Asymptotic Notation, Recurrences

Let $g : \mathbb{N} \to \mathbb{R}$.

O-notation: $O(g)$ is the set of all functions $f : \mathbb{N} \to \mathbb{R}$ for which there are constants $c > 0$ and $n_0 \geq 0$ such that

$$0 \leq f(n) \leq c \cdot g(n), \quad \text{for all } n \geq n_0.$$

"Rate of change of $f(n)$ is at most that of $g(n)$"

Ω-notation: $\Omega(g)$ is the set of all functions $f : \mathbb{N} \to \mathbb{R}$ for which there are constants $c > 0$ and $n_0 \geq 0$ such that

$$0 \leq c \cdot g(n) \leq f(n), \quad \text{for all } n \geq n_0.$$

"Rate of change of $f(n)$ is at least that of $g(n)$"

Θ-notation: $\Theta(g)$ is the set of all functions $f : \mathbb{N} \to \mathbb{R}$ for which there are constants $c_1, c_2 > 0$ and $n_0 \geq 0$ such that

$$0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n), \quad \text{for all } n \geq n_0.$$

"Rate of change of $f(n)$ and $g(n)$ are about the same"

Examples

- Let $f(n) = 0.01 \cdot n^2$ and $g(n) = n$. Then $g = O(f)$.
- Let $f(n) = \ln(n)$ and $g(n) = n$. Then $g = \Omega(f)$.
- Let $f(n) = 10n + \ln(n)$ and $g(n) = n$. Then $g = \Theta(f)$.

Sometimes $O(...)$ appears within a formula, rather than simply forming the right hand side of an equation. We make sense of this by thinking of $O(...)$ as standing for some anonymous (but fixed) function from the set of the same name. For example, $h(n) = 2^{O(n)}$ means $\exists c > 0, n_0 \in \mathbb{N}$ such that

$$h(n) \leq 2^{cn} \text{ for all } n > n_0.$$

Consequences

Suppose $f(n) = O(g(n))$ AND $g(n) = O(f(n))$. What can we say?

What if $f(n) = O(g(n))$ AND $f(n) = \Omega(g(n))$?

Various consequences of the above conventions:

$$\Theta(n) \times \Theta(n^2) = \Theta(n^3),$$

$$\Theta(n) + \Theta(n^2) = \Theta(n^2),$$

$$\Theta(n) + \Theta(n) = \Theta(n).$$
Reminder of InsertionSort

Algorithm Insertion-Sort(A)

1. for \(j \leftarrow 2 \) to \(\text{length}[A] \) do
2. \(\text{key} \leftarrow A[j] \)

 (now insert \(A[j] \) into the sorted sequence \(A[1 \ldots j-1] \))
3. \(i \leftarrow j - 1 \)
4. while \(i > 0 \) and \(A[i] > \text{key} \) do
5. \(A[i+1] \leftarrow A[i] \)
6. \(i \leftarrow i - 1 \)
7. \(A[i+1] \leftarrow \text{key} \)

Array \(A \) is indexed from \(j = 1 \) to \(n = \text{length}[A] \) (different from Java).

running-time of InsertionSort

- The for-loop on line 1 is iterated \(n - 1 \) times
- For each execution of the for, the while does \(\leq j \) iterations;
- Each of the comparisons/assignments requires only \(O(1) \) basic steps;
- Therefore the total number of steps (=time) is at most

\[
O(1) \sum_{j=1}^{n} j = O(1) \frac{n(n+1)}{2} = O(n^2).
\]

- This is essentially tight - sorting the list \(n,n-1,n-2,\ldots,3,2,1 \) takes \(\Omega(n^2) \) time.

Reminder of MergeSort

Input: A list \(A \) of natural numbers, \(p,r : 1 \leq p \leq r \leq n \).

Output: A sorted (increasing order) permutation of \(A[p \ldots r] \).

