
Algorithms and Data Structures:
Counting sort and Radix sort

ADS: lect 9 – slide 1 –



Special Cases of the Sorting Problem

In this lecture we assume that the sort keys are sequences of bits.

I Quite a natural special case. Doesn’t cover everything:
I eg, exact real number arithmetic doesn’t take this form.
I In certain applications, e.g. in Biology, pairwise experiments may only

return > or < (non-numeric).

I Sometimes the bits are naturally grouped, e.g. as characters in a
string or hexadecimal digits in a number (4 bits), or in general bytes
(8 bits).

I Today’s sorting algorithms are allowed access these bits or groups of
bits, instead of just letting them compare keys . . .
This was NOT possible in comparison-based setting.
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Easy results . . . Surprising results

Simplest Case:
Keys are integers in the range 1, . . . ,m, where m = O(n) (n is (as usual)
the number of elements to be sorted). We can sort in Θ(n) time

(big deal . . . but will help later).

Surprising case: (I think)
For any constant k , the problem of sorting n integers in the range {1, . . . , nk }

can be done in Θ(n) time.
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Counting Sort

Assumption: Keys (attached to items) are Ints in range 1, . . . ,m.

Idea

1. Count for every key j , 1 ≤ j ≤ m how often it occurs in the input
array. Store results in an array C .

2. The counting information stored in C can be used to determine the
position of each element in the sorted array. Suppose we modify the
values of the C [j ] so that now

C [j ] = the number of keys less than or equal to j .

Then we know that the elements with key “j” must be stored at the
indices C [j − 1] + 1, . . . ,C [j ] of the final sorted array.

3. We use a “trick” to move the elements to the right position of an
auxiliary array. Then we copy the sorted auxiliary array back to the
original one.
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Implementation of Counting Sort

Algorithm Counting Sort(A,m)

1. n← A.length

2. Initialise array C [1 . . .m]

3. for i ← 1 to n do

4. j ← A[i ].key

5. C [j ]← C [j ] + 1

6. for j ← 2 to m do

7. C [j ]← C [j ] + C [j − 1] B C [j ] stores ] of keys ≤ j

8. Initialise array B[1 . . . n]

9. for i ← n downto 1 do

10. j ← A[i ].key B A[i ] highest w. key j

11. B[C [j ]]← A[i ] B Insert A[i ] into highest free index for j

12. C [j ]← C [j ] − 1

13. for i ← 1 to n do

14. A[i ]← B[i ]
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Analysis of Counting Sort

I The loops in lines 3–5, 9–12, and 13–14 all require time Θ(n).

I The loop in lines 6–7 requires time Θ(m).

I Thus the overall running time is

O(n + m).

I This is linear in the number of elements if m = O(n).

Note: This does not contradict Theorem 3 from Lecture 7 - that’s a result
about the general case, where keys have an arbitary size (and need not
even be numeric).

Note: Counting-Sort is STABLE.

I (After sorting, 2 items with the same key have their initial relative
order).
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Radix Sort

Basic Assumption
Keys are sequences of digits in a fixed range 0, . . . ,R − 1,
all of equal length d .

Examples of such keys

I 4 digit hexadecimal numbers (corresponding to 16 bit integers)
R = 16, d = 4

I 5 digit decimal numbers (for example, US post codes)
R = 10, d = 5

I Fixed length ASCII character sequences
R = 128

I Fixed length byte sequences
R = 256
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Stable Sorting Algorithms

Definition 1
A sorting algorithm is stable if it always leaves elements with equal keys
in their original order.

Examples

I Counting-Sort, Merge-Sort, and Insertion Sort are all
stable.

I Quicksort is not stable.

I If keys and elements are exactly the same thing (in our setting, an
element is a structure containing the key as a sub-element) then we
have a much easier (non-stable) version of Counting-Sort.
(How? ... CLASS?).
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Radix Sort (cont’d)

Idea
Sort the keys digit by digit, starting with the least
significant digit.

Example
now

for

tip

ilk

dim

tag

jot

sob

nob

sky

hut

ace

bet

sob

for

nob

ace

ilk

tag

dim

tip

jot

hut

bet

now

sky

tag

ace

bet

hut

dim

ilk

sky

tip

now

jot

for

sob

nob

ace

bet

dim

for

tip

tag

sob

sky

now

nob

jot

ilk

hut

Each of the three sorts is carried out with respect to the digits in that
column. “Stability” (and having previously sorted digits/suffixes to the
right), means this achieves a sorting of the suffixes starting at the current
column.
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Radix Sort (cont’d)

Algorithm Radix-Sort(A, d)

1. for i ← 0 to d do
2. use stable sort to sort array A using digit i as key

Most commonly, Counting Sort is used in line 2 - this means that once
a set of digits is already in sorted order, then (by stability) performing
Counting Sort on the next-most significant digits preserves that order,
within the “blocks” constructed by the new iteration.

Then each execution of line 2 requires time Θ(n + R).
Thus the overall time required by Radix-Sort is

Θ(d(n + R))
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Sorting Integers with Radix-Sort

Theorem 2
An array of length n whose keys are b-bit numbers can be sorted in time

Θ(ndb/ lg ne)

using a suitable version of Radix-Sort.

Proof: Let the digits be blocks of dlg ne bits. Then R = 2dlg ne = Θ(n)
and d = db/dlg nee. Using the implementation of Radix-Sort based on
Counting Sort the integers can be sorted in time

Θ(d(n + R)) = Θ(ndb/ lg ne).

Note: If all numbers are at most nk , then b = k lg n . . .⇒ Radix Sort
is Θ(n) (assuming k is some constant, eg 3, 10).
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Reading Assignment

[CLRS] Sections 8.2, 8.3

Problems

1. Think about the qn. on slide 7 - how do we get a very easy
(non-stable) version of Counting-Sort if there are no items
attached to the keys?

2. Can you come up with another way of achieving counting sort’s
O(m + n)-time bound and stability (you will need a different data
structure from an array).

3. Exercise 8.3-4 of [CLRS].
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