 requires $7T(n/2) + \Theta(n^2)$ arithmetic operations
- Line 6 requires $\Theta(n^2)$ arithmetic operations. \textit{remember.}

We get the recurrence

$$T(n) = 7T(n/2) + \Theta(n^2).$$

Since $\log_2(7) \approx 2.807 > 2$, the Master Theorem yields

$$T(n) = \Theta(n^{\log_2(7)}).$$
Breakthroughs on matrix multiplication

- Coppersmith & Winograd (1987) came up with an improved algorithm with running time of
 \[O(n^{2.376}). \]

- ... many years of silence ...

- Then in his 2010 PhD thesis, Andrew Stothers from the School of Maths, at the University of Edinburgh got an algorithm with \(O(n^c) \) for \(c < 2.3737 \)...
 - \(\Rightarrow \) Coppersmith/Winograd not optimal.
 - But Stothers didn’t publish.

- In 2011, Virginia Vassilevska Williams of Stanford, came up with a \(O(n^c) \) algorithm, for \(c = 2.3729 \) (partly, but not only, making use of some of Stothers’ ideas)

- 2014, François Le Gall, \(O(n^c) \) algorithm, for \(c = 2.3728639 \).
Remarks on Matrix Multiplication

- In practice, the “school” MatMult algorithm tends to outperform Strassen’s algorithm, unless the matrices are huge.
- The best known lower bound for matrix multiplication is $\Omega(n^2)$.

This is a trivial lower bound (need to look at all entries of each matrix). Amazingly, $\Omega(n^2)$ is believed to be “the truth”!

Open problem: Can we find a $O(n^{2+o(1)})$-algorithm for Matrix Multiplication of $n \times n$ matrices?
Reading Assignment

[CLRS] (3rd ed) Section 4.5 “The Master method for solving recurrences” (Section 4.3 “Using the Master method” of [CLRS], 2nd ed)
[CLRS] (3rd ed) Section 4.2 (Section 28.2 of [CLRS], 2nd ed)

Problems

1. Exercise 4.5-2 of [CLRS] (3rd ed) Exercise 4.3-2 of [CLRS], 2nd ed.
2. Exercise 4.2-1 of [CLRS], 3rd ed. Exercise 28.2-1 [CLRS], 2nd ed.
3. Week 3 tutorial sheet.