Asymptotic Notation, Recurrences
Asymptotic growth rates

Let $g : \mathbb{N} \rightarrow \mathbb{R}$.

O-notation: $O(g)$ is the set of all functions $f : \mathbb{N} \rightarrow \mathbb{R}$ for which there are constants $c > 0$ and $n_0 \geq 0$ such that

$$0 \leq f(n) \leq c \cdot g(n), \quad \text{for all } n \geq n_0.$$

“Rate of change of $f(n)$ is at most that of $g(n)$”

Ω-notation: $\Omega(g)$ is the set of all functions $f : \mathbb{N} \rightarrow \mathbb{R}$ for which there are constants $c > 0$ and $n_0 \geq 0$ such that

$$0 \leq c \cdot g(n) \leq f(n), \quad \text{for all } n \geq n_0.$$

“Rate of change of $f(n)$ is at least that of $g(n)$”

Θ-notation: $\Theta(g)$ is the set of all functions $f : \mathbb{N} \rightarrow \mathbb{R}$ for which there are constants $c_1, c_2 > 0$ and $n_0 \geq 0$ such that

$$0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n), \quad \text{for all } n \geq n_0.$$

“Rate of change of $f(n)$ and $g(n)$ are about the same”
Examples

- Let $f(n) = 0.01 \cdot n^2$ and $g(n) = n$. Then $g = O(f)$.
- Let $f(n) = \ln(n)$ and $g(n) = n$. Then $g = \Omega(f)$.
- Let $f(n) = 10n + \ln(n)$ and $g(n) = n$. Then $g = \Theta(f)$.

Sometimes $O(\ldots)$ appears within a formula, rather than simply forming the right hand side of an equation. We make sense of this by thinking of $O(\ldots)$ as standing for some anonymous (but fixed) function from the set of the same name. For example, $h(n) = 2^{O(n)}$ means $\exists c > 0, n_0 \in \mathbb{N}$ such that $h(n) \leq 2^{cn}$ for all $n > n_0$.
Consequences

Suppose $f(n) = O(g(n))$ AND $g(n) = O(f(n))$. What can we say?

What if $f(n) = O(g(n))$ AND $f(n) = \Omega(g(n))$?

Various consequences of the above conventions:

$$\Theta(n) \times \Theta(n^2) = \Theta(n^3),$$

$$\Theta(n) + \Theta(n^2) = \Theta(n^2),$$

$$\Theta(n) + \Theta(n) = \Theta(n).$$
Reminder of InsertionSort

Algorithm Insertion-Sort(A)

1. for $j \leftarrow 2$ to length[A] do
2. \hspace{1em} key $\leftarrow A[j]$
 \hspace{1em} (* now insert $A[j]$ into the sorted sequence $A[1 \ldots j - 1]$ *)
3. \hspace{1em} $i \leftarrow j - 1$
4. while $i > 0$ and $A[i] >$ key do
5. \hspace{1em} $A[i + 1] \leftarrow A[i]$
6. \hspace{1em} $i \leftarrow i - 1$
7. $A[i + 1] \leftarrow$ key

Array A is indexed from $j = 1$ to $n =$ length[A] (different from Java).
The for-loop on line 1 is iterated $n - 1$ times.

For each execution of the for, the while does $\leq j$ iterations; each of the comparisons/assignments requires only $O(1)$ basic steps; therefore the total number of steps (time) is at most

$$O(1) \sum_{j=1}^{n} j = O(1) \frac{n(n + 1)}{2} = O(n^2).$$

This is essentially tight - sorting the list $n, n - 1, n - 2, \ldots, 3, 2, 1$ takes $\Omega(n^2)$ time.
reminder of **MergeSort**

Input: A list \(A \) of natural numbers, \(p, r : 1 \leq p \leq r \leq n \).

Output: A sorted (increasing order) permutation of \(A[p \ldots r] \).

Algorithm

\[
\text{Merge-Sort}(A, p, r) \\
1. \text{ if } p < r \text{ then} \\
2. \quad q \leftarrow \left\lfloor \frac{p + r}{2} \right\rfloor \\
3. \quad \text{Merge-Sort}(A, p, q) \\
4. \quad \text{Merge-Sort}(A, q + 1, r) \\
5. \quad \text{Merge}(A, p, q, r)
\]
reminder of Merge

(recall that $A[p \ldots q]$ and $A[q + 1 \ldots r]$ both come (individually) sorted)

Algorithm $\text{Merge}(A, p, q, r)$

1. $n \leftarrow r - p + 1$, $n_1 \leftarrow q - p + 1$, $n_2 \leftarrow r - q$
2. create an array B of length n
3. $i \leftarrow p$, $j \leftarrow q + 1$, $k \leftarrow 1$
4. while $((i \leq q) \lor (j \leq r))$
 5. if $((j > r) \lor ((i \leq q) \land (A[i] \leq A[j])))$
 6. $B[k] \leftarrow A[i]$
 7. $i \leftarrow i + 1$
 8. else
 10. $j \leftarrow j + 1$
 11. $k \leftarrow k + 1$
12. For $i = 1$ to n
13. $A[(p - 1) + i] \leftarrow B[i]$
Analysis of **Merge**

We have \(n = (r - p) + 1, \ n_1 = (q - p) + 1, \ n_2 = r - q \) (note \(n = n_1 + n_2 \)).

