Algorithms and Data Structures:
Average-Case Analysis of Quicksort
QuickSort

Divide-and-Conquer algorithm for sorting an array. It works as follows:

1. If the input array has less than two elements, nothing to do . . . Otherwise, do the following partitioning subroutine: Pick a particular key called the pivot and divide the array into two subarrays as follows:

 \leq pivot | piv. | \geq pivot

2. Sort the two subarrays recursively.
Algorithm QUICKSORT\((A, p, r)\)

1. \textbf{if }\(p < r\) \textbf{then}
2. \hspace{1em} \(q \leftarrow \text{PARTITION}(A, p, r)\)
3. \hspace{1em} QUICKSORT\((A, p, q - 1)\)
4. \hspace{1em} QUICKSORT\((A, q + 1, r)\)
Algorithm \textsc{Partition}(A, p, r)

1. \textit{pivot} ← A[r]
2. \textit{i} ← p − 1
3. \textbf{for} \textit{j} ← p \textbf{to} r − 1 \textbf{do}
4. \textbf{if} A[j] ≤ pivot \textbf{then}
5. \hspace{1em} \textit{i} ← \textit{i} + 1
6. \hspace{1em} exchange A[\textit{i}], A[j]
7. exchange A[\textit{i} + 1], A[r]
8. \textbf{return} \textit{i} + 1

Same version as [CLRS]
Analysis of Quicksort

- The size of an instance \((A, p, r)\) is \(n = r - p + 1\).
- Basic operations for sorting are **comparisons of keys**. We let
 \[C(n) \]
 be the **worst-case number of key-comparisons** performed by Quicksort\((A, p, r)\). We shall try to determine \(C(n)\) as precisely as possible.

- It is easy to verify that the worst-case running time \(T(n)\) of Quicksort\((A, p, r)\) is \(\Theta(C(n))\) if a single comparison requires time \(\Theta(1)\).
 (i.e., for Quicksort, comparisons dominate the running time).

In any case,

\[T(n) = \Theta(C(n) \cdot \text{cost per comparison}). \]
Analysis of Partition

Partition(A, p, r) does exactly $n - 1$ comparisons for every input of size n.
This is of course apart from any comparisons which may be done inside the recursive calls to Quicksort.
Worst-case Analysis of **Quicksort**

- We get the following recurrence for $C(n)$:

\[
C(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
\max_{1 \leq k \leq n} \left(C(k - 1) + C(n - k) \right) + (n - 1) & \text{if } n \geq 2
\end{cases}
\]

- Intuitively, worst-case seems to be $k = 1$ or $k = n$, i.e., everything falls on one side of the partition. This happens, e.g., if the array is sorted.
Worst-Case Analysis (cont’d)

- **Lower Bound**: \(C(n) \geq \frac{1}{2}n(n + 1) = \Omega(n^2) \).

 Proof: Consider the situation where we are presented with an array which is already sorted. Then on every iteration, we split into one array of length \((n - 1)\), and one of length 0.

 \[
 C(n) \geq C(n - 1) + (n - 1) \\
 \geq C(n - 2) + (n - 2) + (n - 1) \\
 \vdots \\
 \geq \sum_{i=1}^{n-1} i = \frac{1}{2}n(n - 1).
 \]

- **Upper Bound**: \(C(n) \leq O(n^2) \).

 BOARD Bit harder than \(\Omega(n^2) \) (must consider all possible inputs).

 Overall, we will show

 \[C(n) = \Theta(n^2). \]
Best-Case Analysis

- \(B(n) \) = number of comparisons done by \textsc{Quicksort} in the best case.

- \textit{Recurrence:}

\[
B(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
\min_{1 \leq k \leq n} (B(k-1) + B(n-k)) + (n-1) & \text{if } n \geq 2
\end{cases}
\]

- Intuitively, the best case is if the array is always partitioned into two parts of the same size. This would mean

\[
B(n) \approx 2B(n/2) + \Theta(n),
\]

which implies \(B(n) = \Theta(n \lg(n)) \).
Average-Case Analysis

- \(A(n) = \) number of comparisons done by \textsc{Quicksort} on average if all input arrays of size \(n \) are considered equally likely.

- **Intuition:** The average case is closer to the best case than to the worst case, because only repeatedly very unbalanced partitions lead to the worst case.

