Flow Networks

Definition 1
A flow network consists of
- A directed graph $G = (V, E)$.
- A capacity function $c : V \times V \to \mathbb{R}$ such that $c(u, v) \geq 0$ if $(u, v) \in E$ and $c(u, v) = 0$ for all $(u, v) \notin E$.
- Two distinguished vertices $s, t \in V$ called the source and the sink, respectively.

We read (u, v) to mean $u \to v$.

Assumption
Each vertex $v \in V$ is on some directed path from s to t. This implies that G is connected (but not necessarily strongly connected), and that $|E| \geq |V| - 1$.

Example
For this graph, $V = \{s, r, u, v, w, x, y, z, t\}$. The edge set is
$$E = \{(s, u), (s, r), (s, x), (u, v), (u, x), (v, w), (r, w), (r, y), (x, y), (y, r), (y, z), (z, w), (z, t), (w, t)\}.$$ Some examples of capacities are $c(s, x) = 10$, $c(r, y) = 5$, $c(v, x) = 20$ and $c(v, r) = 0$ (since there is no arc from v to r).

Definition 2
Let $N = (G = (V, E), c, s, t)$ be a flow network. A flow in N is a function
$$f : V \times V \to \mathbb{R}$$ satisfying the following conditions:
- Capacity constraint: $f(u, v) \leq c(u, v)$ for all $u, v \in V$.
- Skew symmetry: $f(u, v) = -f(v, u)$ for all $u, v \in V$.
- Flow conservation: For all $u \in V \setminus \{s, t\}$,
$$\sum_{v \in V} f(u, v) = 0.$$
Network Flows (cont’d)

\(\mathcal{N} = (\mathcal{G} = (V, E), c, s, t) \) flow network, \(f : V \times V \rightarrow \mathbb{R} \) flow in \(\mathcal{N} \).

- For \(u, v \in V \) we call \(f(u, v) \) the net flow at \((u, v) \).
- The value of the flow \(f \) is the number
 \[|f| = \sum_{v \in V} f(s, v). \]

Notice that our particular defn. of flow (the “skew-symmetry” constraint) ensures that \(f(u, v) \) is truly the “net flow” in the usual sense of the word (e.g. if \((r, y)\) on slide 2 was to carry flow 3, and \((y, r)\) to carry flow 4, we will have \(f(r, y) = -1 \)).

Example

A flow of value 18.

The Maximum-Flow Problem

Input: Network \(\mathcal{N} \)
Output: Flow of maximum value in \(\mathcal{N} \)

The problem is to find the flow \(f \) such that \(|f| = \sum_{v \in V} f(s, v) \) is the largest possible (over all “legal” flows).

The Ford-Fulkerson Algorithm

Published in 1956 by Delbert Fulkerson and Lester Randolph Ford Jr.

Algorithm FORD-FULKERSON(\(\mathcal{N} \))

1. \(f \leftarrow \) flow of value 0
2. **while** there exists an \(s \rightarrow t \) path \(P \) in the “residual network” **do**
 3. \(f \leftarrow f + f_P; \)
 4. Update the “residual network”.
5. **return** \(f \)

The “residual network” is \(\mathcal{N} \) with the “used-up” capacity removed.

To make this precise, we need notation, and proofs - this lecture.
Some Technical Observations

$N = (G = (V, E), c, s, t)$ flow network, $f : V \times V \to \mathbb{R}$ flow in N, $u, v \in V$.

1. $f(u, u) = 0$ for all $u \in V$.

 “Proof”: $f(u, u) = -f(u, u)$ by skew symmetry.

2. For any $v \in V \setminus \{s, t\}$,
 \[\sum_{u \in V} f(u, v) = 0. \]

 Proof: $\sum_{u \in V} f(u, v) = -\sum_{u \in V} f(v, u) = 0$ by skew symmetry and flow conservation.

3. If $(u, v) \notin E$ and $(v, u) \notin E$ then $f(u, v) = f(v, u) = 0$.

 Proof: Either $f(u, v)$ or $f(v, u) \geq 0$ by skew symmetry. Say, $f(u, v) \geq 0$. Then $0 \leq f(u, v) \leq c(u, v) = 0$ by the capacity constraint. So $f(u, v) = 0$.

 By skew symmetry, this shows $f(v, u) = 0$.

