
Algorithms and Data Structures:
Computational Geometry I and II

ADS: lects 17 & 18 – slide 1 –

Computational Geometry

In general, we will be considering 2-dimensional geometric problems
(problems in the real plane).

Notation and basic definitions

I Points are pairs (x , y) with x , y ∈ R.

I A convex combination of two points p1 = (x1, y1) and p2 = (x2, y2)
is a point p = (x , y) such that

x = αx1 + (1 − α)x2

y = αy1 + (1 − α)y2

for some 0 ≤ α ≤ 1.

Abbreviate to p = αp1 + (1 − α)p2.
Intuitively, a point p is a convex combination of p1 and p2 if it is on
the line segment from p1 to p2

ADS: lects 17 & 18 – slide 2 –

Line Segments

Undirected line segment p1p2 (set of all convex combinations of p1 and
p2)

Line Segments

Undirected line segment p1p2 (set of all convex combinations of
p1 and p2)

y

x

p2

p1

A&DS Lecture 14 2 Mary Cryan

ADS: lects 17 & 18 – slide 3 –

Directed Line Segments

Directed line segment −−→p1p2:

Directed Line Segments

Directed line segment −−−→p1p2:

y

x

p2

p1

When p1 = (0, 0), the origin, treat −−−→p1p2 as the vector p2.

A&DS Lecture 14 3 Mary Cryan

When p1 = (0, 0), the origin, treat −−→p1p2 as the vector p2.

ADS: lects 17 & 18 – slide 4 –

Clockwise and Counterclockwise from a VectorClockwise and Counterclockwise from a Vector

counter−
clockwise

clockwise

A&DS Lecture 14 4 Mary Cryan

ADS: lects 17 & 18 – slide 5 –

Basic Problems

1. Given −−→p0p1 and −−→p0p2 is −−→p0p1 collinear with, clockwise or
counterclockwise from −−→p0p2 w.r.t. p0?

2. Given p1p2 and p2p3, if we traverse p1p2 and then p2p3 do we make
a left, a right, or no turn at p2?

3. Do p1p2 and p3p4 intersect?

Design aim: use only +, −, × and comparisons.
Avoid division and trigonometric functions.

ADS: lects 17 & 18 – slide 6 –

Straightforward Solutions

Use division and/or trigonometric functions. Not our approach

I For Problem (1) (special case with p0 = (0, 0), p2 = (x2, 0)):

vector p1 is clockwise from vector p2

⇐⇒ 0 <](p1, p2) < π ⇐⇒ sin(](p1, p2)) > 0.

(It turns out, however, that we can compute the sign of sin(](p1, p2))
precisely without using either division or trigonometric functions.)

In measuring the angle from vector p1 round to vector p2, we measure
anti-clockwise from p1. It is a convention.

I For Problem (3):

I Compute intersection point p of lines through p1, p2 and through
p3, p4 (if no such point exists, then the segments p1p2 and p3p4 do
not intersect).

I Then check if p is on both segments.

ADS: lects 17 & 18 – slide 7 –

Cross product

Given p = (xp, yp), q = (xq, yq). Define cross product by:

p × q = det

(
xp xq

yp yq

)
= xpyq − xqyp.

Intuitively: Signed area of parallelogram spanned by vectors p, q:

p

q

p+q

ADS: lects 17 & 18 – slide 8 –

Properties of the Cross Product

Lemma 1
p = (xp, yp), q = (xq, yq) points in the plane. Then

1. p × q = −q × p

2. – If p × q > 0, then vector p is clockwise from q.
– If p × q = 0, then vectors p and q are collinear.
– If p × q < 0, then vector p is counterclockwise from q.

Proof: (1) is immediate from the definition. (2) is elementary analytical
geometry. For homework, first compute the line through (0, 0) and q.
Then check where p should lie in relation to this line - there are 2 cases,
xq ≥ 0 and xq < 0).

ADS: lects 17 & 18 – slide 9 –

Solution to Problem (1)

Problem
Given −−→p0p1 and −−→p0p2, is −−→p0p1 collinear with, clockwise or
anti-clockwise from −−→p0p2 w.r.t. p0?

Solution
Use Lemma 1 after moving origin to (0, 0). Just examine
sign of:

(p1−p0)×(p2−p0) = (x1−x0)(y2−y0)−(x2−x0)(y1−y0).

Tip

Can do a test: e.g., check vector
−−−−−−−→
(0, 0)(2, 0) against the

point (1, 1) (which is anti-clockwise of the vector).

