Algorithms and Data Structures: Network Flows
Flow Networks

Definition 1
A flow network consists of

- A directed graph $G = (V, E)$.
- A capacity function $c : V \times V \rightarrow \mathbb{R}$ such that $c(u, v) \geq 0$ if $(u, v) \in E$ and $c(u, v) = 0$ for all $(u, v) \notin E$.
- Two distinguished vertices $s, t \in V$ called the source and the sink, respectively.

We read (u, v) to mean $u \rightarrow v$.

Assumption
Each vertex $v \in V$ is on some directed path from s to t. This implies that G is connected (but not necessarily strongly connected), and that $|E| \geq |V| - 1$.

ADS: lects 12 & 13 – slide 2 –
For this graph, \(V = \{s, r, u, v, w, x, y, z, t\} \). The edge set is
\[
E = \{(s, u), (s, r), (s, x), (u, v), (u, x), (v, x), (v, w), (r, w), (r, y), (x, y), (y, r), (y, z), (z, w), (z, t), (w, t)\}.
\]
Some examples of capacities are \(c(s, x) = 10 \), \(c(r, y) = 5 \), \(c(v, x) = 20 \) and \(c(v, r) = 0 \) (since there is no arc from \(v \) to \(r \)).
Network Flows

Definition 2
Let $\mathcal{N} = (G = (V, E), c, s, t)$ be a flow network.
A flow in \mathcal{N} is a function

$$f : V \times V \rightarrow \mathbb{R}$$

satisfying the following conditions:

Capacity constraint: $f(u, v) \leq c(u, v)$ for all $u, v \in V$.
Skew symmetry: $f(u, v) = -f(v, u)$ for all $u, v \in V$.
Flow conservation: For all $u \in V \setminus \{s, t\}$,

$$\sum_{v \in V} f(u, v) = 0.$$
Network Flows (cont’d)

\[\mathcal{N} = (\mathcal{G} = (V, E), c, s, t) \text{ flow network, } f : V \times V \to \mathbb{R} \text{ flow in } \mathcal{N}. \]

- For \(u, v \in V \) we call \(f(u, v) \) the net flow at \((u, v) \).
- The value of the flow \(f \) is the number

\[|f| = \sum_{v \in V} f(s, v). \]

Notice that our particular defn. of flow (the “skew-symmetry” constraint) ensures that \(f(u, v) \) is truly the “net flow” in the usual sense of the word (e.g. if \((r, y) \) on slide 2 was to carry flow 3, and \((y, r) \) to carry flow 4, we will have \(f(r, y) = -1 \)).
Example

A flow of value 18.

Only positive net flows are shown.
The Maximum-Flow Problem

Input: Network \(\mathcal{N} \)

Output: Flow of maximum value in \(\mathcal{N} \)

The problem is to find the flow \(f \) such that \(|f| = \sum_{v \in V} f(s, v) \) is the largest possible (over all “legal” flows).
The Ford-Fulkerson Algorithm

Published in 1956 by Delbert Fulkerson and Lester Randolph Ford Jr.

Algorithm Ford-Fulkerson(\mathcal{N})

1. $f \leftarrow$ flow of value 0
2. while there exists an $s \rightarrow t$ path \mathcal{P} in the “residual network” do
3. $f \leftarrow f + f_P$
4. Update the “residual network”.
5. return f

The “residual network” is \mathcal{N} with the “used-up” capacity removed.
To make this precise, we need notation, and proofs - this lecture.
Some Technical Observations

\(\mathcal{N} = (G = (V, E), c, s, t) \) flow network, \(f : V \times V \to \mathbb{R} \) flow in \(\mathcal{N}, u, v \in V. \)

1. \(f(u, u) = 0 \) for all \(u \in V. \)

 "Proof": \(f(u, u) = -f(u, u) \) by skew symmetry.