ADS: lects 12 & 13 – slide 9 –

Working with Flows

Implicit summation notation: For $X, Y \subseteq V$ put

\[f(X, Y) = \sum_{u \in X} \sum_{v \in Y} f(u, v) = \sum_{(u, v) \in X \times Y} f(u, v). \]

Abbreviations:

- $f(u, Y)$ stands for $f([u], Y)$ and
- $f(X, v)$ stands for $f(X, \{v\})$.

Conservation of flow is now:

\[f(u, V) = 0 \text{ for all } u \in V \setminus \{s, t\}. \]

ADS: lects 12 & 13 – slide 10 –

One More Technical Observation

4. The positive net flow entering v is:

\[\sum_{f(u, v) > 0} f(u, v). \]

The positive net flow leaving v is defined symmetrically.

Flow conservation now says:

“positive net flow in = positive net flow out”.

All these observations are just to make it easy for us to talk about flows.

ADS: lects 12 & 13 – slide 11 –

Working with Flows (cont’d)

Lemma 3

$N = (G = (V, E), c, s, t)$ flow network, f flow in N.

Then for all $X, Y, Z \subseteq V$,

1. $f(X, X) = 0$.
2. $f(X, Y) = -f(Y, X)$.
3. If $X \cap Y = \emptyset$ then

\[f(X \cup Y, Z) = f(X, Z) + f(Y, Z), \]

\[f(Z, X \cup Y) = f(Z, X) + f(Z, Y). \]

Lemma “lifts” Network flow properties to sets-of-vertices.

ADS: lects 12 & 13 – slide 12 –
Proof of Lemma 3

1. \(f(X, X) = \sum_{(u,v) \in X \times X} f(u,v) \) \hspace{1cm} \text{by defn. of } f(X, X)
2. \(f(X, Y) = \sum_{(u,v) \in X \times Y} f(u,v) \) \hspace{1cm} \text{by defn of } f(X, Y)
 \hspace{1cm} = \sum_{(v,u) \in Y \times X} f(v,u) \hspace{1cm} \text{by skew-symmetry}
 \hspace{1cm} = -f(Y, X). \hspace{1cm} \text{by defn of } f(Y, X)

Proof of Lemma 3 (cont'd)

3. \(f(X \cup Y, Z) = \sum_{u \in X \cup Y} \sum_{v \in Z} f(u,v) \)
 \hspace{1cm} = \sum_{u \in X \cup Y} f(u,v) + \sum_{v \in Z} f(u,v) \hspace{1cm} \text{(expand sum into } X \text{ and } Y, \text{ subtract duplicates in } X \cap Y)
 \hspace{1cm} = \sum_{u \in X \cup Y} f(u,v) + \sum_{v \in Z} f(u,v)
 \hspace{1cm} \hspace{1cm} \text{(but } X \cap Y = \emptyset, \text{ so third term disappears)}
 \hspace{1cm} = f(X, Z) + f(Y, Z).

Moreover,
\[f(Z, X \cup Y) = -f(X \cup Y, Z) = -(f(X, Z) + f(Y, Z)) = f(Z, X) + f(Z, Y). \]

ADS: lects 12 & 13 – slide 13 –

Working with Flows (cont’d)

Corollary 4
\(N = (G = (V, E), c, s, t) \) flow network, \(f \) flow in \(N \). Then
\[|f| = f(V, t). \]

Proof:
\[|f| = f(s, V) \hspace{1cm} \text{(by definition)} \]
\[= f(V, V) - f(V \setminus \{s\}, V) \hspace{1cm} \text{(by Lemma 3 (3.))} \]
\[= -f(V \setminus \{s\}, V) \hspace{1cm} \text{(by Lemma 3 (1.))} \]
\[= f(V, V \setminus \{s\}) \hspace{1cm} \text{(by Lemma 3 (2.))} \]
\[= f(V, t) + f(V, V \setminus \{s, t\}) \hspace{1cm} \text{(by Lemma 3 (3.))} \]
\[= f(V, t) + \sum_{v \in V \setminus \{s, t\}} f(V, v) \hspace{1cm} \text{(by Definition)} \]
\[= f(V, t) \hspace{1cm} \text{(by flow conservation)} \]

Residual Networks

Idea is to capture possible extra flow given current flow.

Definition 5
\(N = (G = (V, E), c, s, t) \) flow network, \(f \) flow in \(N \).

1. For all \(u, v \in V \times V \), the residual capacity of \((u, v) \) is
 \[c_r(u, v) = c(u, v) - f(u, v). \]

2. The residual network of \(N \) induced by \(f \) is
 \[N_f((V, E_f), c_f, s, t), \]
 where
 \[E_f = \{(u, v) \in V \times V \mid c_r(u, v) > 0\}. \]
 Notice that \(E_f \) may contain edges not originally in \(E \) (“back-edges”).