Algorithm Merge-Sort(A, p, r)

1. if \(p < r \) then
2. \(q \leftarrow \lfloor \frac{p+r}{2} \rfloor \)
3. Merge-Sort(A, p, q)
4. Merge-Sort(A, q + 1, r)
5. Merge(A, p, q, r)
6. else
7. \(B[k] \leftarrow A[j] \)
8. \(j \leftarrow j + 1 \)
9. \(k \leftarrow k + 1 \)
10. for \(i = 1 \) to \(n \)
11. \(A[(p-1)+i] \leftarrow B[i] \)

(recall that \(A[p \ldots q] \) and \(A[q+1 \ldots r] \) both come (individually) sorted)

Algorithm Merge(A, p, q, r)

1. \(n \leftarrow r - p + 1 \), \(m_1 \leftarrow q - p + 1 \), \(m_2 \leftarrow r - q \)
2. create an array \(B \) of length \(n \)
3. \(i \leftarrow p \), \(j \leftarrow q + 1 \), \(k \leftarrow 1 \)
4. while ((\(i \leq q \)) \&\& (\((j \leq r) \)))
5. if ((\(j > r \)) \&\& (\((i \leq q) \) \&\& (\(A[i] \leq A[j] \)))))
6. \(B[k] \leftarrow A[i] \)
7. \(i \leftarrow i + 1 \)
8. else
9. \(B[k] \leftarrow A[j] \)
10. \(j \leftarrow j + 1 \)
11. \(k \leftarrow k + 1 \)
12. for \(i = 1 \) to \(n \)
13. \(A[(p-1)+i] \leftarrow B[i] \)
We have $n = (r - p) + 1$, $n_1 = (q - p) + 1$, $n_2 = r - q$ (note $n = n_1 + n_2$).

Analysis of Merge

Merge carries out the following steps:

- Initialisation/maintenance work in steps 1., 2., 3., uses $3 + n + 3$ operations (n for setting up B).
- Over all n iterations of *while*, line 4. will carry out between n and $n + n_2$ index comparisons.
- Over all n iterations of *while*, line 5 will carry out between n and $n + n_1$ index comparisons and between n_1 and n key comparisons.
- Over all n iterations of *while*, lines 6.-11. will carry out $2n$ index updates and n copy operations (keys being copied into B).
- Lines 12.-13. take $2n$ steps.

Therefore the running-time of Merge satisfies the following:

$$8n + n_1 + 6 \leq T_{\text{Merge}}(n : n_1, n_2) \leq 10n + n_1 + n_2 + 6$$

We can express a neater bound as

$$8n \leq T_{\text{Merge}}(n : n_1, n_2) \leq 14n.$$

Running-time of MergeSort

$n = r - p + 1$.

Running time $T_{\text{MS}}(n)$ satisfies:

$$T_{\text{MS}}(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ T_{\text{MS}}(\lfloor n/2 \rfloor) + T_{\text{MS}}(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1. \end{cases}$$

The $\Theta(n)$ is from analysis of Merge on the previous slide. Analysis of MergeSort gives $\lfloor \frac{n+1}{2} \rfloor$ and $\lceil \frac{n-1}{2} \rceil$ as the subarray sizes - these are same as $\lfloor \frac{n}{2} \rfloor$ and $\lceil \frac{n}{2} \rceil$.

Upper bounds by first principles

Proof by “first principles”

When working from first principles, need to replace “extra work” terms ($\Theta(n)$ for MergeSort) by terms with explicit constants.

So we check slide 10 again.

$$T_{\text{MS}}(n) \leq \begin{cases} 1 & \text{if } n = 1, \\ T_{\text{MS}}(\lfloor n/2 \rfloor) + T_{\text{MS}}(\lceil n/2 \rceil) + 14n & \text{if } n > 1. \end{cases} \quad (1)$$
Unfold-and-sum will give a “guess” for the upper bound:

\[
T_{MS}(n) = \begin{cases}
1 & \text{if } n = 1, \\
T_{MS}([n/2]) + T_{MS}([n/2]) + 14n & \text{if } n > 1.
\end{cases}
\]

Proof by “first principles”

When working from first principles, need to replace “extra work” terms (Θ(n) for MergeSort) by terms with explicit constants.

So we check slide 10 again.

\[
T_{MS}(n) \leq \begin{cases}
1 & \text{if } n = 1, \\
T_{MS}([n/2]) + T_{MS}([n/2]) + 14n & \text{if } n > 1.
\end{cases}
\]

Upper bound for **MergeSort** (n a power-of-2)

\[
T'_{MS}(n) = \begin{cases}
1 & \text{if } n = 1, \\
T'_{MS}([n/2]) + T'_{MS}([n/2]) + 14n & \text{if } n > 1.
\end{cases}
\]

Proof by “first principles”

When working from first principles, need to replace “extra work” terms (Θ(n) for MergeSort) by terms with explicit constants.

