
Algorithms and Data Structures 2015/16
Coursework 2

Issue date: Tuesday, 23rd February 2016

The deadline for this coursework is 4pm on Tuesday 15th March, 2016. Please submit your
solutions electronically via submit. This is worth 50% of the coursework for A&DS.

note: While it is ok to discuss the concepts of the coursework with your colleagues, and to
help others with their understanding, it is not ok to copy work from others (or from textbooks
or websites), or to compare or debug each other’s solutions. So remember this. I don’t expect
you will find helpful literature for this coursework online; if you do, however, you must cite any
references of material that helped you with your work.

In this coursework, we consider the problem of “counting acyclic orientations”. Your mission
is to understand, prove some simple facts, implement and experiment with a suite of algorithms
related to this problem. First I give some definitions.

Definition 1. For any given (simple) undirected graph G = (V,E), an orientation ~G of G is
any directed graph ~G = (V, ~E) such that | ~E| = |E| and such that for every (u, v) ∈ E, exactly
one of the arcs (u→ v) and (v → u) belongs to ~E.

Definition 2. For any directed graph ~G = (V, ~E), we say that ~G is acyclic if there is no directed
cycle in ~G.

Such a graph is sometimes called a directed acyclic graph (DAG).

Definition 3. For any simple undirected graph G = (V,E), the set of acyclic orientations (AOs)
of G, denoted AO(G), is the set of all orientations ~G of G which are acyclic.

We will consider a group of Algorithms related to acyclic orientations in this coursework.
The various parts of the coursework will contribute to our developing an understanding of the
problem of counting the number of acyclic orientations of undirected graphs. This is a well-known
]P -complete (“hard to count”) problem when we consider an arbitrary given graph as input. We
will consider the problem when the input graph is drawn from the random model Gn,p: in this
case, the situation for counting (at least the expected number of AOs) is better.

There will be a mixture of theoretical and implementation work for this coursework. The
implementation will be done by completing the acyclic.java template file.

For the implementation part, we will adopt the convention that whether directed or undirected,
all graphs have the vertex set V = {0, . . . , n−1} for some n, and that their edges are represented
as an adjacency matrix of type boolean. For a directed graph (or digraph) ~G = ({0, . . . , n−1}, ~E),
the adjacency matrix adjG should be defined as:

adjG[i][j] =

{
true if (i→ j) ∈ ~E
false otherwise

.
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For an undirected graph G = ({1, . . . , n}, E), we have a small difference in defining adjG:

adjG[i][j] =

{
true if (i, j) ∈ E or (j, i) ∈ E
false otherwise

.

Details of the 6 tasks (T1)-(T6) of this coursework are given in the following sections, together
with some advice for each task.

1 Testing Acyclicity

A number of polynomial-time Algorithms exist for the problem of testing whether a given directed
graph ~G is acyclic or not. We will consider a particular one of these, the “sink elimination”
algorithm. The Algorithm depends on the following well-known fact:

Lemma 4. Any ~G = (V, ~E) which is an acyclic orientation will always have at least one sink (a
vertex t ∈ V for which there is no outgoing arc t→ ·).

Proof. Proof is by contradiction. Suppose that there is no sink in ~G. Then choose any starting
vertex u ∈ V from ~G and construct a directed path iteratively - at every step choosing an
unused outgoing arc from our current vertex. In the situation where every vertex has at least
one outgoing arc, this process will only terminate when we arrive at a vertex which we have
previously visited. This gives a cycle. Hence if ~G is acyclic we are guaranteed there is a sink.

The interesting thing is that the Lemma can be exploited to give the following “acyclicity-
testing” algorithm:

Algorithm isDAG(~G = (V, ~E))

1. n← |V |.
2. existssink ← true

3. while(existssink) do

4. check for an un-eliminated sink, and assign sink this value

5. if (we found an un-eliminated sink) then

6. for (v ∈ V \ {sink})
7. remove v → sink from the graph

8. else existssink ← false

9. od

10. if (our graph is non-empty) then

11. return false

12. else return true
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The key observation for isDAG is that no directed cycle can possibly include any sink node.
Hence in a directed graph which has some sink, the acyclicity status of ~G does not change after
we delete the incoming arcs into the sink from ~G. By applying this reduction iteratively, we
either end up with a graph with no arcs (in which case we have found the graph to be acyclic) or
else we end up with a subgraph which has no sink at all (in which case the subgraph, and hence
the original graph also, does contain a cycle).

The Algorithm is O(n3) if implemented naively - there are more efficient ways of implementing
it, but the naive implementation is fine for this coursework.

(T1) Write (in Java) a method isDAG to test, for a given directed graph ~G, whether ~G is acyclic [10 marks]

or not. The method should conform to the following type

public static boolean isDAG (boolean digraph[][])

and should be implemented within the file acyclic.java.

