Quicksort

Divide-and-Conquer algorithm for sorting an array. It works as follows:

1. If the input array has less than two elements, nothing to do . . .
 Otherwise, do the following partitioning subroutine: Pick a particular key called the pivot and divide the array into two subarrays as follows:

 \[
 \begin{array}{c|c|c}
 \leq \text{pivot} & \text{piv.} & \geq \text{pivot} \\
 \end{array}
 \]

2. Sort the two subarrays recursively.

Algorithm Quicksort \((A, p, r)\)

1. if \(p < r\) then
2. \(q \leftarrow \text{Partition}(A, p, r)\)
3. \(\text{Quicksort}(A, p, q - 1)\)
4. \(\text{Quicksort}(A, q + 1, r)\)

Algorithm Partition \((A, p, r)\)

1. \(\text{pivot} \leftarrow A[r]\)
2. \(i \leftarrow p - 1\)
3. for \(j \leftarrow p\) to \(r - 1\) do
4. if \(A[j] \leq \text{pivot}\) then
5. \(i \leftarrow i + 1\)
6. exchange \(A[i], A[j]\)
7. exchange \(A[i + 1], A[r]\)
8. return \(i + 1\)

Same version as [CLRS]
The size of an instance \((A, p, r)\) is \(n = r - p + 1\).

Basic operations for sorting are comparisons of keys. We let
\[
C(n)
\]
be the worst-case number of key-comparisons performed by QUICKSORT\((A, p, r)\). We shall try to determine \(C(n)\) as precisely as possible.

It is easy to verify that the worst-case running time \(T(n)\) of QUICKSORT\((A, p, r)\) is \(\Theta(C(n))\) if a single comparison requires time \(\Theta(1)\).

\(\text{i.e., for QUICKSORT, comparisons dominate the running time.}\)

In any case,
\[
T(n) = \Theta(C(n) \cdot \text{cost per comparison}).
\]

Worst-case Analysis of Quicksort

We get the following recurrence for \(C(n)\):
\[
C(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
\max_{1 \leq k \leq n} \left(C(k-1) + C(n-k) \right) + (n-1) & \text{if } n \geq 2
\end{cases}
\]

Intuitively, worst-case seems to be \(k = 1\) or \(k = n\), i.e., everything falls on one side of the partition. This happens, e.g., if the array is sorted.

Lower Bound: \(C(n) \geq \frac{1}{2} n(n+1) = \Omega(n^2)\).

\[\text{Proof: Consider the situation where we are presented with an array which is already sorted. Then on every iteration, we split into one array of length } (n-1), \text{ and one of length } 0.\]

\[
C(n) \geq C(n-1) + (n-1) \\
\geq C(n-2) + (n-2) + (n-1) \\
\vdots \\
\geq \sum_{i=1}^{n-1} i = \frac{1}{2} n(n-1).
\]

Upper Bound: \(C(n) \leq O(n^2)\).

\[\text{BOARD Bit harder than } \Omega(n^2) \text{ (must consider all possible inputs).}\]

Overall, we will show \(C(n) = \Theta(n^2)\).
Best-Case Analysis

- \(B(n) \) = number of comparisons done by \textsc{Quicksort} in the best case.
- \textit{Recurrence:}
 \[
 B(n) = \begin{cases}
 0 & \text{if } n \leq 1 \\
 \min_{1 \leq k \leq n} (B(k-1) + B(n-k)) + (n-1) & \text{if } n \geq 2
 \end{cases}
 \]
- Intuitively, the best case is if the array is always partitioned into two parts of the same size. This would mean
 \[
 B(n) \approx 2B(n/2) + \Theta(n),
 \]
 which implies \(B(n) = \Theta(n \log(n)) \).

Average-Case Analysis

- \(A(n) \) = number of comparisons done by \textsc{Quicksort} on average if all input arrays of size \(n \) are considered equally likely.
- \textit{Intuition:} The average case is closer to the best case than to the worst case, because only \textit{repeatedly very unbalanced} partitions lead to the worst case.
- \textit{Recurrence:}
 \[
 A(n) = \begin{cases}
 0 & \text{if } n \leq 1 \\
 \sum_{k=1}^{n} \frac{1}{n} (A(k-1) + A(n-k)) + (n-1) & \text{if } n \geq 2
 \end{cases}
 \]
- \textit{Solution:}
 \[
 A(n) \approx 2n \ln(n).
 \]

Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have
\[
A(n) \leq 2 \ln(n)(n+1).
\] \hfill (⋆)

(Note (⋆) holds trivially for \(n = 1 \), because \(\ln(1) = 0 \))
We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have
\[
A(n) \leq 2 \ln(n)(n + 1).
\] (\(*\))

(Note \((\ast)\) holds trivially for \(n = 1 \), because \(\ln(1) = 0 \))
So assume that \(n \geq 2 \). We have
\[
A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} (A(k - 1) + A(n - k)) + (n - 1)
\]
\[
= \frac{2}{n} \sum_{k=0}^{n-1} A(k) + (n - 1).
\]