ADS: lects 17 & 18 – slide 10 –

Solution to Problem (2)

Problem
Given p0p1 and p1p2, if we traverse p0p1 and then p1p2 do
we make a left, a right, or no turn at p1?

Solution

Solution to Problem (2)

Problem
Given p0p1 and p1p2, if we traverse p0p1 and then p1p2 do
we make a left, a right, or no turn at p1?

Solution

clockwisecounter-clockwise

p2

p1

p0p0

p1

p2

(p2 − p0)× (p1 − p0) = 0: collinear segments — no turn.
(p2 − p0)× (p1 − p0) < 0: left turn at p1.
(p2 − p0)× (p1 − p0) > 0: right turn at p1.

A&DS Lecture 14 10 Mary Cryan

(p1 − p0)× (p2 − p0) = 0: collinear segments — no turn.
(p1 − p0)× (p2 − p0) < 0: right turn at p1.
(p1 − p0)× (p2 − p0) > 0: left turn at p1.

ADS: lects 17 & 18 – slide 11 –

Solution to Problem (3)

Problem
p1p2 and p3p4 intersect?

Solution
p1p2 straddles p3p4 if p1 and p2 lie on different sides of the
line through p3, p4.
Then p1p2 and p3p4 intersect if, and only if, one of the
following conditions holds:

I p1p2 straddles p3p4 and p3p4 straddles p1p2.
I An endpoint of one segment lies on the other.

ADS: lects 17 & 18 – slide 12 –

4 cases for the Intersection Question

L

L

L

L
L

1

2

3
4

L intersects with L3 (one point of L3 lies on L) and with L4 (both “straddle
tests” succeed).
L does not intersect L2 (only one of the “straddle tests” succeeds) or L1.

ADS: lects 17 & 18 – slide 13 –

Straddle Test

p1p2 straddles p3p4 if, and only if,

(
(p1 − p3)× (p4 − p3)

)(
(p2 − p3)× (p4 − p3)

)
< 0.

ADS: lects 17 & 18 – slide 14 –

Point on Segment

p3 is on segment p1p2 if

(p3 − p1)× (p2 − p1) = 0

and
min(x1, x2) ≤ x3 ≤ max(x1, x2)

and
min(y1, y2) ≤ y3 ≤ max(y1, y2)

The last two conditions simply say that p is in the rectangle with
(diagonally opposite) corner points p1, p2

ADS: lects 17 & 18 – slide 15 –

Solution of Problem (3) Completed
Algorithm Segments-Intersect(p1, p2, p3, p4)

1. d12,3 ← (p3 − p1)× (p2 − p1)

2. d12,4 ← (p4 − p1)× (p2 − p1)

3. d34,1 ← (p1 − p3)× (p4 − p3)

4. d34,2 ← (p2 − p3)× (p4 − p3)

5. if d12,3d12,4 < 0 and d34,1d34,2 < 0 then return true

6. else if d12,3 = 0 and In-Box(p1, p2, p3) then return true

7. else if d12,4 = 0 and In-Box(p1, p2, p4) then return true

8. else if d34,1 = 0 and In-Box(p3, p4, p1) then return true

9. else if d34,2 = 0 and In-Box(p3, p4, p2) then return true

10. else return false

Algorithm In-Box(p1, p2, p3)

1. return min(x1, x2) ≤ x3 ≤ max(x1, x2)

and min(y1, y2) ≤ y3 ≤ max(y1, y2)

ADS: lects 17 & 18 – slide 16 –

The Convex Hull

Definition 2

1. A set C of points is convex if for all p, q ∈ C the whole line segment
pq is contained in C .

2. The convex hull of a set Q of points is the smallest convex set C
that contains Q.

Observation 3
The convex hull of a finite set Q of points is a convex polygon whose
vertices (corner points) are elements of Q.

ADS: lects 17 & 18 – slide 17 –

The Convex Hull Problem

Input: A finite set Q of points in the plane

Output: The vertices of the convex hull of Q in counterclockwise order.

Example:

The Convex Hull Problem

Input: A finite set S of points in the plane
Output: The vertices of the convex hull of S in counterclockwise order.

Example 16.3

a
b

c

de

f

g

h

i
j

Output of a convex-hull algorithm: a, b, c, g, j
A&DS Lecture 16 2 Mary CryanOutput of a convex-hull algorithm: a, b, c , g , j

ADS: lects 17 & 18 – slide 18 –

Polar Angles

The polar angle of a point q with respect to a point p is the (as usual
anti-clockwise) angle between a horizontal line and the line through p
and q.

