Algorithms and Data Structures:
Dynamic Programming; Matrix-chain multiplication
Algorithmic Paradigms

Divide and Conquer

Idea: Divide problem instance into smaller sub-instances of the same problem, solve these recursively, and then put solutions together to a solution of the given instance.

Examples: Mergesort, Quicksort, Strassen’s algorithm, FFT.

Greedy Algorithms

Idea: Find solution by always making the choice that looks optimal at the moment — don’t look ahead, never go back.

Examples: Prim’s algorithm, Kruskal’s algorithm.

Dynamic Programming

Idea: **Turn recursion upside down.**

Example: Floyd-Warshall algorithm for the all pairs shortest path problem.
Dynamic Programming - A Toy Example

Fibonacci Numbers

\[F_0 = 0, \]
\[F_1 = 1, \]
\[F_n = F_{n-1} + F_{n-2} \quad \text{(for } n \geq 2). \]

A recursive algorithm

Algorithm \(\text{Rec-Fib}(n) \)

1. if \(n = 0 \) then
2. return 0
3. else if \(n = 1 \) then
4. return 1
5. else
6. return \(\text{Rec-Fib}(n - 1) + \text{Rec-Fib}(n - 2) \)

Ridiculously slow: **exponentially many** repeated computations of \(\text{Rec-Fib}(j) \) for small values of \(j \).

ADS: lects 12 and 13 – slide 3 –
Why is the recursive solution so slow?
Running time $T(n)$ satisfies

$$T(n) = T(n-1) + T(n-2) + \Theta(1) \geq F_n \sim (1.618)^n.$$
Lower bounds (in order of increasing quality and effort to prove).

1. Let $T'(n) = 2 \times T'(n - 2) + \Theta(1)$. Show by induction on n that $T(n) \geq T'(n)$. Recursion reaches zero and ends after $n/2$ steps. Thus $T'(n) \geq 2^{n/2} = \sqrt{2}^n \sim (1.41)^n$.

2. We show $F_n \geq \frac{1}{2}(3/2)^n$ for $n \geq 8$ by induction on n. Induction step: $T(n) \geq T(n - 1) + T(n - 2) \geq \frac{1}{2}((3/2)^{n-1} + (3/2)^{n-2}) = \frac{1}{2}(3/2)^{n-2}((3/2) + 1) > \frac{1}{2}(3/2)^{n-2}(3/2)^2 = \frac{1}{2}(3/2)^n$.

3. Let $T'(n) = T'(n - 1) + T'(n - 2)$ for $n \geq 2$ and $T'(0) = 0$ and $T'(1) = 1$. Then $T(n) \geq T'(n)$. We have

$$
\begin{bmatrix}
T'(n) \\
T'(n-1)
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
T'(n-1) \\
T'(n-2)
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}^{n-1}
\begin{bmatrix}
T'(1) \\
T'(0)
\end{bmatrix}
$$

Basic linear algebra. Compute eigenvectors and a base transform to diagonalize the matrix. Yields $T'(n) = \Omega((\frac{1+\sqrt{5}}{2})^n)$.

ADS: lects 12 and 13 – slide 5 –
Fibonacci Example (cont’d)

Dynamic Programming Approach

Algorithm DYN-FIB(n)

1. \(F[0] = 0 \)
2. \(F[1] = 1 \)
3. for \(i \leftarrow 2 \) to \(n \) do
4. \(F[i] \leftarrow F[i - 1] + F[i - 2] \)
5. return \(F[n] \)

Build “from the bottom up”

Running Time

\(\Theta(n) \)

Very fast in practice - just need an array (of linear size) to store the \(F(i) \) values.

Further improvement to use \(\Theta(1) \) space (but still \(\Theta(n) \) time): Just use variables to store the current and two previous \(F_i \).

ADS: lectures 12 and 13 – slide 6 –
Multiplying Sequences of Matrices

Recall

Multiplying a \((p \times q)\) matrix with a \((q \times r)\) matrix (in the standard way) requires \(pqr\) multiplications.

We want to compute products of the form

\[A_1 \cdot A_2 \cdots A_n.\]

How do we set the parentheses?
Example

Compute

\[
\begin{align*}
\quad A & \quad \cdot \quad B & \quad \cdot \quad C & \quad \cdot \quad D \\
30 \times 1 & \quad 1 \times 40 & \quad 40 \times 10 & \quad 10 \times 25
\end{align*}
\]

Multiplication order \((A \cdot B) \cdot (C \cdot D)\) requires

\[
30 \cdot 1 \cdot 40 + 40 \cdot 10 \cdot 25 + 30 \cdot 40 \cdot 25 = 41,200
\]
multiplications.

Multiplication order \(A \cdot ((B \cdot C) \cdot D)\) requires

\[
1 \cdot 40 \cdot 10 + 1 \cdot 10 \cdot 25 + 30 \cdot 1 \cdot 25 = 1,400
\]
multiplications.
The Matrix Chain Multiplication Problem

Input:
Sequence of matrices A_1, \ldots, A_n, where A_i is a $p_{i-1} \times p_i$-matrix

Output:
Optimal number of multiplications needed to compute $A_1 \cdot A_2 \cdots A_n$, and an optimal parenthesisation to realise this

Running time of algorithms will be measured in terms of n.
Solution “Attempts”

Approach 1: Exhaustive search (CORRECT but SLOW).
Try all possible parenthesisations and compare them. Correct, but extremely slow. Similar recurrence as Divide and Conquer (see below), thus exponential. See also Textbook.