- **Recurrence:**

\[
A(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
\sum_{k=1}^{n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1) & \text{if } n \geq 2
\end{cases}
\]

- **Solution:**

\[A(n) \approx 2n \ln(n). \]
Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have

\[
A(n) \leq 2 \ln(n)(n + 1).
\]

\[\star\]
Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have

\[
A(n) \leq 2 \ln(n)(n + 1).
\]

(Note (\(\star \)) holds trivially for \(n = 1 \), because \(\ln(1) = 0 \))
Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have

\[
A(n) \leq 2 \ln(n)(n + 1).
\] *(\text{ Note } (\ast) \text{ holds trivially for } n = 1, \text{ because } \ln(1) = 0)\)

So assume that \(n \geq 2 \). We have

\[
A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1)
\]
Average Case Analysis in Detail

We shall prove that for all $n \geq 1$ ("sufficiently large") we have

$$A(n) \leq 2 \ln(n)(n + 1).$$

(Note (⋆) holds trivially for $n = 1$, because $\ln(1) = 0$)

So assume that $n \geq 2$. We have

$$A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1)$$

$$= \frac{2}{n} \sum_{k=0}^{n-1} A(k) + (n - 1).$$
Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have

\[
A(n) \leq 2 \ln(n)(n + 1).
\]

(Note (⋆) holds trivially for \(n = 1 \), because \(\ln(1) = 0 \))

So assume that \(n \geq 2 \). We have

\[
A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1)
\]

\[
= 2 \sum_{k=0}^{n-1} A(k) + (n - 1).
\]

Thus

\[
nA(n) = 2 \sum_{k=0}^{n-1} A(k) + n(n - 1).
\]

(⋆⋆)
Average Case Analysis in Detail

We shall prove that for all $n \geq 1$ ("sufficiently large") we have

$$A(n) \leq 2 \ln(n)(n + 1). \quad (*)$$

(Note $(*)$ holds trivially for $n = 1$, because $\ln(1) = 0$)

So assume that $n \geq 2$. We have

$$A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1)$$

$$= \frac{2}{n} \sum_{k=0}^{n-1} A(k) + (n - 1).$$

Thus

$$nA(n) = 2 \sum_{k=0}^{n-1} A(k) + n(n - 1). \quad (**)$$
Applying \((\star \star)\) to \((n - 1)\) for \(n \geq 3\), we obtain

\[(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).\]
Applying (⋆⋆) to \((n - 1)\) for \(n \geq 3\), we obtain
\[
(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).
\]

Subtracting this equation from (⋆⋆) (when \(n \geq 3\))
\[
nA(n) - (n - 1)A(n - 1) = 2A(n - 1) + n(n - 1) - (n - 1)(n - 2),
\]
Applying (⋆⋆) to \((n - 1)\) for \(n \geq 3\), we obtain

\[
(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).
\]

Subtracting this equation from (⋆⋆) (when \(n \geq 3\))

\[
nA(n) - (n - 1)A(n - 1) = 2A(n - 1) + n(n - 1) - (n - 1)(n - 2),
\]

thus

\[
nA(n) = (n + 1)A(n - 1) + 2n - 2,
\]
Applying (⋆⋆) to \((n - 1)\) for \(n \geq 3\), we obtain

\[
(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).
\]

Subtracting this equation from (⋆⋆) (when \(n \geq 3\))

\[
nA(n) - (n - 1)A(n - 1) = 2A(n - 1) + n(n - 1) - (n - 1)(n - 2),
\]

thus

\[
nA(n) = (n + 1)A(n - 1) + 2n - 2,
\]

and therefore

\[
\frac{A(n)}{n+1} = \frac{A(n-1)}{n} + \frac{2n-2}{n(n+1)} \leq \frac{A(n-1)}{n} + \frac{2}{n}
\]
Average Case Analysis in Detail (cont’d)

Applying (⋆⋆) to $(n - 1)$ for $n \geq 3$, we obtain

$$(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).$$

Subtracting this equation from (⋆⋆) (when $n \geq 3$)

$$nA(n) - (n - 1)A(n - 1) = 2A(n - 1) + n(n - 1) - (n - 1)(n - 2),$$

thus

$$nA(n) = (n + 1)A(n - 1) + 2n - 2,$$

and therefore

$$\frac{A(n)}{n + 1} = \frac{A(n - 1)}{n} + \frac{2n - 2}{n(n + 1)} \leq \frac{A(n - 1)}{n} + \frac{2}{n}$$