Polar Angles

The polar angle of a point q with respect to a point p is the angle
between a horizontal line and the line through p and q.

p

q

Lemma
There is an algorithm that, given points p0, p1, . . . , pn, sorts
p1, . . . , pn by non-decreasing polar angle with respect to p0 in
O(n lgn) time (How? - this is related to Q1 of the week 10
tutorial).

A&DS Lecture 16 3 Mary Cryan

Lemma 4
There is an algorithm that, given points p0, p1, . . . , pn, sorts p1, . . . , pn

by non-decreasing polar angle with respect to p0 in O(n lg n) time.

ADS: lects 17 & 18 – slide 19 –

Graham’s Scan

IDEA

I Let p0 be a “bottom-most” point in the set. Start walking around
the points in the order of increasing polar angles.

I As long as you turn left, keep on walking.

I If you have to turn right to reach the next point, discard the current
point and step back to the previous point. Repeat this until you can
turn left to the next point.

I The points that remain are the vertices of the convex hull.

ADS: lects 17 & 18 – slide 20 –

Turning Left (reminder)

Problem
Given p, q, r in the plane, if we walk from p → q → r , do
we make a left, a right, or no turn at q?

Solution

q q

r

p

r

anti−clockwise

p

clockwise

(q − p)× (r − p) = 0: collinear segments — no turn.
(q − p)× (r − p) < 0: right turn at q.
(q − p)× (r − p) > 0: left turn at q.

ADS: lects 17 & 18 – slide 21 –

Example (BOARD)
Example

a
b

c

de

f

g

h

i
j

A&DS Lecture 16 5 Mary Cryan

ADS: lects 17 & 18 – slide 22 –

Implementation
Algorithm Graham-Scan(Q)

1. Let p0 be the point in Q with minimum y coordinate.
(if there is a tie, take the leftmost such point).

2. Sort Q \ {p0} “lexicographically” in terms of (primary key) non-decreasing
polar angle with respect to p0 and (secondary key) distance from p0.

For angles with more than one point, delete all corresponding points
except the one farthest from p0.

Let 〈p1, . . . , pm〉 be the resulting list..
3. if m ≤ 2 then return 〈p0, . . . , pm〉
4. else {
5. Initialise stack S
6. S .push(p0)
7. S .push(p1)
8. S .push(p2)
9. for i ← 3 to m do

10. while the angle formed by the topmost two elements of S and pi
does not make a left turn do

11. S .pop
12. S .push(pi)
13. return S
14. }

ADS: lects 17 & 18 – slide 23 –

Analysis of Running time

Let n = |Q |, then m ≤ n.

I Lines 3–8, 13 require time Θ(1).

I Line 1 requires time Θ(n) in the worst case.

I Line 2 requires time Θ(n lg n).

I The outside (for) loop in lines 9–12 is iterated m − 2 times. Thus,
disregarding the time needed by the inner while loop, the loop requires
time Θ(m) = O(n).

I The inner loop in lines 10–11 is executed at most once for each element,
because every element enters the stack at most once and thus can only be
popped once. Thus overall the inner loop requires time O(n).

Thus the overall worst-case running time is

Θ(n lg n).

ADS: lects 17 & 18 – slide 24 –

Proof of Correctness

(I) First we consider the effect of executing lines 1 and 2 to get the (possibly
smaller) set of points P = p0, p1, . . . , pm.

claim (i): The convex hull of Q is equal to the convex hull of P.

Proof of claim (i): We only discard a point q ∈ Q if it has the same polar angle
wrt p0 as some point pi ∈ P, AND q is closer to p0 than this pi . When q satisfies
these 2 conditions, then q lies on p0pi . The convex hull of P by definition must
contain p0pi for every pi , so the convex hull of P must contain q.
Applying this inductively (on the entire set of points removed) we find that the
convex hull of P equals that of Q.

(II) Next we must prove that lines 3-14 compute the convex hull of p0, p1, . . . , pm.

If m ≤ 2 then the alg returns all m + 1 (1, 2, or 3) points (line 3). Correct.

Else m > 2 and the algorithm executes lines 5.-13.

For any 2 ≤ i ≤ m, define Ci to be the convex hull of p0, . . . , pi .

After executing lines 5.-8., the points on stack S are the vertices of C2 (clockwise).
We now prove that this situation holds for Ci after we execute the for loop
with i .