2. For any \(v \in V \setminus \{s, t\}, \)
 \[
 \sum_{u \in V} f(u, v) = 0.
 \]

 Proof: \(\sum_{u \in V} f(u, v) = -\sum_{u \in V} f(v, u) = 0 \) by skew symmetry and flow conservation.

3. If \((u, v) \notin E \) and \((v, u) \notin E \) then \(f(u, v) = f(v, u) = 0. \)

 Proof: Either \(f(u, v) \) or \(f(v, u) \geq 0 \) by skew symmetry. Say, \(f(u, v) \geq 0. \)
 Then \(0 \leq f(u, v) \leq c(u, v) = 0 \) by the capacity constraint. So \(f(u, v) = 0. \)
 By skew symmetry, this shows \(f(v, u) = 0. \)
One More Technical Observation

4. The **positive net flow entering** \(v \) is:

\[
\sum_{u \in V} f(u, v) > 0
\]

The **positive net flow leaving** \(v \) is defined symmetrically.

Flow conservation now says:

“**positive net flow in = positive net flow out**”.

All these observations are just to make it easy for us to talk about flows.
Working with Flows

Implicit summation notation: For \(X, Y \subseteq V \) put

\[
f(X, Y) = \sum_{u \in X} \sum_{v \in Y} f(u, v) = \sum_{(u,v) \in X \times Y} f(u, v).
\]

Abbreviations:

- \(f(u, Y) \) stands for \(f(\{u\}, Y) \) and
- \(f(X, v) \) stands for \(f(X, \{v\}) \).

Conservation of flow is now:

\[
f(u, V) = 0 \quad \text{for all } u \in V \setminus \{s, t\}.
\]
Lemma 3

\(\mathcal{N} = (G = (V, E), c, s, t) \) flow network, \(f \) flow in \(\mathcal{N} \).

Then for all \(X, Y, Z \subseteq V \),

1. \(f(X, X) = 0 \).
2. \(f(X, Y) = -f(Y, X) \).
3. If \(X \cap Y = \emptyset \) then

\[
\begin{align*}
f(X \cup Y, Z) &= f(X, Z) + f(Y, Z), \\
f(Z, X \cup Y) &= f(Z, X) + f(Z, Y).
\end{align*}
\]

Lemma “lifts” Network flow properties to sets-of-vertices.
Proof of Lemma 3

1. \[f(X, X) = \sum_{(u,v) \in X \times X} f(u,v) \quad \text{by defn. of } f(X, X) \]
 \[= \sum_{\{u,v\} \subseteq X} (f(u,v) + f(v,u)) \quad \text{take } (u,v), (v,u) \text{ together} \]
 \[= 0. \quad \text{by skew-symm} \]

2. \[f(X, Y) = \sum_{(u,v) \in X \times Y} f(u,v) \quad \text{by defn of } f(X, Y) \]
 \[= \sum_{(u,v) \in X \times Y} -f(v,u) \quad \text{by skew-symmetry} \]
 \[= -\sum_{(v,u) \in Y \times X} f(v,u) \quad \text{take } - \text{ outside the summation} \]
 \[= -f(Y, X). \quad \text{by defn of } f(Y, X) \]
Proof of Lemma 3 (cont’d)

3.

\[f(X \cup Y, Z) = \sum_{u \in X \cup Y} \sum_{v \in Z} f(u, v) \]
\[= \sum_{u \in X} \sum_{v \in Z} f(u, v) + \sum_{u \in Y} \sum_{v \in Z} f(u, v) - \sum_{u \in X \cap Y} \sum_{v \in Z} f(u, v) \]

(expand sum into \(X\) and \(Y\), subtract duplicates in \(X \cap Y\))

\[= \sum_{u \in X} \sum_{v \in Z} f(u, v) + \sum_{u \in Y} \sum_{v \in Z} f(u, v) \]

(but \(X \cap Y = \emptyset\), so third term disappears)

\[= f(X, Z) + f(Y, Z). \]

Moreover,

\[f(Z, X \cup Y) = -f(X \cup Y, Z) = -(f(X, Z) + f(Y, Z)) = f(Z, X) + f(Z, Y). \]
Corollary 4