So we check slide 10 again.

\[
T_{MS}(n) \leq \begin{cases}
1 & \text{if } n = 1, \\
T_{MS}([n/2]) + T_{MS}([n/2]) + 14n & \text{if } n > 1.
\end{cases}
\]

Unfold-and-sum will give a “guess” for the upper bound:

\[
T_{MS}(n) \leq 14n \lg(n) + n.
\]

Claim (powers of 2): \(T'_{MS}(n) = 14n \lg(n) + n\) if \(n = 2^k\) for some \(k \in \mathbb{N}\)
Upper bound for MergeSort \((n \text{ a power-of-2})\)

\[
T_{\text{MS}}'(n) = \begin{cases}
1 & \text{if } n = 1, \\
T_{\text{MS}}'\left(\lceil n/2 \rceil \right) + T_{\text{MS}}'\left(\lfloor n/2 \rfloor \right) + 14n & \text{if } n > 1.
\end{cases}
\tag{2}
\]

Claim (powers of 2): \(T_{\text{MS}}'(n) = 14n \lg(n) + n\) if \(n = 2^k\) for some \(k \in \mathbb{N}\)

Proof (for powers of 2):

Base case \(k = 0\): direct from recurrence \((14 \cdot 2^0 \cdot \lg(2^0)) + 2^0 = 14 \cdot 1 \cdot 0 + 1 = 1,\) as required.

Induction Hypothesis (IH): Upper bound holds for \(n = 2^{k-1}\).
Upper bound for \texttt{MergeSort} \((n\text{ a power-of-2)}\)

\[T'_\text{MS}(n) = \begin{cases} 1 & \text{if } n = 1, \\ T'_\text{MS}(\lceil n/2 \rceil) + T'_\text{MS}(\lfloor n/2 \rfloor) + 14n & \text{if } n > 1. \end{cases} \tag{2} \]

\textbf{claim (powers of 2):} \(T'_\text{MS}(n) = 14n\lg(n) + n\) if \(n = 2^k\) for some \(k \in \mathbb{N}\)

\textbf{Proof (for powers of 2):}

\textbf{Base case} \(k = 0\): direct from recurrence \((14 \cdot 2^0 \cdot \lg(2^0) + 2^0 = 14 \cdot 1 \cdot 0 + 1 = 1,\) as required).

\textbf{Induction Hypothesis (IH):} Upper bound holds for \(n = 2^{k-1}\).

\textbf{Induction Step:} Now consider \(n = 2^k\) and apply the recurrence:

\[T'_\text{MS}(n) = T'_\text{MS}(\lceil 2^{k-1} \rceil) + T'_\text{MS}(\lfloor 2^{k-1} \rfloor) + 14n \]
\[= 2 \cdot T'_\text{MS}(2^{k-1}) + 14n \]

\[= 2 \cdot 2^{k-1}(14 \lg(2^{k-1}) + 1) + 14n \quad (\text{using (IH)}) \]
\[= n \cdot 14 \lg(n/2) + n + 14n \]

\textbf{AS REQUIRED.}
Upper bounds for general n

Three steps for turning a “proof for the neat case” into a “proof for all n”.

- **STEP 1:** Prove an exact expression for “neat” n for an equality version $T'(\cdot)$ of the recurrence.
 Done for $T'_{MS}(n)$ (the proof for $T'_{MS}(n)$ on slide 14). “Neat” was powers-of-2.

- **STEP 2:** Prove that the equality version of the recurrence is monotone increasing; i.e., that we have $T'(n) \leq T'(m)$ for all n, m with $n < m$ (not just for “neat” n, m).
 This step is why we need to introduce an “equality version” (to prove STEP 2 we will need to work with $T'(n) = T'(m)$).

- **STEP 3:** For “not-neat n”, choose a close-by “neat \hat{n}” (for proving $O(\cdot)$ bounds, \hat{n} should be larger; for $\Omega(\cdot)$ bounds, \hat{n} should be smaller).
 Then apply monotonicity (STEP 2) to show a relationship between $T'(n)$ and $T'(\hat{n})$, and then substitute the exact expression (from STEP 1) to $T'(\hat{n})$ to work out an upper bound for $T'(n)$.

Upper bound for MergeSort (general n)

STEP 2: Prove that $T'_{MS}(n)$ is *monotone increasing*.