Merge carries out the following steps:

- Initialisation/maintenance work in steps 1., 2., 3., uses \(3 + n + 3 \) operations (\(n \) for setting up \(B \)).
- Over all \(n \) iterations of **while**, line 4. will carry out between \(n \) and \(n + n_2 \) index comparisons.
- Over all \(n \) iterations of **while**, line 5 will carry out between \(n \) and \(n + n_1 \) index comparisons and between \(n_1 \) and \(n \) key comparisons.
- Over all \(n \) iterations of **while**, lines 6.-11. will carry out \(2n \) index updates and \(n \) copy operations (keys being copied into \(B \)).
- Lines 12.-13. take \(2n \) steps.

Therefore the running-time of **Merge** satisfies the following:

\[
8n + n_1 + 6 \leq T_{\text{Merge}}(n : n_1, n_2) \leq 10n + n_1 + n_2 + 6
\]

We can express a neater bound as

\[
8n \leq T_{\text{Merge}}(n : n_1, n_2) \leq 14n.
\]
Running-time of **MergeSort**

\[n = r - p + 1. \]

Running time \(T_{\text{MS}}(n) \) satisfies:

\[
T_{\text{MS}}(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
T_{\text{MS}}(\lceil n/2 \rceil) + T_{\text{MS}}(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1.
\end{cases}
\]

The \(\Theta(n) \) is from analysis of **Merge** on the previous slide. Analysis of **MergeSort** gives \(\lfloor \frac{n+1}{2} \rfloor \) and \(\lceil \frac{n-1}{2} \rceil \) as the subarray sizes - these are same as \(\lfloor \frac{n}{2} \rfloor \) and \(\lceil \frac{n}{2} \rceil \).
Solving recurrences

Methods for deriving/verifying solutions to recurrences:

Induction
Guess the solution and verify by induction on \(n \).
Lovely if your recurrence is “NICE” enough that you can guess-and-verify. Rare.

Unfold and sum
“Unfold” the recurrence by iterated substitution on the “neat” values of \(n \) (often power of 2 case). At some point a pattern emerges. The “solution” is obtained by evaluating a sum that arises from the pattern. Since the pattern is just for the “neat” \(n \), the method is rigorous only if we verify the solution (e.g., by a direct induction proof).

“Master Theorem”
Match the recurrence against a template. Read off the solution from the Master Theorem.
Upper bounds by first principles

Proof by “first principles”

When working from first principles, need to replace “extra work” terms ($\Theta(n)$ for MergeSort) by terms with explicit constants.

So we check slide 10 again.

\[
T_{\text{MS}}(n) \leq \begin{cases}
1 & \text{if } n = 1, \\
T_{\text{MS}}(\lceil n/2 \rceil) + T_{\text{MS}}(\lfloor n/2 \rfloor) + 14n & \text{if } n > 1.
\end{cases}
\]

(1)
Upper bounds by first principles

Proof by “first principles”

When working from first principles, need to replace “extra work” terms ($\Theta(n)$ for `MERGE_SORT`) by terms with explicit constants. So we check slide 10 again.

\[
T_{MS}(n) \leq \begin{cases}
1 & \text{if } n = 1, \\
T_{MS}([n/2]) + T_{MS}([n/2]) + 14n & \text{if } n > 1.
\end{cases}
\] (1)

Unfold-and-sum will give a “guess” for the upper bound:
Upper bounds by first principles

Proof by “first principles”

When working from first principles, need to replace “extra work” terms ($\Theta(n)$ for MergeSort) by terms with explicit constants.

So we check slide 10 again.

\[
T_{MS}(n) \leq \begin{cases}
1 & \text{if } n = 1, \\
T_{MS}([n/2]) + T_{MS}([n/2]) + 14n & \text{if } n > 1.
\end{cases}
\] (1)

Unfold-and-sum will give a “guess” for the upper bound:

\[
T_{MS}(n) \leq 14n \log(n) + n.
\]
Upper bound for \textsc{MergeSort} (n a power-of-2)

\[T'_{\text{MS}}(n) = \begin{cases}
1 & \text{if } n = 1, \\
T'_{\text{MS}}(\lceil n/2 \rceil) + T'_{\text{MS}}(\lfloor n/2 \rfloor) + 14n & \text{if } n > 1.
\end{cases} \]
Upper bound for MERGE_SORT (\(n\) a power-of-2)

\[
T'_{MS}(n) = \begin{cases}
1 & \text{if } n = 1, \\
T'_{MS}([n/2]) + T'_{MS}([n/2]) + 14n & \text{if } n > 1.
\end{cases}
\]

Claim (powers of 2): \(T'_{MS}(n) = 14n \lg(n) + n\) if \(n = 2^k\) for some \(k \in \mathbb{N}\).
Upper bound for \textsc{MergeSort} (\(n\) a power-of-2)

\[
T'_{MS}(n) = \begin{cases}
1 & \text{if } n = 1, \\
T'_{MS}([n/2]) + T'_{MS}([n/2]) + 14n & \text{if } n > 1.
\end{cases}
\]

\textbf{Claim} (powers of 2): \(T'_{MS}(n) = 14n \log(n) + n\) if \(n = 2^k\) for some \(k \in \mathbb{N}\)

\textbf{Proof} (for powers of 2):