2 Generating Random Orientations

It will sometimes be the case that we will want to start with an undirected graph G = (V,E),
and try out various (random) orientations of the edges of G. In particular, we will want to do
this for task (T6). For this task, we assume the uniform distribution, with all orientations being
generated with the same probability (which is 2−|E|).

(T2) Write (in Java) a method uniformOrient to generate a uniform random orientation ~G of [0 marks]

a given simple undirected graph G = (V,E) and return this ~G as its result. The method
should conform to the following type

public static boolean[][] uniformOrient(boolean[][] graph)

and should be implemented within the file acyclic.java.

There are 0 marks going for this - however, you will need the method later!

3 Erdős-Rényi graphs

Since we will be studying the count of acyclic orientations on randomly generated graphs, we
present our formal model:

Definition 5. The Erdős-Rényi model Gn,p of random graphs is parametrized by the number of
vertices n, and an edge addition probability p ∈ [0, 1].

We generate a undirected simple graph G = (V,E) from Gn,p by setting V = {0, . . . , n−1}. To
construct the edge set E, we consider each (i, j) pair 0 ≤ i < n− 1, i < j ≤ n− 1 independently,
and we add the undirected edge (i, j) to E with probability p (omitting it with probability 1− p).
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Observe that we are guaranteed to create a simple graph because we only consider (i, j) edges
for i 6= j, and we consider each (i, j) exactly once. Hence no loops or parallel edges can be added.

Another observation is that the particular number of edges added will vary depending on
what happens as the graph is generated. The expected number of edges, written En,p[|E|] has
the particular value p ·

(
n
2

)
. Also observe that for a particular “number of edges” m, all simple

graphs with that number of edges have the same probability (which is pm(1 − p)(
n
2)−m) in the

Erdős-Rényi model for n, p.

Here is the next task:

(T3) Write (in Java) a method erdosRenyi to generate a random undirected graph G according [5 marks]

to the Erdős-Rényi random graph model Gn,p, and return G as its result. The method
should conform to the following type

public static boolean[][] erdosRenyi(int n, double p)

and should be implemented within the file acyclic.java.

4 The Robinson-Stanley recurrence

We now present a recurrence which was proved independently by two famous combinatorics
researchers (Robert Robinson, and Richard Stanley) in the early 1970s. We need one more
definition first:

Definition 6. Let n,m ∈ N. The number of different directed acyclic graphs (DAGs) on n
vertices with m arcs, is denoted by An,m.

We will never actually try to compute the An,m values; the definition is only necessary for
the proof I ask you to do.

We now present the Robinson (independently Stanley) theorem which defines a polynomial
An(x) in terms of the various An,m values, and proves an elegant recurrence for An(x).

Theorem 7 (Robinson, Stanley). Define

An(x) =

(n2)∑
m=0

An,mxm.

(the co-efficients of An(x) are the counts of DAGs with m arcs for various m).

Then

An(x) =
n∑

i=1

(−1)i+1

(
n

i

)
(1 + x)i(n−i)An−i(x).
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We will not be proving the correctness of this recurrence in this coursework, as it is difficult.
However, we will be proving that it can be used to compute the expected number of AOs of a
random graph G, when G is drawn according to the Erdős-Rényi model.

Here is a reminder of how the expected number of AOs for Gn,p is defined:

En,p[|AO(G)|] =
∑

G=(V,E),|V |=n

Prn,p[G] · |AO(G)|.

The expression Prn,p[G] denotes the probability that graph G is generated by Gn,p.

Now here is the next task:

(T4) Prove that the Robinson-Stanley polynomial An(x), when evaluated at x = p
1−p for any [10 marks]

p ∈ (0, 1), satisfies the following equality:

An

(
p

1− p

)
= (1− p)−(n2) × En,p[|AO(G)|].

You will not need to use the result of Theorem 7 for this part. You will not need to use
induction, or proof by contradiction, just manipulation and simplification of equations. The
proof will only be about 5-6 lines long if done right.

Your proof should be submitted in a file called task4.docx, task4.doc or (preferably)
task4.pdf.

5 Dynamic Programming for En,p[|AO(G)|]

You are now asked to use the facts from Section 4 to design, analyse and implement an O(n2)-time
(or at a minimum an O(n3)-time) Dynamic Programming algorithm to evaluate En,p[|AO(G)|]
exactly.

The two main facts that you will need to exploit are:

• The relationship

En,p[|AO(G)|] = (1− p)(
n
2)An

(
p

1− p

)
which was proven for task (T4).

• The recurrence of the Robinson/Stanley theorem:

An(x) =

n∑
i=1

(−1)i+1

(
n

i

)
(1 + x)i(n−i)An−i(x).
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1. Develop an O(n2)-time dynamic programming algorithm to evaluate En,p[|AO(G)|] exactly [10 marks]

for given n, given p ∈ (0, 1). Write pseudocode for your algorithm, and justify the (n2)
running-time in detail.

