Algorithms and Data Structures: Counting sort and Radix sort

Special Cases of the Sorting Problem

In this lecture we assume that the sort keys are sequences of bits.

- Quite a natural special case. Doesn’t cover everything:
 - eg, exact real number arithmetic doesn’t take this form.
 - In certain applications, e.g. in Biology, pairwise experiments may only return $>$ or $<$ (non-numeric).
- Sometimes the bits are naturally grouped, e.g. as characters in a string or hexadecimal digits in a number (4 bits), or in general bytes (8 bits).
- Today’s sorting algorithms are allowed access these bits or groups of bits, instead of just letting them compare keys . . .
 This was NOT possible in comparison-based setting.

Easy results . . . Surprising results

Simplest Case:
Keys are integers in the range $1, \ldots, m$, where $m = O(n)$ (n is (as usual) the number of elements to be sorted). We can sort in $\Theta(n)$ time.

Surprising case: (I think)
For any constant k, the problem of sorting n integers in the range $\{1, \ldots, nk\}$ can be done in $\Theta(n)$ time.
Easy results ... Surprising results

Simplest Case:
Keys are integers in the range 1, ... , m, where $m = O(n)$ (n is (as usual) the number of elements to be sorted). We can sort in $\Theta(n)$ time (big deal ... but will help later).

Surprising case: (I think)
For any constant k, the problem of sorting n integers in the range $\{1, \ldots, nk\}$ can be done in $\Theta(n)$ time.

Counting Sort

Assumption: Keys (attached to items) are Ints in range 1, ..., m.

Idea
1. Count for every key j, $1 \leq j \leq m$ how often it occurs in the input array. Store results in an array C.

2. The counting information stored in C can be used to determine the position of each element in the sorted array. Suppose we modify the values of the $C[j]$ so that now $C[j] =$ the number of keys less than or equal to j. Then we know that the elements with key "j" must be stored at the indices $C[j-1] + 1, \ldots, C[j]$ of the final sorted array.

3. We use a "trick" to move the elements to the right position of an auxiliary array. Then we copy the sorted auxiliary array back to the original one.
Counting Sort

Assumption: Keys (attached to items) are Ints in range 1, ..., m.

Idea
1. Count for every key j, $1 \leq j \leq m$ how often it occurs in the input array. Store results in an array C.
2. The counting information stored in C can be used to determine the position of each element in the sorted array. Suppose we modify the values of the $C[j]$ so that now $C[j]$ = the number of keys less than or equal to j.
Then we know that the elements with key "j" must be stored at the indices $C[j-1]+1, \ldots, C[j]$ of the final sorted array.

Algorithm Counting Sort(A, m)
1. $n \leftarrow A.length$
2. Initialise array $C[1 \ldots m]$
3. for $i \leftarrow 1$ to n do
 4. $j \leftarrow A[i].key$
 5. $C[j] \leftarrow C[j] + 1$
6. for $j \leftarrow 2$ to m do
7. $C[j] \leftarrow C[j] + C[j-1]$ \hspace{0.5cm} ▶ $C[j]$ stores $\#$ of keys $\leq j$
8. Initialise array $B[1 \ldots n]$
9. for $i \leftarrow n$ downto 1 do
10. $j \leftarrow A[i].key$ \hspace{0.5cm} ▶ $A[i]$ highest w. key j
11. $B[C[j]] \leftarrow A[i]$ \hspace{0.5cm} ▶ Insert $A[i]$ into highest free index for j
12. $C[j] \leftarrow C[j] - 1$
13. for $i \leftarrow 1$ to n do

Analysis of Counting Sort

▶ The loops in lines 3–5, 9–12, and 13–14 all require time $\Theta(n)$.
▶ The loop in lines 6–7 requires time $\Theta(m)$.
▶ Thus the overall running time is $O(n + m)$.

▶ This is linear in the number of elements if $m = O(n)$.

ADS: lect 9 – slide 4 –
ADS: lect 9 – slide 5 –
Analysis of Counting Sort

- The loops in lines 3–5, 9–12, and 13–14 all require time $\Theta(n)$.
- The loop in lines 6–7 requires time $\Theta(m)$.
- Thus the overall running time is $O(n + m)$.
- This is linear in the number of elements if $m = O(n)$.

Note: This does not contradict Theorem 3 from Lecture 7 - that’s a result about the general case, where keys have an arbitrary size (and need not even be numeric).

Counting-Sort is STABLE.
- (After sorting, 2 items with the same key have their initial relative order).

Radix Sort

Basic Assumption
Keys are sequences of digits in a fixed range $0, \ldots, R - 1$, all of equal length d.

Examples of such keys
- 4 digit hexadecimal numbers (corresponding to 16 bit integers)
 $R = 16, d = 4$
- 5 digit decimal numbers (for example, US post codes)
 $R = 10, d = 5$
- Fixed length ASCII character sequences
 $R = 128$
- Fixed length byte sequences
 $R = 256$

Stable Sorting Algorithms

Definition 1
A sorting algorithm is stable if it always leaves elements with equal keys in their original order.
Stable Sorting Algorithms

Definition 1
A sorting algorithm is stable if it always leaves elements with equal keys in their original order.

Examples
- Counting-Sort, Merge-Sort, and Insertion Sort are all stable.
- Quicksort is not stable.
- If keys and elements are exactly the same thing (in our setting, an element is a structure containing the key as a sub-element) then we have a much easier (non-stable) version of Counting-Sort.

Radix Sort (cont’d)

Algorithm Radix-Sort(A, d)

1. for i ← 0 to d do
2. use stable sort to sort array A using digit i as key

Most commonly, Counting Sort is used in line 2 - this means that once a set of digits is already in sorted order, then (by stability) performing Counting Sort on the next-most significant digits preserves that order, within the “blocks” constructed by the new iteration.

Then each execution of line 2 requires time $\Theta(n + R)$.
Thus the overall time required by Radix-Sort is
$\Theta(d(n + R))$

Sorting Integers with Radix-Sort

Theorem 2
An array of length n whose keys are b-bit numbers can be sorted in time $\Theta(n \lceil b/\lg n \rceil)$ using a suitable version of Radix-Sort.

Proof: Let the digits be blocks of $\lceil \lg n \rceil$ bits. Then $R = 2^{\lceil \lg n \rceil} = \Theta(n)$ and $d = \lceil b/\lg n \rceil$. Using the implementation of Radix-Sort based on Counting Sort the integers can be sorted in time$\Theta(d(n + R)) = \Theta(n \lceil b/\lg n \rceil)$.

Note: If all numbers are at most n^k, then $b = k \lg n \ldots \Rightarrow$ Radix Sort is $\Theta(n)$ (assuming k is some constant, eg 3, 10).
Reading Assignment

[CLRS] Sections 8.2, 8.3

Problems

1. Think about the qn. on slide 7 - how do we get a very easy (non-stable) version of Counting-Sort if there are no items attached to the keys?

2. Can you come up with another way of achieving counting sort’s $O(m + n)$-time bound and stability (you will need a different data structure from an array).

3. Exercise 8.3-4 of [CLRS].