The proof is by Induction.

Claim:
If $n \in \mathbb{N}$ then $T'_{MS}(n) < T'_{MS}(m)$ for all $n < m$.

Upper bound for MergeSort (general n)

STEP 2: Prove that $T'_{MS}(n)$ is *monotone increasing*.

The proof is by Induction.

Claim:
If $n \in \mathbb{N}$ then $T'_{MS}(n) < T'_{MS}(m)$ for all $n < m$.

Induction Hypothesis (IH): Claim holds for all $n = 1, \ldots, h$ (with any $m > n$).

Base Case ($h = 1$):
$T'_{MS}(1) = 1$.

For $m \geq 2$, $T'_{MS}(m) \geq 14m \geq 28$, and $28 > T'_{MS}(1)$, as needed.
Upper bound for MergeSort (general n)

STEP 2: Prove that $T_{MS}'(n)$ is monotone increasing.

The proof is by Induction.

Claim:
If $n \in \mathbb{N}$ then $T_{MS}'(n) < T_{MS}'(m)$ for all $n < m$.

Induction Hypothesis (IH): Claim holds for all $n = 1, \ldots, h$ (with any $m > n$).

Base Case ($h = 1$):
$T_{MS}'(1) = 1$.
For $m \geq 2$, $T_{MS}'(m) \geq 14m \geq 28$, and $28 > T_{MS}'(1)$, as needed.

Upper bound for MergeSort (general n) cont’d.

STEP 2 cont’d.

Induction Step (n): Suppose true for all $n \in \mathbb{N}, n = 1, \ldots, h$. Consider $n = h + 1$.

We know $n \geq 2$, so the recurrence for n is

$$T_{MS}'(n) = T_{MS}'(\lfloor n/2 \rfloor) + T_{MS}'(\lfloor n/2 \rfloor) + 14n.$$ \hspace{1cm} (3)

We are considering $m > n$ (so definitely $m \geq 2$), and the recurrence for m is

$$T_{MS}'(m) = T_{MS}'(\lfloor m/2 \rfloor) + T_{MS}'(\lfloor m/2 \rfloor) + 14m.$$
Upper bound for **MergeSort** (general \(n \)) cont’d.

STEP 2 cont’d.

Induction Step (n): Suppose true for all \(n \in \mathbb{N}, n = 1, \ldots, h \). Consider \(n = h + 1 \).

We know \(n \geq 2 \), so the recurrence for \(n \) is

\[
T'_{\text{MS}}(n) = T'_{\text{MS}}(\lceil n/2 \rceil) + T'_{\text{MS}}(\lfloor n/2 \rfloor) + 14n.
\]

(3)

We are considering \(m > n \) (so definitely \(m \geq 2 \)), and the recurrence for \(m \) is

\[
T'_{\text{MS}}(m) = T'_{\text{MS}}(\lceil m/2 \rceil) + T'_{\text{MS}}(\lfloor m/2 \rfloor) + 14m.
\]

\(n \geq 2 \) implies \(\lfloor n/2 \rfloor = \lfloor n/2 \rfloor < n \) (need strict <) so \(\lfloor n/2 \rfloor \in (1, \ldots, h) \). So the (IH) can be applied to \(\lfloor n/2 \rfloor \) with appropriate \(m \)-values. \(m > n \) implies \(\lfloor m/2 \rfloor \geq \lfloor n/2 \rfloor \), so

- either \(\lfloor n/2 \rfloor = \lfloor m/2 \rfloor \), and hence \(T'_{\text{MS}}(\lfloor n/2 \rfloor) = T'_{\text{MS}}(\lfloor m/2 \rfloor) \).
- or else \(\lfloor m/2 \rfloor > \lfloor n/2 \rfloor \) and taking this together with \(\lfloor n/2 \rfloor \leq h \), the (IH) implies that \(T'_{\text{MS}}(\lfloor n/2 \rfloor) < T'_{\text{MS}}(\lfloor m/2 \rfloor) \).

Same argument goes through with \(\lceil n/2 \rceil \). Hence the (IH) shows that each of the first two terms for \(T'_{\text{MS}}(n) \) are \(\leq \) the corresponding terms for \(T'_{\text{MS}}(m) \).

But also \(14n < 14m \), so \(\ldots \implies T'_{\text{MS}}(n) < T'_{\text{MS}}(m) \).