\(A D S\ (2019/20)\ –\ Lectures\ 2\ and\ 3\ –\ slide\ 13\)
Upper bound for MERGE SORT (\(n\) a power-of-2)

\[
T'_{MS}(n) = \begin{cases}
1 & \text{if } n = 1, \\
T'_{MS}([n/2]) + T'_{MS}([n/2]) + 14n & \text{if } n > 1.
\end{cases}
\] (2)

Claim (powers of 2): \(T'_{MS}(n) = 14n \lg(n) + n\) if \(n = 2^k\) for some \(k \in \mathbb{N}\)

Proof (for powers of 2):
Base case \(k = 0\): direct from recurrence \((14 \cdot 2^0 \cdot \lg(2^0) + 2^0 = 14 \cdot 1 \cdot 0 + 1 = 1\), as required).
Upper bound for **MERGE_SORT** (*n* a power-of-2)

\[
T_{\text{MS}}'(n) = \begin{cases}
1 & \text{if } n = 1, \\
T_{\text{MS}}'(\lceil n/2 \rceil) + T_{\text{MS}}'(\lfloor n/2 \rfloor) + 14n & \text{if } n > 1.
\end{cases}
\]

(2)

Claim (powers of 2): \(T_{\text{MS}}'(n) = 14n \lg(n) + n \) if \(n = 2^k \) for some \(k \in \mathbb{N} \)

Proof (for powers of 2):

Base case \(k = 0 \): direct from recurrence \((14 \cdot 2^0 \cdot \lg(2^0) + 2^0 = 14 \cdot 1 \cdot 0 + 1 = 1, \) as required).

Induction Hypothesis (IH): Upper bound holds for \(n = 2^{k-1} \).
Upper bound for MergeSort (n a power-of-2)

$$T'_{MS}(n) = \begin{cases}
1 & \text{if } n = 1, \\
T'_{MS}([n/2]) + T'_{MS}([n/2]) + 14n & \text{if } n > 1.
\end{cases}$$

(2)

Claim (powers of 2): $T'_{MS}(n) = 14n \lg(n) + n$ if $n = 2^k$ for some $k \in \mathbb{N}$

Proof (for powers of 2):
Base case $k = 0$: direct from recurrence ($14 \cdot 2^0 \cdot \lg(2^0) + 2^0 = 14 \cdot 1 \cdot 0 + 1 = 1$, as required).

Induction Hypothesis (IH): Upper bound holds for $n = 2^{k-1}$.

Induction Step: Now consider $n = 2^k$ and apply the recurrence:

$$T'_{MS}(n) = T'_{MS}([2^{k-1}]) + T'_{MS}([2^{k-1}]) + 14n$$

ADS (2019/20) – Lectures 2 and 3 – slide 13
Upper bound for MergeSort (n a power-of-2)

$$T'_{\text{MS}}(n) = \begin{cases}
1 & \text{if } n = 1, \\
T'_{\text{MS}}(\lceil n/2 \rceil) + T'_{\text{MS}}(\lfloor n/2 \rfloor) + 14n & \text{if } n > 1.
\end{cases}$$ \hspace{1cm} (2)

Claim (powers of 2): $T'_{\text{MS}}(n) = 14n \lg(n) + n$ if $n = 2^k$ for some $k \in \mathbb{N}$

Proof (for powers of 2):
Base case $k = 0$: direct from recurrence ($14 \cdot 2^0 \cdot \lg(2^0) + 2^0 = 14 \cdot 1 \cdot 0 + 1 = 1$, as required).

Induction Hypothesis (IH): Upper bound holds for $n = 2^{k-1}$.

Induction Step: Now consider $n = 2^k$ and apply the recurrence:

$$T'_{\text{MS}}(n) = T'_{\text{MS}}(\lceil 2^{k-1} \rceil) + T'_{\text{MS}}(\lfloor 2^{k-1} \rfloor) + 14n$$

$$= 2 \cdot T'_{\text{MS}}(2^{k-1}) + 14n$$

$\text{ADS (2019/20) – Lectures 2 and 3 – slide 13}$
Upper bound for MergeSort (n a power-of-2)

$$T_{MS}'(n) = \begin{cases}
1 & \text{if } n = 1, \\
T_{MS}'(\lceil n/2 \rceil) + T_{MS}'(\lfloor n/2 \rfloor) + 14n & \text{if } n > 1.
\end{cases}$$ \hspace{1cm} (2)

Claim (powers of 2): $T_{MS}'(n) = 14n \lg(n) + n$ if $n = 2^k$ for some $k \in \mathbb{N}$

Proof (for powers of 2):

Base case $k = 0$: direct from recurrence ($14 \cdot 2^0 \cdot \lg(2^0) + 2^0 = 14 \cdot 1 \cdot 0 + 1 = 1$, as required).

Induction Hypothesis (IH): Upper bound holds for $n = 2^{k-1}$.

