Quicksort

Divide-and-Conquer algorithm for sorting an array. It works as follows:

1. If the input array has less than two elements, nothing to do . . .
 Otherwise, do the following partitioning subroutine: Pick a particular key called the pivot and divide the array into two subarrays as follows:

 $\leq \text{pivot} \quad \text{piv.} \quad \geq \text{pivot}$

2. Sort the two subarrays recursively.

QuickSort Algorithm

Algorithm QUICKSORT(A, p, r)

1. if $p < r$ then
2. $q \leftarrow \text{Partition}(A, p, r)$
3. QUICKSORT($A, p, q - 1$)
4. QUICKSORT($A, q + 1, r$)

Partitioning

Algorithm PARTITION(A, p, r)

1. pivot $\leftarrow A[r]$
2. $i \leftarrow p - 1$
3. for $j \leftarrow p$ to $r - 1$ do
4. if $A[j] \leq \text{pivot}$ then
5. $i \leftarrow i + 1$
6. exchange $A[i], A[j]$
7. exchange $A[i + 1], A[r]$
8. return $i + 1$

Same version as [CLRS]
Analysis of Quicksort

- The size of an instance \((A, p, r)\) is \(n = r - p + 1\).
- Basic operations for sorting are comparisons of keys. We let \(C(n)\) be the worst-case number of key-comparisons performed by Quicksort\((A, p, r)\). We shall try to determine \(C(n)\) as precisely as possible.
- It is easy to verify that the worst-case running time \(T(n)\) of Quicksort\((A, p, r)\) is \(\Theta(C(n))\) if a single comparison requires time \(\Theta(1)\). (i.e., for Quicksort, comparisons dominate the running time).

 In any case, \(T(n) = \Theta(C(n) \cdot \text{cost per comparison})\).

Worst-case Analysis of Quicksort

- We get the following recurrence for \(C(n)\):
 \[
 C(n) = \begin{cases}
 0 & \text{if } n \leq 1 \\
 \max_{1 \leq k \leq n} (C(k - 1) + C(n - k)) + (n - 1) & \text{if } n \geq 2
 \end{cases}
 \]

 Intuitively, worst-case seems to be \(k = 1\) or \(k = n\), i.e., everything falls on one side of the partition. This happens, e.g., if the array is sorted.

Analysis of Partition

- Partition\((A, p, r)\) does exactly \(n - 1\) comparisons for every input of size \(n\).
 This is of course apart from any comparisons which may be done inside the recursive calls to Quicksort.

Worst-Case Analysis (cont’d)

- Lower Bound: \(C(n) \geq \frac{1}{2}n(n + 1) = \Omega(n^2)\).

 Proof: Consider the situation where we are presented with an array which is already sorted. Then on every iteration, we split into one array of length \((n - 1)\), and one of length 0.

 \[
 C(n) \geq C(n - 1) + (n - 1) \\
 \geq C(n - 2) + (n - 2) + (n - 1) \\
 \vdots \\
 \geq \sum_{i=1}^{n-1} i = \frac{1}{2}n(n - 1).
 \]

- Upper Bound: \(C(n) \leq O(n^2)\).

 BOARD Bit harder than \(\Omega(n^2)\) (must consider all possible inputs).

 Overall, we will show \(C(n) = \Theta(n^2)\).
Best-Case Analysis

- \(B(n) \) = number of comparisons done by Quicksort in the best case.
- **Recurrence:**
 \[
 B(n) = \begin{cases}
 0 & \text{if } n \leq 1 \\
 \min_{1 \leq k \leq n} \left(B(k - 1) + B(n - k) \right) + (n - 1) & \text{if } n \geq 2
 \end{cases}
 \]
- Intuitively, the best case is if the array is always partitioned into two parts of the same size. This would mean
 \[B(n) \approx 2B(n/2) + \Theta(n), \]
 which implies \(B(n) = \Theta(n \log(n)) \).

Average-Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have

\[A(n) \leq 2 \ln(n)(n + 1). \] \((*) \)

Average-Case Analysis

- \(A(n) \) = number of comparisons done by Quicksort on average if all input arrays of size \(n \) are considered equally likely.
- **Intuition:** The average case is closer to the best case than to the worst case, because only repeatedly very unbalanced partitions lead to the worst case.
- **Recurrence:**
 \[
 A(n) = \begin{cases}
 0 & \text{if } n \leq 1 \\
 \sum_{k=1}^{n} \frac{1}{n} \left(A(k - 1) + A(n - k) \right) + (n - 1) & \text{if } n \geq 2
 \end{cases}
 \]
- **Solution:**
 \[A(n) \approx 2n \ln(n). \]

(ADS: lect 8 – slide 10 –)

Average Case Analysis in Detail

We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have

\[A(n) \leq 2 \ln(n)(n + 1). \] \((*) \)

(Note \((*) \) holds trivially for \(n = 1 \), because \(\ln(1) = 0 \))
We shall prove that for all \(n \geq 1 \) ("sufficiently large") we have
\[
A(n) \leq 2 \ln(n)(n + 1). \tag{*}
\]
(Note (*) holds trivially for \(n = 1 \), because \(\ln(1) = 0 \))

So assume that \(n \geq 2 \). We have
\[
A(n) = \sum_{1 \leq k \leq n} \frac{1}{n} (A(k-1) + A(n-k)) + (n-1)
\]
\[
= \frac{2}{n} \sum_{k=0}^{n-1} A(k) + (n-1).
\]
Thus
\[
nA(n) = 2 \sum_{k=0}^{n-1} A(k) + n(n-1). \tag{**}
\]
Applying (***) to \((n-1)\) for \(n \geq 3\), we obtain

\[
(n-1)A(n-1) = 2 \sum_{k=0}^{n-2} A(k) + (n-1)(n-2).
\]