ADS: lects 17 & 18 – slide 25 –

Proof of Correctness (m > 2) cont’d

claim (ii): Let i be such that 2 ≤ i ≤ m. Then after the ‘i ’-execution of the
for loop (lines 9-12), the points on S are the vertices of Ci in clockwise order.

Proof of claim (ii): Our proof is by induction.

Base case (i=2): In this case there is no i-iteration of the loop. However, the
stack holds p0, p1, p2 (lines 6.-8.), which form the convex hull of {p0, p1, p2}.

Induction hypothesis (IH): Assume claim (ii) holds for some i , 2 ≤ i < m.

Induction step: We will show claim (ii) also holds for i + 1.

I Since the polar angle of pi+1 is strictly greater than the polar angle of pi ,
therefore p0pipi+1 forms a triangle that is not contained in Ci .

..
..

p

pp
ii+1

0

I Note pi+1 is NOT contained in Ci and thus is definitely a vertex of Ci+1.

ADS: lects 17 & 18 – slide 26 –

Proof of Correctness (m > 2) cont’d

I By (IH) any q “‘popped” so far is in the convex hull formed by the points
currently on stack S . . . ⇒ . . . the convex hull Ci+1 is contained in the
convex hull of pi+1 and the points on S .

I Left: First suppose the “next-to-top” point p on S , followed by the “top”
point pi , followed by pi+1 creates a “left turn”:

p

pp
ii+1

0

p

.
.
.

I Then the triangle p0ppi+1 does NOT contain all of triangle p0pipi+1

I ⇒ pi must be on the Convex Hull Ci+1.
I Using convexity of the points on S , p0 → p̂ → pi+1 is a left turn for all

points p̂ on S
I ⇒ all such p̂ must be on the Convex Hull Ci+1.
I ⇒ hence the decision to “push” pi+1 and leave all items of S there,

correctly constructs Ci+1. ⇒ claim (ii) Left proven.

ADS: lects 17 & 18 – slide 27 –

Proof of Correctness (m > 2) cont’d

I Right: Otherwise suppose the “next-to-top” point p on S , followed by the
“top” point pi , followed by pi+1, creates a “right turn”:

p

p
i+1

0

.
.

.
p
i

p

I Then the triangle p0ppi+1 does contain all of triangle p0pipi+1.
I ⇒ Ci+1 does not need to include the point pi .
I ⇒ decision to “pop” pi (top item on S) on line 11 is correct.

After the “pop”, it is still true that the vertices of the convex hull Ci+1 are
from the set of points on S , together with pi+1.

I We can apply this iteratively by considering the “turn direction” of the top
two items on the stack, p∗, p̂ say (taking the roles of p, pi), followed by
pi+1, “popping” until there is a left turn.

I Once we find a left turn slide 12 applies, and we push pi+1 onto S on line
12, to complete Ci+1. ⇒ claim (ii) right proven.

ADS: lects 17 & 18 – slide 28 –

Proof of Correctness (m > 2) cont’d

Wrapping up . . .

I We have proven the inductive step for claim (ii).

I Hence claim (ii) holds after the consideration of every point p3, . . . , pm,
and in particular for i = m:

I ⇒ after the m-execution (the final execution) of the for, the points on the
stack S are the vertices of Cm in clockwise order.

The vertices Cm are the vertices of the original set of points Q (by claim
(i)).

Hence Graham’s scan computes the Convex Hull of its input correctly.

ADS: lects 17 & 18 – slide 29 –

Optimality

I The best-known algorithm for finding the convex hull has a running
time of O(n lg h), where h is the number of vertices of the convex
hull.

I It can be shown (based on fairly natural assumptions) that every
algorithm for finding the convex hull has a worst-case running time
of

Ω(n lg n).

The proof of this lower bound is due to the fact that we can
implement real-number sorting using Convex Hull.

ADS: lects 17 & 18 – slide 30 –

Reading Assignment

Section 33.3 of [CLRS].

Problems

1. Exercises 33.3-3 and 33.3-5 of [CLRS].

2. Show how to sort a collection of n points by polar angle (wrt some
lowest point p0) in O(n lg(n)) time, without using division or
trigonometry.

3. Prove that the problem of finding the Convex Hull of n points has a
lower bound of Ω(n lg n). For this, think about using a reduction
from sorting to Convex Hull (that is, think about how to use a
Convex Hull algorithm to sort a list of numbers).

ADS: lects 17 & 18 – slide 31 –