Induction Step: Now consider $n = 2^k$ and apply the recurrence:

$$T_{MS}'(n) = T_{MS}'(\lceil 2^{k-1} \rceil) + T_{MS}'(\lfloor 2^{k-1} \rfloor) + 14n$$

$$= 2 \cdot T_{MS}'(2^{k-1}) + 14n$$

$$= 2 \cdot 2^{k-1} (14 \lg(2^{k-1}) + 1) + 14n \quad \text{(using (IH))}$$
Upper bound for **MERGE SORT** \((n \text{ a power-of-2})\)

\[
T'_{\text{MS}}(n) = \begin{cases}
1 & \text{if } n = 1, \\
T'_{\text{MS}}([n/2]) + T'_{\text{MS}}([n/2]) + 14n & \text{if } n > 1.
\end{cases}
\]

(2)

claim (powers of 2): \(T'_{\text{MS}}(n) = 14n \lg(n) + n\) if \(n = 2^k\) for some \(k \in \mathbb{N}\)

Proof (for powers of 2):
Base case \(k = 0\): direct from recurrence \((14 \cdot 2^0 \cdot \lg(2^0) + 2^0 = 14 \cdot 1 \cdot 0 + 1 = 1,\) as required).

Induction Hypothesis (IH): Upper bound holds for \(n = 2^{k-1}\).

Induction Step: Now consider \(n = 2^k\) and apply the recurrence:

\[
T'_{\text{MS}}(n) = T'_{\text{MS}}([2^{k-1}]) + T'_{\text{MS}}([2^{k-1}]) + 14n \\
= 2 \cdot T'_{\text{MS}}(2^{k-1}) + 14n \\
= 2 \cdot 2^{k-1}(14 \lg(2^{k-1}) + 1) + 14n \quad \text{(using (IH))} \\
= n \cdot 14 \lg(n/2) + n + 14n
\]

ADS (2019/20) – Lectures 2 and 3 – slide 13
Upper bound for \textsc{MergeSort} (n a power-of-2)

\[
T'_{\text{MS}}(n) = \begin{cases}
1 & \text{if } n = 1, \\
T'_{\text{MS}}(\lceil n/2 \rceil) + T'_{\text{MS}}(\lfloor n/2 \rfloor) + 14n & \text{if } n > 1.
\end{cases}
\]

(2)

\textbf{claim (powers of 2): } \quad T'_{\text{MS}}(n) = 14n \log(n) + n \text{ if } n = 2^k \text{ for some } k \in \mathbb{N}

\textbf{Proof (for powers of 2):}

\textbf{Base case } k = 0: \text{ direct from recurrence } (14 \cdot 2^0 \cdot \log(2^0) + 2^0 = 14 \cdot 1 \cdot 0 + 1 = 1, \text{ as required}).

\textbf{Induction Hypothesis (IH): } Upper bound holds for $n = 2^{k-1}$.

\textbf{Induction Step: } Now consider $n = 2^k$ and apply the recurrence:

\[
T'_{\text{MS}}(n) = T'_{\text{MS}}(\lceil 2^{k-1} \rceil) + T'_{\text{MS}}(\lfloor 2^{k-1} \rfloor) + 14n
\]

\[
= 2 \cdot T'_{\text{MS}}(2^{k-1}) + 14n
\]

\[
= 2 \cdot 2^{k-1} \left(14 \log(2^{k-1}) + 1\right) + 14n \quad \text{(using (IH))}
\]

\[
= n \cdot 14 \log(n/2) + n + 14n
\]

\[
= 14n \left(\log(n/2) + 1\right) + n = 14n \log(n) + n \quad \text{(by \log rules)},
\]

AS REQUIRED.

\textit{ADS (2019/20) – Lectures 2 and 3 – slide 13}
Upper bounds for general n

Three steps for turning a “proof for the neat case” into a “proof for all n”.

▶ **STEP 1:** Prove an exact expression for “neat” n for an equality version $T'(\cdot)$ of the recurrence.

Done for $T'_{MS}(n)$ (the proof for $T'_{MS}(n)$ on slide 14). “Neat” was powers-of-2.

▶ **STEP 2:** Prove that the equality version of the recurrence is monotone increasing; ie, that we have $T'(n) \leq T'(m)$ for all n, m with $n < m$ (not just for “neat” n, m).

*This step is why we need to introduce an “equality version” (to prove STEP 2 we will need to work with $T'(n) = , T'(m) =$).

▶ **STEP 3:** For “not-neat n”, choose a close-by “neat \hat{n}” (for proving $O(\cdot)$ bounds, \hat{n} should be larger; for $\Omega(\cdot)$ bounds, \hat{n} should be smaller).

Then apply monotonicity (STEP 2) to show a relationship between $T'(n)$ and $T'(\hat{n})$, and then substitute the exact expression (from STEP 1) to $T'(\hat{n})$ to work out an upper bound for $T'(n)$.
Upper bound for MERGE SORT (general n)

STEP 2: Prove that $T'_{MS}(n)$ is monotone increasing.

The proof is by Induction.

Claim: If $n \in \mathbb{N}$ then $T'_{MS}(n) < T'_{MS}(m)$ for all $n < m$.

Induction Hypothesis (IH): Claim holds for all $n = 1, \ldots, h$ (with any $m > n$).

Base Case ($h = 1$): $T'_{MS}(1) = 1$.

For $m \geq 2$, $T'_{MS}(m) \geq 14m \geq 28$, and $28 > T'_{MS}(1)$, as needed.
STEP 2: Prove that $T'_{MS}(n)$ is monotone increasing.

The proof is by Induction.