Thus
\[
nA(n) = 2 \sum_{k=0}^{n-1} A(k) + n(n - 1).
\] (***)
Average Case Analysis in Detail (cont’d)
Applying (**) to \((n-1)\) for \(n \geq 3\), we obtain
\[
(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).
\]
Subtracting this equation from (**) (when \(n \geq 3\))
\[
nA(n) - (n - 1)A(n - 1) = 2A(n - 1) + n(n - 1) - (n - 1)(n - 2),
\]
thus
\[
nA(n) = (n + 1)A(n - 1) + 2n - 2,
\]
and therefore
\[
\frac{A(n)}{n+1} = \frac{A(n-1)}{n} + \frac{2n-2}{n(n+1)} \leq \frac{A(n-1)}{n} + \frac{2}{n}.
\]
Applying (**) to \((n-1)\) for \(n \geq 3\), we obtain

\[
(n-1)A(n-1) = 2 \sum_{k=0}^{n-2} A(k) + (n-1)(n-2).
\]

Subtracting this equation from (***) (when \(n \geq 3\))

\[
nA(n) - (n-1)A(n-1) = 2A(n-1) + n(n-1) - (n-1)(n-2),
\]

thus

\[
nA(n) = (n+1)A(n-1) + 2n - 2,
\]

and therefore

\[
\frac{A(n)}{n+1} = \frac{A(n-1)}{n} + \frac{2n-2}{n(n+1)} \leq \frac{A(n-1)}{n} + \frac{2}{n}
\]

We now apply unfold-and-sum to this recurrence (stopping at \(n = 2\)):

\[
\frac{A(n)}{n+1} \leq \frac{A(n-1)}{n} + \frac{2}{n}
\]

\[
\vdots
\]

\[
\frac{A(n)}{n+1} \leq \frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k}
\]

\[
s = \frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k}
\]

\[
= \frac{3}{3} + 2 \sum_{k=3}^{n} \frac{1}{k} = 2 \sum_{k=2}^{n} \frac{1}{k}.
\]
Average Case Analysis in Detail (cont’d)

\[
\frac{A(n)}{n + 1} \leq \frac{A(n - 2)}{n - 1} + \frac{2}{n} + \frac{2}{n - 1}
\]

\[
\vdots
\]

\[
\leq \frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k}
\]

\[
= \frac{3}{3} + 2 \sum_{k=3}^{n} \frac{1}{k} = 2 \sum_{k=2}^{n} \frac{1}{k}.
\]

It is easy to verify this result by induction. Thus

\[
\frac{A(n)}{n + 1} \leq 2 \sum_{k=2}^{n} \frac{1}{k} = 2 \sum_{k=2}^{n-1} \frac{1}{k + 1} \leq 2 \ln(n).
\]

Multiplying by \((n + 1)\) completes the proof of \((*)\).

Improvements

- Use insertion sort for small arrays.
- Iterative implementation.

Main Question

Is there a way to avoid the bad worst-case performance, and in particular the bad performance on sorted (or almost sorted) arrays?

Different strategies for choosing the pivot-element help (in practice).

Median-of-Three Partitioning (cont’d)

Algorithm M3QUICKSORT\((A, p, r)\)

1. if \(p < r\) then
2. \(q \leftarrow\) M3Partition\((A, p, r)\)
3. M3QUICKSORT\((A, p, q - 1)\)
4. M3QUICKSORT\((A, q + 1, r)\)

In can be shown that the worst-case running time of M3QUICKSORT is still \(\Theta(n^2)\), but at least in the case of an almost sorted array (and in most other cases that are relevant in practice) it is very efficient.
Randomized Quicksort

Idea: Use key of random element as the pivot.

Algorithm RPartition(A, p, r)
1. \(k \leftarrow \text{Random}(p, r) \quad \triangleright \text{choose } k \text{ randomly from } \{p, \ldots, r\} \)
2. exchange \(A[k], A[r] \)
3. Partition(A, p, r)

Algorithm Randomized Quicksort(A, p, r)
1. if \(p < r \) then
2. \(q \leftarrow \text{RPartition}(A, p, r) \)
3. Randomized Quicksort(A, p, q − 1)
4. Randomized Quicksort(A, q + 1, r)

Analysis of Randomized Quicksort

The running time of Randomized Quicksort on an input of size \(n \) is a random variable.

An analysis similar to the average case analysis of Quicksort shows:

Theorem
For all inputs \((A, p, r)\), the expected number of comparisons performed during a run of Randomized Quicksort on input \((A, p, r)\), is at most \(2 \ln(n)(n + 1)\), where \(n = r - p + 1 \).

Corollary
Thus the expected running time of Randomized Quicksort on any input of size \(n \) is \(\Theta(n \lg(n))\).

Reading Assignment
Sections 7.2, 7.3, 7.4 of [CLRS] (edition 2 or 3)

Problems

1. Convince yourself that Partition works correctly by working a few examples, or (better) try to prove that it works correctly.
2. In our proof of the Average-running time \(A(n) \), we can think of the input as being some permutation of \((1, \ldots, n) \), and assume all permutations are equally likely. Why does this explain the \(1/n \) factor in the recurrence on slide 10?
3. Show that if the array is initially in decreasing order, then the running time is \(\Theta(n^2) \).
 (the \(O(n^2) \) is already taken care of on slide 8 (well, the board note), the \(\Omega(n^2) \) involves considering Partition on a decreasing array).