\(\mathcal{N} = (G = (V, E), c, s, t) \) flow network, \(f \) flow in \(\mathcal{N} \). Then

\[|f| = f(V, t). \]

Proof:

\[
\begin{align*}
|f| &= f(s, V) \quad \text{(by definition)} \\
 &= f(V, V) - f(V \setminus \{s\}, V) \quad \text{(by Lemma 3 (3.))} \\
 &= -f(V \setminus \{s\}, V) \quad \text{(by Lemma 3 (1.))} \\
 &= f(V, V \setminus \{s\}) \quad \text{(by Lemma 3 (2.))} \\
 &= f(V, t) + f(V, V \setminus \{s, t\}) \quad \text{(by Lemma 3 (3.))} \\
 &= f(V, t) + \sum_{v \in V \setminus \{s, t\}} f(V, v) \quad \text{(by Definition)} \\
 &= f(V, t) \quad \text{(by flow conservation)}
\end{align*}
\]
Residual Networks

Idea is to capture possible extra flow given current flow.

Definition 5

$\mathcal{N} = (\mathcal{G} = (V, E), c, s, t)$ flow network, f flow in \mathcal{N}.

1. For all $u, v \in V \times V$, the *residual capacity* of (u, v) is

 $$c_f(u, v) = c(u, v) - f(u, v).$$

2. The *residual network* of \mathcal{N} induced by f is

 $$\mathcal{N}_f((V, E_f), c_f, s, t),$$

 where

 $$E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}$$

Notice that E_f may contain edges not originally in E ("back-edges").
Example

A flow and the corresponding residual network
Adding Flows

Lemma 6
Let $\mathcal{N} = (G = (V, E), c, s, t)$ be a flow network.
Let f be a flow in \mathcal{N}.
Let $g : V \times V \to \mathbb{R}$ be a flow in the residual network \mathcal{N}_f.
Then the function $f + g : V \times V \to \mathbb{R}$ defined by

$$(f + g)(u, v) = f(u, v) + g(u, v)$$

is a flow of value $|f| + |g|$ in \mathcal{N}.
Proof of Lemma 6

First we have to check that \(f + g \) is actually a flow in \(\mathcal{N} \).

Capacity constraints:

\[
(f + g)(u, v) = f(u, v) + g(u, v) \\
\leq f(u, v) + c_f(u, v) \\
= f(u, v) + c(u, v) - f(u, v) \\
= c(u, v).
\]

Skew symmetry:

\[
(f + g)(u, v) = f(u, v) + g(u, v) = -f(v, u) - g(v, u) = -(f + g)(v, u).
\]

Flow Conservation: For every \(u \in V \setminus \{s, t\} \):

\[
\sum_{v \in V} (f + g)(u, v) = \sum_{v \in V} f(u, v) + \sum_{v \in V} g(u, v) = 0 + 0 = 0.
\]
Proof of Lemma 6 (cont’d)

Next we have to check that $f + g$ does have the value that we claimed for it.

Value:

\[
|f + g| = \sum_{v \in V} (f + g)(s, v)
\]

\[
= \sum_{v \in V} f(s, v) + \sum_{v \in V} g(s, v)
\]

\[
= |f| + |g|.
\]
Augmenting Paths

Definition 7

\[N = (G = (V, E), c, s, t) \] flow network, \(f \) flow in \(N \).

Then an **augmenting path** for \(f \) is a path \(P \) from \(s \) to \(t \) in the residual network \(N_f \).