Claim:
If $n \in \mathbb{N}$ then $T'_{MS}(n) < T'_{MS}(m)$ for all $n < m$.
Upper bound for MergeSort (general n)

STEP 2: Prove that $T_{MS}'(n)$ is *monotone increasing*.

The proof is by Induction.

Claim:
If $n \in \mathbb{N}$ then $T_{MS}'(n) < T_{MS}'(m)$ for all $n < m$.

Induction Hypothesis (IH): Claim holds for all $n = 1, \ldots, h$ (with any $m > n$).

Base Case ($h = 1$):
$T_{MS}'(1) = 1$.

For $m \geq 2$, $T_{MS}'(m) \geq 14m \geq 28$, and $28 > T_{MS}'(1)$, as needed.
STEP 2: Prove that $T'_{\text{MS}}(n)$ is monotone increasing.

The proof is by Induction.

Claim:
If $n \in \mathbb{N}$ then $T'_{\text{MS}}(n) < T'_{\text{MS}}(m)$ for all $n < m$.

Induction Hypothesis (IH): Claim holds for all $n = 1, \ldots, h$ (with any $m > n$).

Base Case ($h = 1$):
$T'_{\text{MS}}(1) = 1$.
For $m \geq 2$, $T'_{\text{MS}}(m) \geq 14m \geq 28$, and $28 > T'_{\text{MS}}(1)$, as needed.
STEP 2 cont’d.

Induction Step (n): Suppose true for all $n \in \mathbb{N}, n = 1, \ldots, h$. Consider $n = h + 1$. We know $n \geq 2$, so the recurrence for n is
Upper bound for **MERGE SORT** (general \(n \)) cont’d.

STEP 2 cont’d.

Induction Step (\(n \)): Suppose true for all \(n \in \mathbb{N}, n = 1, \ldots, h \). Consider \(n = h + 1 \).

We know \(n \geq 2 \), so the recurrence for \(n \) is

\[
T'_{\text{MS}}(n) = T'_{\text{MS}}(\lceil n/2 \rceil) + T'_{\text{MS}}(\lfloor n/2 \rfloor) + 14n.
\]
(3)
STEP 2 cont’d.

Induction Step (n): Suppose true for all \(n \in \mathbb{N}, n = 1, \ldots, h \). Consider \(n = h + 1 \).

We know \(n \geq 2 \), so the recurrence for \(n \) is

\[
T_{\text{MS}}'(n) = T_{\text{MS}}'(\lfloor n/2 \rfloor) + T_{\text{MS}}'(\lceil n/2 \rceil) + 14n.
\]

(3)

We are considering \(m > n \) (so definitely \(m \geq 2 \)), and the recurrence for \(m \) is

\[
T_{\text{MS}}'(m) = T_{\text{MS}}'(\lfloor m/2 \rfloor) + T_{\text{MS}}'(\lceil m/2 \rceil) + 14m.
\]
Upper bound for \textsc{MergeSort} (general \(n\)) cont’d.

STEP 2 cont’d.

Induction Step (\(n\)): Suppose true for all \(n \in \mathbb{N}, n = 1, \ldots, h\). Consider \(n = h + 1\). We know \(n \geq 2\), so the recurrence for \(n\) is

\[
T_{MS}'(n) = T_{MS}'(\lceil n/2 \rceil) + T_{MS}'(\lfloor n/2 \rfloor) + 14n. \tag{3}
\]

We are considering \(m > n\) (so definitely \(m \geq 2\)), and the recurrence for \(m\) is

\[
T_{MS}'(m) = T_{MS}'(\lceil m/2 \rceil) + T_{MS}'(\lfloor m/2 \rfloor) + 14m.
\]

\(n \geq 2\) implies \(\lfloor n/2 \rfloor = \lfloor \frac{h+1}{2} \rfloor < n\) (need strict \(<\)) so \(\lfloor n/2 \rfloor \in \{1, \ldots, h\}\). So the (IH) can be applied to \(\lfloor n/2 \rfloor\) with appropriate \(m\)-values. \(m > n\) implies \(\lfloor m/2 \rfloor \geq \lfloor n/2 \rfloor\), so

- either \(\lfloor n/2 \rfloor = \lfloor m/2 \rfloor\), and hence \(T_{MS}'(\lfloor n/2 \rfloor) = T_{MS}'(\lfloor m/2 \rfloor)\).

- or else \(\lfloor m/2 \rfloor > \lfloor n/2 \rfloor\) and taking this together with \(\lfloor n/2 \rfloor \leq h\), the (IH) implies that \(T_{MS}'(\lfloor n/2 \rfloor) < T_{MS}'(\lfloor m/2 \rfloor)\).
Upper bound for MERGE\textsc{Sort} (general n) cont’d.

STEP 2 cont’d.