ADS (2019/20) – Lectures 2 and 3 – slide 16
Upper bound for MergeSort (general n) cont’d.

STEP 3: Choose a “power of 2” to relate to n.

▶ Want an upper bound, so need a power of 2 greater than n.
▶ So define $\hat{n} = 2^{\lceil \lg(n) \rceil}$ (this will be “m”).
▶ We know $n \leq \hat{n}$ but $\hat{n} < 2n$.

$ADS (2019/20)$ – Lectures 2 and 3 – slide 17
Upper bound for MergeSort (general n) cont’d.

STEP 3: Choose a “power of 2” to relate to n.

▶ Want an upper bound, so need a power of 2 greater than n.
▶ So define \(\hat{n} = 2^\lceil \lg(n) \rceil \) (this will be “m”).
▶ We know \(n \leq \hat{n} \) but \(\hat{n} < 2n \).
▶ Monotonicity property from STEP 2 tells us \(T'_{MS}(n) \leq T'_{MS}(\hat{n}) \)
▶ Proof of Upper bound for POWERS of 2 tells us \(T'_{MS}(\hat{n}) \leq 14\hat{n}\lg(\hat{n}) + \hat{n} \).
▶ By \(\hat{n} < 2n \), we get

\[
T'_{MS}(n) \leq T'_{MS}(\hat{n}) \leq 14\hat{n}(\lg(\hat{n})) + \hat{n} < 14(2n)\lg(2n) + 2n = 28n\lg(n) + 30n.
\]

So for any \(n \in \mathbb{N} \) we have \(T'_{MS}(n) \leq 28n\lg(n) + 30n \).
Upper bound for MergeSort (general n) cont’d.

STEP 3: Choose a “power of 2” to relate to n.

- Want an upper bound, so need a power of 2 greater than n.
- So define $\hat{n} = 2^\lceil \log(n) \rceil$ (this will be “m”).
- We know $n \leq \hat{n}$ but $\hat{n} < 2n$.
- Monotonicity property from STEP 2 tells us $T'_{MS}(n) \leq T'_{MS}(\hat{n})$.
- Proof of Upper bound for POWERS OF 2 tells us $T'_{MS}(\hat{n}) \leq 14\hat{n}\log(\hat{n}) + \hat{n}$.
- By $\hat{n} < 2n$, we get

$$T'_{MS}(n) \leq T'_{MS}(\hat{n}) \leq 14\hat{n}(\log(\hat{n}))+\hat{n} < 14(2n)\log(2n)+2n = 28n\log(n)+30n.$$

So for any $n \in \mathbb{N}$ we have $T'_{MS}(n) \leq 28n\log(n)+30n$.

Hence $T'_{MS}(n) = O(n\log(n))$, and (of course) $T_{MS}(n) = O(n\log(n))$.

Proving a lower bound

The “first principles” proof is essentially a **direct** proof of a sub-case of the Master Theorem.

Slide 15 described the usual structure of proving $O(\cdot)$ bounds for general $n \in \mathbb{N}$. When wanting to instead give a “first principles” proof of $\Omega(\cdot)$ for a recurrence $T(n)$, there are slight differences:

- (different) Consider an equality version $T'(\cdot)$ of the recurrence $T(\cdot)$ such that $T(n) \geq T'(n)$ holds for all $n \in \mathbb{N}$.
- (same) **STEP 1**: Prove an exact expression for T' for the “NEAT” case (power-of-2 here, but would be power-of-d if $\lceil n/d \rceil, \lfloor n/d \rfloor$ was involved)
- (same) **STEP 2**: Prove $T'(n)$ is monotonically increasing with n for general n.
- (different) **STEP 3**: Consider the closest power-of-d less than n, say \hat{n}, for a non-neat $n \in \mathbb{N}$. Then exploit $T(n) \geq T'(n)$ (by definition), $T'(n) \geq T'(\hat{n})$ (from STEP 2), and then substitute in the exact expression for $T'(\hat{n})$ (because \hat{n} is “NEAT”) and work from there.

Reading and Working

Reading Assignment

Inf2B ADS Lecture Notes 2 and 8.

[CLRS] Sections 2.1, 2.2 and 2.3 (of 3rd or 2nd edition). Also Section 3.1 (omitting the bits on the little-o and little-ω notation at the end).

(all this material should be familiar from Inf2B and your math classes)