If you can only design/justify an O(n3) implementation, then present and discuss that one
(you will be marked out of 7 instead).

This should be submitted in a file called task5.docx, task5.doc or (preferably) task5.pdf

2. Implement your algorithm as the method expErdosRenyi in Java. [5 marks]

The method should conform to the following type

public static double expErdosRenyi(int n, double p)

and should be coded within acyclic.java.

If you want to test the results of your implementation, one small example is that for n = 3,
and any p, the expectation should be (1− p)3 + 6p.

6 Experimental estimation for |AO(G)| in Erdős-Rényi

Assuming that task (T5) has been completed successfully, you now have a working method which
allows you to exactly evaluate the expected number of acyclic orientations En,p[|AO(G)|] in the
Erdős-Rényi model for any n ∈ N, p ∈ (0, 1).

In this final section we will combine the methods of Tasks (T1), (T2), (T3) to develop an
understanding of how well (or badly) “concentrated” the typical number of AOs in Gn,p is around
its expected value.

Suppose instead that we were trying to estimate En,p[|AO(G)|] by random sampling. To
examine how we should approach this, it makes sense to expand out En,p[|AO(G)|]. We can
write

En,p[|AO(G)|] =
∑

G=(V,E),|V |=n

Prn,p[G] · |AO(G)|,

where Prn,p[G] is the (well-understood) probability of generating G in Gn,p. The equation above
suggests that we could estimate En,p[|AO(G)|] by generating a number of graphs (k, say), and
taking the average of the |AO(G)| value over those k graphs. This would work fine if we were
able to evaluate |AO(G)| efficiently when given a particular graph G. However, we know this is
a ]P-complete problem, and hence we do not expect there is any polynomial time algorithm for
evaluating |AO(G)| for a given G.1

1Of course we could code up the naive (exponential-time) algorithm which generates each of the 2|E| orientations
one-at-a-time, and then checks each one for acyclicity. However, it would be prohibitively slow even for smallish n
and |E|.
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Hence we will also need to take a “random sampling” approach to calculating |AO(G)| for
each of our k particular graphs G. We know that

|AO(G)| =
∑
~G

I ~G is acyclic,

where ~G is taken over all 2|E| orientations of G, and I ~G is acyclic is an “indicator variable”

returning the value 1 when ~G is acyclic and 0 otherwise. The size of the set of contributing ~G
graphs is 2|E| - however let us instead estimate AO(G) by drawing 200 different uniform random
orientations ~G1, . . . , ~G200 of G (we can use uniformOrient for this) and then estimate |AO(G)|
by the value

âo(G) = 2|E|
1

200

200∑
i=1

I ~Gi is acyclic.

Note that the value of I ~G is acyclic for any particular directed graph ~G can be determined with

our isDAG method.

This will allow us to obtain an estimate âo(G) of |AO(G)| for each of our k sampled graphs G.
Then by taking the average of these k values, we will get an estimate of En,p[|AO(G)|].

Your tasks on this section are as follows:

(T6) 1. Follow the discussion above to implement a method estimErdosRenyi which takes a [5 marks]

natural number n, a probability p ∈ (0, 1), and a “required number of samples k”, and
implements the process above (with k samples of graphs from Gn,p, and 200 samples
of orientations for each of these k graphs). The double value returned should be the
estimate of En,p[|AO(G)|].
Your method should conform to the following type

public static double estimErdosRenyi (int n, double p, int k)

and should be coded inside acyclic.java

2. Use your methods to run estimErdosRenyi and expErdosRenyi on the same values [5 marks]

of n and p (for n growing, and for a few different p values). You should use a few
values of k.

Write a short report presenting values of n, p (and k) used in your experiments, and
discussing the quality of the value returned by estimErdosRenyi.

Your report should be named task6.txt, task6.docx, task6.pdf or task6.txt

Please turn over
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7 Submitting your work

Download the file acyclic.java from the course webpage. This file contains declarations for
the methods you are required to write.

Implement all of your methods within acyclic.java, available from the course webpage.

Write the theoretical material (and results) for tasks 4, 5 and 6 in files called task4.???,
task5.??? task6.??? respectively. Then submit as follows:

submit ads 2 acyclic.java task4.??? task5.??? task6.???

(if you have extra files, please also include them.)

The DEADLINE is 4pm, Tuesday, March 15, 2016.

Warning: Before submitting, please do “more acyclic.java” (and use acroread or ooffice
to view your task?.??? files) from your current directory, to check that you have the right
versions to hand (the rules are “what is marked, is what is submitted”).

Mary Cryan, 15th February, 2016
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