Induction Step (n): Suppose true for all $n \in \mathbb{N}$, $n = 1, \ldots, h$. Consider $n = h + 1$. We know $n \geq 2$, so the recurrence for n is

$$T'_{\text{MS}}(n) = T'_{\text{MS}}(\lceil n/2 \rceil) + T'_{\text{MS}}(\lfloor n/2 \rfloor) + 14n.$$ \hspace{1cm} (3)

We are considering $m > n$ (so definitely $m \geq 2$), and the recurrence for m is

$$T'_{\text{MS}}(m) = T'_{\text{MS}}(\lceil m/2 \rceil) + T'_{\text{MS}}(\lfloor m/2 \rfloor) + 14m.$$

$n \geq 2$ implies $\lfloor n/2 \rfloor = \lfloor \frac{h+1}{2} \rfloor < n$ (need strict $<$) so $\lfloor n/2 \rfloor \in \{1, \ldots, h\}$. So the (IH) can be applied to $\lfloor n/2 \rfloor$ with appropriate m-values. $m > n$ implies $\lfloor m/2 \rfloor \geq \lfloor n/2 \rfloor$, so

- either $\lfloor n/2 \rfloor = \lfloor m/2 \rfloor$, and hence $T'_{\text{MS}}(\lfloor n/2 \rfloor) = T'_{\text{MS}}(\lfloor m/2 \rfloor)$.

- or else $\lfloor m/2 \rfloor > \lfloor n/2 \rfloor$ and taking this together with $\lfloor n/2 \rfloor \leq h$, the (IH) implies that $T'_{\text{MS}}(\lfloor n/2 \rfloor) < T'_{\text{MS}}(\lfloor m/2 \rfloor)$.

Same argument goes through with $\lceil n/2 \rceil$. Hence the (IH) shows that each of the first two terms for $T'_{\text{MS}}(n)$ are \leq than the corresponding terms for $T'_{\text{MS}}(m)$.
Upper bound for MergeSort (general n) cont’d.

STEP 2 cont’d.

Induction Step (n): Suppose true for all $n \in \mathbb{N}$, $n = 1, \ldots, h$. Consider $n = h + 1$. We know $n \geq 2$, so the recurrence for n is

$$T'_{\text{MS}}(n) = T'_{\text{MS}}(\lceil n/2 \rceil) + T'_{\text{MS}}(\lfloor n/2 \rfloor) + 14n. \quad (3)$$

We are considering $m > n$ (so definitely $m \geq 2$), and the recurrence for m is

$$T'_{\text{MS}}(m) = T'_{\text{MS}}(\lceil m/2 \rceil) + T'_{\text{MS}}(\lfloor m/2 \rfloor) + 14m.$$

$n \geq 2$ implies $\lfloor n/2 \rfloor = \lfloor h+1 \rfloor < n$ (need strict <) so $\lfloor n/2 \rfloor \in \{1, \ldots, h\}$. So the (IH) can be applied to $\lfloor n/2 \rfloor$ with appropriate m-values. $m > n$ implies $\lfloor m/2 \rfloor \geq \lfloor n/2 \rfloor$, so

- either $\lfloor n/2 \rfloor = \lfloor m/2 \rfloor$, and hence $T'_{\text{MS}}(\lfloor n/2 \rfloor) = T'_{\text{MS}}(\lfloor m/2 \rfloor)$.

- or else $\lfloor m/2 \rfloor > \lfloor n/2 \rfloor$ and taking this together with $\lfloor n/2 \rfloor \leq h$, the (IH) implies that $T'_{\text{MS}}(\lfloor n/2 \rfloor) < T'_{\text{MS}}(\lfloor m/2 \rfloor)$.

Same argument goes through with $\lceil n/2 \rceil$. Hence the (IH) shows that each of the first two terms for $T'_{\text{MS}}(n)$ are \leq than the corresponding terms for $T'_{\text{MS}}(m)$.

But also $14n < 14m$, so $\ldots \Rightarrow T'_{\text{MS}}(n) < T'_{\text{MS}}(m)$.
Upper bound for **MERGE SORT** (general \(n \)) cont’d.

STEP 2 cont’d.

Induction Step \((n)\): Suppose true for all \(n \in \mathbb{N}, n = 1, \ldots, h \). Consider \(n = h + 1 \).

We know \(n \geq 2 \), so the recurrence for \(n \) is

\[
T'_{\text{MS}}(n) = T'_{\text{MS}}([n/2]) + T'_{\text{MS}}([n/2]) + 14n.
\]

(3)

We are considering \(m > n \) (so definitely \(m \geq 2 \)), and the recurrence for \(m \) is

\[
T'_{\text{MS}}(m) = T'_{\text{MS}}([m/2]) + T'_{\text{MS}}([m/2]) + 14m.
\]

\(n \geq 2 \) implies \(\lfloor n/2 \rfloor = \lfloor \frac{h+1}{2} \rfloor < n \) (need strict <) so \(\lfloor n/2 \rfloor \in \{1, \ldots, h\} \). So the (IH) can be applied to \(\lfloor n/2 \rfloor \) with appropriate \(m \)-values. \(m > n \) implies \(\lfloor m/2 \rfloor \geq \lfloor n/2 \rfloor \), so

- either \(\lfloor n/2 \rfloor = \lfloor m/2 \rfloor \), and hence \(T'_{\text{MS}}([n/2]) = T'_{\text{MS}}([m/2]) \).
- or else \(\lfloor m/2 \rfloor > \lfloor n/2 \rfloor \) and taking this together with \(\lfloor n/2 \rfloor \leq h \), the (IH) implies that \(T'_{\text{MS}}([n/2]) < T'_{\text{MS}}([m/2]) \).

Same argument goes through with \(\lceil n/2 \rceil \). Hence the (IH) shows that each of the first two terms for \(T'_{\text{MS}}(n) \) are \(\leq \) than the corresponding terms for \(T'_{\text{MS}}(m) \).