The **residual capacity** of \(P \) is

\[
 c_f(P) = \min \{ c_f(u, v) \mid (u, v) \text{ edge on } P \}.
\]

Note that \(c_f(P) > 0 \), by definition of \(E_f \) (recall that we only keep edges in \(E_f \) if their residual capacity is strictly positive).
An augmenting path of residual capacity 10
Lemma 8

$\mathcal{N} = (G = (V, E), c, s, t)$ flow network, f flow in \mathcal{N}. Define \mathcal{P} augmenting path. Then $f_\mathcal{P} : V \times V \rightarrow \mathbb{R}$ defined by

$$f_\mathcal{P}(u, v) = \begin{cases}
 c_f(\mathcal{P}) & \text{if } (u, v) \text{ is an edge of } \mathcal{P}, \\
 -c_f(\mathcal{P}) & \text{if } (v, u) \text{ is an edge of } \mathcal{P}, \\
 0 & \text{otherwise}
\end{cases}$$

is a flow in \mathcal{N}_f of value $c_f(\mathcal{P})$.

Proof left as an exercise. It is not too difficult - just have to check that the three conditions of a flow are satisfied (and that the value is $c_f(\mathcal{P})$). Similar to Lemma 6.
Augmenting a Flow

Corollary 9
\(\mathcal{N} = (G = (V, E), c, s, t) \) flow network, \(f \) flow in \(\mathcal{N} \). Let \(P \) be an augmenting path. Then \(f + f_P \) is a flow in \(\mathcal{N} \) of value

\[|f| + c_f(P) > |f|. \]

Proof: Follows from Lemma 6 and Lemma 8.
The Ford-Fulkerson Algorithm

Algorithm $\text{FORD-FULKERSON}(N)$
1. $f \leftarrow$ flow of value 0
2. while there exists an augmenting path P in N_f do
3. \hspace{1em} $f \leftarrow f + f_P$
4. return f

To prove that FORD-FULKERSON correctly solves the Maximum Flow problem, we have to prove that:

1. The algorithm terminates.
2. After termination, f is a maximum flow.
Cuts

Definition 10

\(\mathcal{N} = (G = (V, E), c, s, t) \) flow network.

A cut of \(\mathcal{N} \) is a pair \((S, T)\) such that:

1. \(s \in S \) and \(t \in T \),
2. \(V = S \cup T \) and \(S \cap T = \emptyset \).

The capacity of the cut \((S, T)\) is

\[
c(S, T) = \sum_{u \in S, v \in T} c(u, v).
\]
Example

A cut of capacity 45.
Example

A cut of capacity 25.
Lemma 11

$\mathcal{N} = (G = (V, E), c, s, t)$ flow network, f flow in \mathcal{N}, (S, T) cut of \mathcal{N}.

Then

$$|f| = f(S, T).$$

Proof: We apply Lemma 3:

$$\begin{align*}
|f| &= f(s, V) \\
&= f(s, V) + f(S - \{s\}, V) \quad [t \not\in S \Rightarrow f(S - \{s\}, V) = 0] \\
&= f(S, V) \\
&= f(S, T) + f(S, S) \\
&= f(S, T).
\end{align*}$$
Corollary 12

The value of any flow in a network is bounded from above by the capacity of any cut.

Proof: Let f be a flow and (S, T) a cut. Then

$$|f| = f(S, T) \leq c(S, T).$$
The Max-Flow Min-Cut Theorem

Theorem 13

Let $N = (G = (V, E), c, s, t)$ be a flow network. Then the maximum value of a flow in N is equal to the minimum capacity of a cut in N.
Proof of the Max-Flow Min-Cut Theorem

Let f be a flow of maximum value and (S, T) a cut of minimum capacity in \mathcal{N}. We shall prove that

$$|f| = c(S, T).$$

1. $|f| \leq c(S, T)$ follows from Corollary 12. So all we have to prove is that there is a cut (S, T) such that

 $$c(S, T) \leq |f|.$$

2. First remember that $|f|$ has no augmenting path.

 Proof: If P was an augmenting path, then $f + f_P$ would be a flow of larger value (because by definition of \mathcal{N}_f, all edges in \mathcal{N}_f have strictly positive weights).