We now apply unfold-and-sum to this recurrence (stopping at $n = 2$):

$$\frac{A(n)}{n + 1} \leq \frac{A(n - 1)}{n} + \frac{2}{n}$$

$$\vdots$$
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n + 1} \leq \frac{A(n - 2)}{n - 1} + \frac{2}{n} + \frac{2}{n - 1}
\]
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n + 1} \leq \frac{A(n - 2)}{n - 1} + \frac{2}{n} + \frac{2}{n - 1}
\]

\[
\vdots
\]

\[
\leq \frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k}
\]
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n + 1} \leq \frac{A(n - 2)}{n - 1} + \frac{2}{n} + \frac{2}{n - 1}
\]

\[
\vdots
\]

\[
\leq \frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k}
\]

\[
= \frac{3}{3} + 2 \sum_{k=3}^{n} \frac{1}{k} = 2 \sum_{k=2}^{n} \frac{1}{k}.
\]
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n+1} \leq \frac{A(n-2)}{n-1} + \frac{2}{n} + \frac{2}{n-1}
\]

\[
\vdots
\]

\[
\leq \frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k}
\]

\[
= \frac{3}{3} + 2 \sum_{k=3}^{n} \frac{1}{k} = 2 \sum_{k=2}^{n} \frac{1}{k}.
\]

It is easy to verify this result by induction. Thus

\[
\frac{A(n)}{n+1} \leq 2 \sum_{k=2}^{n} \frac{1}{k} = 2 \sum_{k=1}^{n-1} \frac{1}{k+1} \leq 2 \int_{1}^{n} \frac{1}{x} = 2 \ln(n).
\]

Multiplying by \((n + 1)\) completes the proof of \((\star)\).
Improvements

- Use insertion sort for small arrays.
- Iterative implementation.

Main Question

Is there a way to avoid the bad worst-case performance, and in particular the bad performance on sorted (or almost sorted) arrays?

Different strategies for choosing the pivot-element help (in practice).
Median-of-Three Partitioning

Idea: Use the median of the first, middle, and last key as the pivot.

Algorithm \textbf{M3Partition}(A, p, r)

1. exchange $A[(p + r)/2]$, $A[r - 1]$
5. \textbf{Partition}(A, p + 1, r - 1)

Note that \textbf{M3Partition}(A, p, r) only requires 1 more comparison than \textbf{Partition}(A, p, r)
Median-of-Three Partitioning (cont’d)

Algorithm \textbf{M3Quicksort}(A, p, r)
\begin{enumerate}
\item \textbf{if} \(p < r \) \textbf{then}
\item \(q \leftarrow \text{M3Partition}(A, p, r) \)
\item \text{M3Quicksort}(A, p, q - 1)
\item \text{M3Quicksort}(A, q + 1, r)
\end{enumerate}

In can be shown that the worst-case running time of \textbf{M3Quicksort} is still \(\Theta(n^2) \), but at least in the case of an almost sorted array (and in most other cases that are relevant in practice) it is very efficient.
Randomized Quicksort

Idea: Use key of random element as the pivot.

Algorithm $\text{RPartition}(A, p, r)$

1. $k \leftarrow \text{Random}(p, r) \quad \triangleright \text{choose } k \text{ randomly from } \{p, \ldots, r\}$
2. exchange $A[k], A[r]$
3. $\text{Partition}(A, p, r)$

Algorithm $\text{Randomized Quicksort}(A, p, r)$

1. if $p < r$ then
2. $q \leftarrow \text{RPartition}(A, p, r)$
3. $\text{Randomized Quicksort}(A, p, q - 1)$
4. $\text{Randomized Quicksort}(A, q + 1, r)$
Analysis of Randomized Quicksort

The running time of Randomized Quicksort on an input of size n is a random variable.

An analysis similar to the average case analysis of Quicksort shows:

Theorem
For all inputs (A, p, r), the expected number of comparisons performed during a run of Randomized Quicksort on input (A, p, r), is at most $2 \ln(n)(n + 1)$, where $n = r - p + 1$.

Corollary
Thus the expected running time of Randomized Quicksort on any input of size n is $\Theta(n \lg(n))$.
Reading Assignment

Sections 7.2, 7.3, 7.4 of [CLRS] (edition 2 or 3)

Problems

1. Convince yourself that \textsc{Partition} works correctly by working a few examples, or (better) try to prove that it works correctly.

2. In our proof of the Average-running time $A(n)$, we can think of the input as being some permutation of $(1, \ldots, n)$, and assume all permutations are equally likely. Why does this explain the $1/n$ factor in the recurrence on slide 10?

3. Show that if the array is initially in decreasing order, then the running time is $\Theta(n^2)$.

 (the $O(n^2)$ is already taken care of on slide 8 (well, the board note), the $\Omega(n^2)$ involves considering \textsc{Partition} on a decreasing array).