But also \(14n < 14m \), so \(\ldots \Rightarrow T'_{\text{MS}}(n) < T'_{\text{MS}}(m) \).

Hence by Induction, \(T'_{\text{MS}}(n) < T'_{\text{MS}}(m) \) for all \(n \), for all \(m > n \).
STEP 3: Choose a “power of 2” to relate to n.

Want an upper bound, so need a power of 2 greater than n.

So define $\hat{n} = 2^\lceil \log_2(n) \rceil$ (this will be "m").

We know $n \leq \hat{n}$ but $\hat{n} < 2n$.

Monotonicity property from STEP 2 tells us $T'_{\text{MS}}(n) \leq T'_{\text{MS}}(\hat{n})$.

Proof of Upper bound for powers of 2 tells us $T'_{\text{MS}}(\hat{n}) \leq 14\hat{n}\log_2(\hat{n}) + \hat{n}$.

By $\hat{n} < 2n$, we get $T'_{\text{MS}}(n) \leq T'_{\text{MS}}(\hat{n}) \leq 14(2n)\log_2(2n) + 2n = 28n\log_2(n) + 30n$.

So for any $n \in \mathbb{N}$ we have $T'_{\text{MS}}(n) \leq 28n\log_2(n) + 30n$.

Hence $T'_{\text{MS}}(n) = O(n \log_2(n))$, and (of course) $T_{\text{MS}}(n) = O(n \log_2(n))$.

ADS (2019/20) – Lectures 2 and 3 – slide 17
STEP 3: Choose a “power of 2” to relate to n.

- Want an upper bound, so need a power of 2 greater than n.

Hat $\hat{n} = 2 \lceil \lg(n) \rceil$ (this will be "m").

- We know $n \leq \hat{n}$ but $\hat{n} < 2n$.

- Monotonicity property from STEP 2 tells us $T'_{MS}(n) \leq T'_{MS}(\hat{n})$.

- Proof of upper bound for powers of 2 tells us $T'_{MS}(\hat{n}) \leq 14\hat{n}\lg(\hat{n}) + \hat{n}$.

- By $\hat{n} < 2n$, we get $T'_{MS}(n) \leq T'_{MS}(\hat{n}) \leq 14\hat{n}(\lg(\hat{n})) + \hat{n} < 14(2n)\lg(2n) + 2n = 28n\lg(n) + 30n$.

- So for any $n \in \mathbb{N}$ we have $T'_{MS}(n) \leq 28n\lg(n) + 30n$.

- Hence $T'_{MS}(n) = O(n\lg(n))$, and (of course) $T_{MS}(n) = O(n\lg(n))$.

ADS (2019/20) – Lectures 2 and 3 – slide 17
Upper bound for MERGESORT (general n) cont’d.

STEP 3: Choose a “power of 2” to relate to n.

- Want an upper bound, so need a power of 2 greater than n.
- So define $\hat{n} = 2^{\lceil \lg(n) \rceil}$ (this will be “m”).

Proof of Upper bound for powers of 2 tells us $T'_{MS}(\hat{n}) \leq 14\hat{n}\lg(\hat{n}) + \hat{n}$.

By $\hat{n} < 2n$, we get $T'_{MS}(n) \leq T'_{MS}(\hat{n}) \leq 14\hat{n}(\lg(\hat{n})) + \hat{n} < 14(2n)\lg(2n) + 2n = 28n\lg(n) + 30n$.

So for any $n \in \mathbb{N}$ we have $T'_{MS}(n) \leq 28n\lg(n) + 30n$.

Hence $T'_{MS}(n) = O(n\lg(n))$, and (of course) $T_{MS}(n) = O(n\lg(n))$.

ADS (2019/20) – Lectures 2 and 3 – slide 17
Upper bound for \textsc{MergeSort} (general n) cont’d.

STEP 3: Choose a “power of 2” to relate to n.

- Want an upper bound, so need a power of 2 \textit{greater than} n.
- So define $\hat{n} = 2^\lceil \lg(n) \rceil$ (this will be “m”).
- We know $n \leq \hat{n}$ but $\hat{n} < 2n$.

ADS (2019/20) – Lectures 2 and 3 – slide 17
Upper bound for **MERGE SORT** (general n) cont’d.

STEP 3: Choose a “power of 2” to relate to n.

- Want an upper bound, so need a power of 2 greater than n.
- So define $\hat{n} = 2^{\lceil \lg(n) \rceil}$ (this will be “m”).
- We know $n \leq \hat{n}$ but $\hat{n} < 2n$.
- Monotonicity property from STEP 2 tells us $T'_{MS}(n) \leq T'_{MS}(\hat{n})$.
Upper bound for MergeSort (general n) cont’d.

STEP 3: Choose a “power of 2” to relate to n.

- Want an upper bound, so need a power of 2 greater than n.
- So define $\hat{n} = 2^{\lceil\log(n)\rceil}$ (this will be “m”).
- We know $n \leq \hat{n}$ but $\hat{n} < 2n$.
- Monotonicity property from STEP 2 tells us $T'_{\text{MS}}(n) \leq T'_{\text{MS}}(\hat{n})$
- Proof of Upper bound for powers of 2 tells us $T'_{\text{MS}}(\hat{n}) \leq 14\hat{n}\log(\hat{n}) + \hat{n}$.