Approach 2: Greedy algorithm (INCORRECT).
Always do the cheapest multiplication first. Does not work correctly — sometimes, it returns a parenthesisation that is not optimal:

Example: Consider

\[A_1 \cdot A_2 \cdot A_3 \]

\[
3 \times 100 \quad 100 \times 2 \quad 2 \times 2
\]

Solution proposed by greedy algorithm: \(A_1 \cdot (A_2 \cdot A_3) \) with
\(100 \cdot 2 \cdot 2 + 3 \cdot 100 \cdot 2 = 1000 \) multiplications.

Optimal solution: \((A_1 \cdot A_2) \cdot A_3 \) with
\(3 \cdot 100 \cdot 2 + 3 \cdot 2 \cdot 2 = 612 \) multiplications.
Solution “Attempts” (cont’d)

Approach 3: Alternative greedy algorithm (INCORRECT).
Set outermost parentheses such that cheapest multiplication is done last.
Doesn’t work correctly either (Exercise!).

Approach 4: Recursive (Divide and Conquer) - (SLOW - see over).
Divide:
\[(A_1 \cdots A_k) \cdot (A_{k+1} \cdots A_n)\]
For all \(k\), recursively solve the two sub-problems and then take best overall solution.
For \(1 \leq i \leq j \leq n\), let
\[m[i, j] = \text{least number of multiplications needed to compute } A_i \cdots A_j\]
Then
\[m[i, j] = \begin{cases}
0 & \text{if } i = j, \\
\min_{i \leq k < j} (m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j) & \text{if } i < j.
\end{cases}\]
The Recursive Algorithm (SLOW)

Running time $T(n)$ satisfies the recurrence

$$T(n) = \sum_{k=1}^{n-1} (T(k) + T(n - k)) + \Theta(n).$$

This implies

$$T(n) = \Omega(2^n).$$

We show $T(n) \geq c2^n$ for some constant c by induction on n. Base case easy (choose constant suitably).

Induction hypothesis $T(n) \geq c2^n$ for some constant c.

Ind. step.: $T(n) \geq \sum_{k=1}^{n-1} (T(k) + T(n - k)) = \sum_{k=1}^{n-1} (2T(k)) \geq \sum_{k=1}^{n-1} (2c2^k) = c \sum_{k=1}^{n-1} (2^{k+1}) \geq c2^n$.

ADS: lectures 12 and 13 – slide 12 –
Dynamic Programming Solution

As before:

$$m[i, j] = \text{least number of multiplications needed to compute } A_i \cdots A_j$$

Moreover,

$$s[i, j] = \text{(the smallest) } k \text{ such that } i \leq k < j \text{ and } m[i, j] = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j.$$

$s[i, j]$ can be used to reconstruct the optimal parenthesisation.

Idea

Compute the $m[i, j]$ and $s[i, j]$ in a bottom-up fashion.

TURN RECURSION UPSIDE DOWN :-)

ADS: lects 12 and 13 – slide 13 –
Implementation

Algorithm Matrix-Chain-Order(p)

1. $n \leftarrow p.length - 1$
2. for $i \leftarrow 1$ to n do
3. $m[i, i] \leftarrow 0$
4. for $\ell \leftarrow 2$ to n do
5. for $i \leftarrow 1$ to $n - \ell + 1$ do
6. $j \leftarrow i + \ell - 1$
7. $m[i, j] \leftarrow \infty$
8. for $k \leftarrow i$ to $j - 1$ do
9. \hspace{1em} $q \leftarrow m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j$
10. \hspace{1em} if $q < m[i, j]$ then
11. \hspace{2em} $m[i, j] \leftarrow q$
12. \hspace{2em} $s[i, j] \leftarrow k$
13. return s

Running Time: $\Theta(n^3)$
Example

\[A_1 \cdot A_2 \cdot A_3 \cdot A_4 \]

\[30 \times 1 \quad 1 \times 40 \quad 40 \times 10 \quad 10 \times 25 \]

Solution for \(m \) and \(s \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1200</td>
<td>700</td>
<td>1400</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>400</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>10000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optimal Parenthesisation

\[A_1 \cdot ((A_2 \cdot A_3) \cdot A_4) \]

ADS: lects 12 and 13 – slide 15 –
Multiplying the Matrices

Algorithm **Matrix-Chain-Multiply** \((A, p)\)

1. \(n \leftarrow A.length\)
2. \(s \leftarrow \text{Matrix-Chain-Order}(p)\)
3. \textbf{return} \ **Rec-Mult** \((A, s, 1, n)\)

Algorithm **Rec-Mult** \((A, s, i, j)\)

1. \textbf{if} \(i < j\) \textbf{then}
2. \(C \leftarrow \text{Rec-Mult}(A, s, i, s[i, j])\)
3. \(D \leftarrow \text{Rec-Mult}(A, s, s[i, j] + 1, j)\)
4. \textbf{return} \((C) \cdot (D)\)
5. \textbf{else}
6. \textbf{return} \(A_i\)
Problems

See Wikipedia:
[CLRS] Sections 15.2-15.3

1. Review the Edit-Distance Algorithm and try to understand why it is a dynamic programming algorithm.
2. Exercise 15.2-1 of [CLRS].