Subtracting this equation from (***) (when \(n \geq 3\))

\[
nA(n) - (n-1)A(n-1) = 2A(n-1) + n(n-1) - (n-1)(n-2),
\]

thus

\[
nA(n) = (n+1)A(n-1) + 2n - 2,
\]

and therefore

\[
\frac{A(n)}{n+1} = \frac{A(n-1)}{n} + \frac{2n-2}{n(n+1)} \leq \frac{A(n-1)}{n} + \frac{2}{n}
\]
Average Case Analysis in Detail (cont’d)

Applying (**) to \((n - 1) \) for \(n \geq 3 \), we obtain

\[
(n - 1)A(n - 1) = 2 \sum_{k=0}^{n-2} A(k) + (n - 1)(n - 2).
\]

Subtracting this equation from (**) (when \(n \geq 3 \))

\[
nA(n) - (n - 1)A(n - 1) = 2A(n - 1) + n(n - 1) - (n - 1)(n - 2),
\]

thus

\[
nA(n) = (n + 1)A(n - 1) + 2n - 2,
\]

and therefore

\[
\frac{A(n)}{n + 1} = \frac{A(n - 1)}{n} + \frac{2n - 2}{n(n + 1)} \leq \frac{A(n - 1)}{n} + \frac{2}{n}
\]

We now apply unfold-and-sum to this recurrence (stopping at \(n = 2 \)):

\[
\frac{A(n)}{n + 1} \leq \frac{A(n - 1)}{n} + \frac{2}{n}
\]

\[
\vdots
\]

\[
\leq \frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k}
\]

\[
= \frac{3}{3} + 2 \sum_{k=3}^{n} \frac{1}{k} = 2 \sum_{k=2}^{n} \frac{1}{k}.
\]
Average Case Analysis in Detail (cont’d)

$$\frac{A(n)}{n+1} \leq \frac{A(n-2)}{n-1} + \frac{2}{n} + \frac{2}{n-1}$$

\[
\vdots \\
\leq \frac{A(2)}{3} + 2 \sum_{k=3}^{n} \frac{1}{k} \\
= \frac{3}{3} + 2 \sum_{k=3}^{n} \frac{1}{k} = 2 \sum_{k=2}^{n} \frac{1}{k}.
\]

It is easy to verify this result by induction. Thus

$$\frac{A(n)}{n+1} \leq 2 \sum_{k=2}^{n} \frac{1}{k} = 2 \sum_{k=1}^{n-1} \frac{1}{k+1} \leq 2 \left\lfloor \frac{n}{2} \right\rfloor = 2 \ln(n).$$

Multiplying by \((n+1)\) completes the proof of \((\ast)\).

Improvements

- Use insertion sort for small arrays.
- Iterative implementation.

Main Question

Is there a way to avoid the bad worst-case performance, and in particular the bad performance on sorted (or almost sorted) arrays?

Different strategies for choosing the pivot-element help (in practice).

Median-of-Three Partitioning

Idea: Use the median of the first, middle, and last key as the pivot.

Algorithm M3Partition\((A, p, r)\)

1. exchange \(A[(p + r)/2], A[r - 1]\)
5. Partition\((A, p + 1, r - 1)\)

Note that M3Partition\((A, p, r)\) only requires 1 more comparison than Partition\((A, p, r)\)

In can be shown that the worst-case running time of M3Quicksort is still \(\Theta(n^2)\), but at least in the case of an almost sorted array (and in most other cases that are relevant in practice) it is very efficient.
Randomized Quicksort

Idea: Use key of random element as the pivot.

Algorithm $\text{RPartition}(A, p, r)$
1. $k \leftarrow \text{Random}(p, r)$ ⊻ choose k randomly from $\{p, \ldots, r\}$
2. exchange $A[k], A[r]$
3. $\text{Partition}(A, p, r)$

Algorithm $\text{Randomized Quicksort}(A, p, r)$
1. if $p < r$ then
2. $q \leftarrow \text{RPartition}(A, p, r)$
3. $\text{Randomized Quicksort}(A, p, q - 1)$
4. $\text{Randomized Quicksort}(A, q + 1, r)$

Analysis of Randomized Quicksort

The running time of $\text{Randomized Quicksort}$ on an input of size n is a random variable.

An analysis similar to the average case analysis of Quicksort shows:

Theorem
For all inputs (A, p, r), the expected number of comparisons performed during a run of $\text{Randomized Quicksort}$ on input (A, p, r), is at most $2 \ln(n)(n + 1)$, where $n = r - p + 1$.

Corollary
Thus the expected running time of $\text{Randomized Quicksort}$ on any input of size n is $\Theta(n \lg(n))$.

Reading Assignment
Sections 7.2, 7.3, 7.4 of [CLRS] (edition 2 or 3)

Problems

1. Convince yourself that Partition works correctly by working a few examples, or (better) try to prove that it works correctly.

2. In our proof of the Average-running time $A(n)$, we can think of the input as being some permutation of $(1, \ldots, n)$, and assume all permutations are equally likely. Why does this explain the $1/n$ factor in the recurrence on slide 10?

3. Show that if the array is initially in decreasing order, then the running time is $\Theta(n^2)$.
 (the $O(n^2)$ is already taken care of on slide 8 (well, the board note), the $\Omega(n^2)$ involves considering Partition on a decreasing array).