Hence $T'_{\text{MS}}(n) = O(n\log(n))$, and (of course) $T_{\text{MS}}(n) = O(n\log(n))$.

ADS (2019/20) – Lectures 2 and 3 – slide 17
Upper bound for **MERGE SORT** (general \(n \)) cont’d.

STEP 3: Choose a “power of 2” to relate to \(n \).

- Want an upper bound, so need a power of 2 greater than \(n \).
- So define \(\hat{n} = 2^{\lceil \lg(n) \rceil} \) (this will be “\(m \)”).
- We know \(n \leq \hat{n} \) but \(\hat{n} < 2n \).
- Monotonicity property from **STEP 2** tells us \(T'_{\text{MS}}(n) \leq T'_{\text{MS}}(\hat{n}) \).
- Proof of Upper bound for **POWERS OF 2** tells us \(T'_{\text{MS}}(\hat{n}) \leq 14\hat{n}\lg(\hat{n}) + \hat{n} \).
- By \(\hat{n} < 2n \), we get
 \[
 T'_{\text{MS}}(n) \leq T'_{\text{MS}}(\hat{n}) \leq 14\hat{n}(\lg(\hat{n})) + \hat{n} < 14(2n)\lg(2n) + 2n = 28n\lg(n) + 30n.
 \]
Upper bound for **MERGESORT** (general \(n \)) cont’d.

STEP 3: Choose a “power of 2” to relate to \(n \).

- Want an upper bound, so need a power of 2 greater than \(n \).
- So define \(\hat{n} = 2^{\lceil \lg(n) \rceil} \) (this will be “\(m \)”).
- We know \(n \leq \hat{n} \) but \(\hat{n} < 2n \).
- Monotonicity property from STEP 2 tells us \(T'_{MS}(n) \leq T'_{MS}(\hat{n}) \)
- Proof of Upper bound for POWERS OF 2 tells us \(T'_{MS}(\hat{n}) \leq 14\hat{n}\lg(\hat{n}) + \hat{n} \).
- By \(\hat{n} < 2n \), we get

\[
T'_{MS}(n) \leq T'_{MS}(\hat{n}) \leq 14\hat{n}(\lg(\hat{n})) + \hat{n} < 14(2n)\lg(2n) + 2n = 28n\lg(n) + 30n.
\]

So for any \(n \in \mathbb{N} \) we have \(T'_{MS}(n) \leq 28n\lg(n) + 30n \).
Upper bound for MergeSort (general n) cont’d.

STEP 3: Choose a “power of 2” to relate to n.

- Want an upper bound, so need a power of 2 greater than n.
- So define $\hat{n} = 2^{\lceil \lg(n) \rceil}$ (this will be “m”).
- We know $n \leq \hat{n}$ but $\hat{n} < 2n$.
- Monotonicity property from STEP 2 tells us $T'_{MS}(n) \leq T'_{MS}(\hat{n})$
- Proof of Upper bound for powers of 2 tells us $T'_{MS}(\hat{n}) \leq 14\hat{n}\lg(\hat{n}) + \hat{n}$.
- By $\hat{n} < 2n$, we get

 $$T'_{MS}(n) \leq T'_{MS}(\hat{n}) \leq 14\hat{n}(\lg(\hat{n})) + \hat{n} < 14(2n)\lg(2n) + 2n = 28n\lg(n) + 30n.$$

So for any $n \in \mathbb{N}$ we have $T'_{MS}(n) \leq 28n\lg(n) + 30n$. Hence $T'_{MS}(n) = O(n\lg(n))$, and (of course) $T_{MS}(n) = O(n\lg(n))$.

ADS (2019/20) – Lectures 2 and 3 – slide 17
Proving a lower bound

The “first principles” proof is essentially a *direct* proof of a sub-case of the Master Theorem.
Proving a lower bound

The “first principles” proof is essentially a *direct* proof of a sub-case of the Master Theorem.

Slide 15 described the usual structure of proving $O(\cdot)$ bounds for general $n \in \mathbb{N}$. When wanting to instead give a “first principles” proof of $\Omega(\cdot)$ for a recurrence $T(n)$, there are slight differences:

- (different) Consider an equality version $T'(\cdot)$ of the recurrence $T(\cdot)$ such that $T(n) \geq T'(n)$ holds for all $n \in \mathbb{N}$.

- (same) **STEP 1**: Prove an exact expression for T' for the “NEAT” case (power-of-2 here, but would be power-of-d if $\lfloor n/d \rfloor$, $\lceil n/d \rceil$ was involved)

- (same) **STEP 2**: Prove $T'(n)$ is monotonically increasing with n for general n.

- (different) **STEP 3**: Consider the closest power-of-d less than n, say \hat{n}, for a non-neat $n \in \mathbb{N}$. Then exploit $T(n) \geq T'(n)$ (by definition), $T'(n) \geq T'(\hat{n})$ (from STEP 2), and then substitute in the exact expression for $T'(\hat{n})$ (because \hat{n} is “NEAT”) and work from there.
Reading and Working

Reading Assignment

Inf2B ADS Lecture Notes 2 and 8.

[CLRS] Sections 2.1, 2.2 and 2.3 (of 3rd or 2nd edition). Also Section 3.1 (omitting the bits on the little-o and little-ω notation at the end).

(all this material should be familiar from Inf2B and your math classes)