3. Thus there is no path from s to t in \mathcal{N}_f. Let

 $$S = \{v \mid \text{there is a path from } s \text{ to } v \text{ in } \mathcal{N}_f\}$$

 and $T = V \setminus S$. Then (S, T) is a cut.
Proof of the Max-Flow Min-Cut Theorem (cont’d)

4. By definition of S, and because reachability in graphs is a transitive relation, there cannot be any edge from S to T in \mathcal{N}_f. Thus for all $u \in S$, $v \in T$ we have $c(u, v) - f(u, v) = 0$.

5. Thus

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v) = \sum_{u \in S} \sum_{v \in T} f(u, v) = f(S, T) = |f|$$

(by Lemma 11).
Corollaries

Corollary 14
A flow is maximum if, and only if, it has no augmenting path.

Proof: This follows from the proof of the Max-Flow Min-Cut theorem.

Corollary 15
If the Ford-Fulkerson algorithm terminates, then it returns a maximum flow.

Proof: The flow returned by Ford-Fulkerson has no augmenting path.
Termination

Let f^* be a maximum flow in a network N.

- If all capacities are integers, then Ford-Fulkerson stops after at most
 \[|f^*|\]
 iterations of the main loop.

- If all capacities are rationals, then Ford-Fulkerson stops after at most
 \[q \cdot |f^*|\]
 iterations of the main loop, where q is the least common multiple of
 the denominators of all the capacities.

- For arbitrary real capacities, it may happen that Ford-Fulkerson does not stop.
A Nasty Example
The Edmonds-Karp Heuristic

Idea

Always choose a shortest augmenting path.

\(n \) number of vertices, \(m \) number of edges. Recall that \(n \leq m + 1 \)

A shortest augmenting path can be found by Breadth-First-Search (reading assignment) in time \(O(n + m) = O(m) \).

Theorem 16

The Ford-Fulkerson algorithm with the Edmonds-Karp heuristic stops after at most \(O(nm) \) iterations of the main loop.
Thus the running time is \(O(nm^2) \).
We will run Ford-Fulkerson (with the Edmonds-Karp heuristic) on this network. This is interesting because we will see the “back-edges” being used to “undo” part of an previous augmenting path.
1st augmenting path: $s \rightarrow r \rightarrow w \rightarrow t$.

Length is 3 (so we satisfy Edmonds-Karp rule to take a shortest possible path). Min capacity is 10, so we push flow of 10 along the path. Starting flow becomes 10.
Residual network after adding first flow of value 10 along $s \to r \to w \to t$. The newly-created “back-edges” are shown in red.
There is no longer any augmenting path of length ≤ 3, and the only one of length 4 is $s \rightarrow x \rightarrow y \rightarrow z \rightarrow t$, which has a minimum capacity $\min\{10, 10, 15, 15\}$, ie 10.

We push this extra flow of value 10 along $s \rightarrow x \rightarrow y \rightarrow z \rightarrow t$, bringing overall flow to 20.
Residual network after adding flow from second augmenting path $s \to x \to y \to z \to t$, overall flow now 20.
Now there is only one simple augmenting path - $s \rightarrow u \rightarrow v \rightarrow w \rightarrow r \rightarrow y \rightarrow z \rightarrow t$, with minimum residual capacity 5.

Notice we use the “back-edge” $w \rightarrow r$ in our path. This is essentially “re-shipping” 5 units from the first flow-path away from $r \rightarrow w \rightarrow t$ and along $r \rightarrow y \rightarrow z \rightarrow t$ instead.
Residual network after adding 3rd flow, of value 5 ⇒ total flow 25.

There is no longer any augmenting path in our residual network (set of vertices “reachable” from s is \{s, u, v, x, w, r\}).
Problems

 Not in [CLRS] (ed 3). Question is: consider Figure 26.1(b) and find a pair of subsets $X, Y \subseteq V$ such that $f(X, Y) = -f(V \setminus X, Y)$. After that, find a pair of subsets $X', Y' \subseteq V$ for which $f(X', Y') \neq -f(V \setminus X', Y')$.

4. Problem 26-4 of [CLRS].