ADS: lects 12 & 13 – slide 14 –

ADS: lects 12 & 13 – slide 15 –

ADS: lects 12 & 13 – slide 16 –
Example

A flow and the corresponding residual network

Adding Flows

Lemma 6
Let \(N = (G = (V, E), c, s, t) \) be a flow network.
Let \(f \) be a flow in \(N \).
Let \(g : V \times V \to \mathbb{R} \) be a flow in the residual network \(N_f \).
Then the function \(f + g : V \times V \to \mathbb{R} \) defined by
\[
(f + g)(u, v) = f(u, v) + g(u, v)
\]
is a flow of value \(|f| + |g| \) in \(N \).

Proof of Lemma 6
First we have to check that \(f + g \) is actually a flow in \(N \).
Capacity constraints:
\[
(f + g)(u, v) = f(u, v) + g(u, v) \leq f(u, v) + c(u, v) = f(u, v) + c(u, v) - f(u, v) = c(u, v).
\]
Skew symmetry:
\[
(f + g)(u, v) = f(u, v) + g(u, v) = -f(v, u) - g(v, u) = -(f + g)(v, u).
\]
Flow Conservation: For every \(u \in V \setminus \{s, t\} \):
\[
\sum_{v \in V} (f + g)(u, v) = \sum_{v \in V} f(u, v) + \sum_{v \in V} g(u, v) = 0 + 0 = 0.
\]
Augmenting Paths

Definition 7
\(\mathcal{N} = (\mathcal{G} = (V, E), c, s, t) \) flow network, \(f \) flow in \(\mathcal{N} \).

Then an augmenting path for \(f \) is a path \(P \) from \(s \) to \(t \) in the residual network \(\mathcal{N}_f \).

The residual capacity of \(P \) is
\[
c_f(P) = \min\{c_f(u, v) \mid (u, v) \text{ edge on } P\}.
\]

Note that \(c_f(P) > 0 \), by definition of \(E_f \) (recall that we only keep edges in \(E_f \) if their residual capacity is strictly positive).

Pushing Flow through an Augmenting Path

Lemma 8
\(\mathcal{N} = (\mathcal{G} = (V, E), c, s, t) \) flow network, \(f \) flow in \(\mathcal{N} \).

\(P \) augmenting path. Then \(f_P : V \times V \to \mathbb{R} \) defined by
\[
f_P(u, v) = \begin{cases}
c_f(P) & \text{if } (u, v) \text{ is an edge of } P, \\
-c_f(P) & \text{if } (v, u) \text{ is an edge of } P, \\
0 & \text{otherwise}
\end{cases}
\]
is a flow in \(\mathcal{N}_f \) of value \(c_f(P) \).

Proof left as an exercise. It is not too difficult - just have to check that the three conditions of a flow are satisfied (and that the value is \(c_f(P) \)). Similar to Lemma 6.

Augmenting a Flow

Corollary 9
\(\mathcal{N} = (\mathcal{G} = (V, E), c, s, t) \) flow network, \(f \) flow in \(\mathcal{N} \). Let \(P \) be an augmenting path. Then \(f + f_P \) is a flow in \(\mathcal{N} \) of value
\[
|f| + c_f(P) > |f|.
\]

Proof: Follows from Lemma 6 and Lemma 8.
The Ford-Fulkerson Algorithm

Algorithm Ford-Fulkerson(N)
1. \(f \leftarrow \text{flow of value 0} \)
2. while there exists an augmenting path \(P \) in \(N_f \) do
3. \(f \leftarrow f + f_P \)
4. return \(f \)

To prove that Ford-Fulkerson correctly solves the Maximum Flow problem, we have to prove that:
1. The algorithm terminates.
2. After termination, \(f \) is a maximum flow.

Example
A cut of capacity 45.

Example
A cut of capacity 25.

Cuts

Definition 10
\(N = (G = (V, E), c, s, t) \) flow network.
A cut of \(N \) is a pair \((S, T) \) such that:
1. \(s \in S \) and \(t \in T \),
2. \(V = S \cup T \) and \(S \cap T = \emptyset \).
The capacity of the cut \((S, T) \) is
\[
c(S, T) = \sum_{u \in S, v \in T} c(u, v).
\]
Lemma 11

\[N = (G = (V, E), c, s, t) \text{ flow network, } f \text{ flow in } N, \ (S, T) \text{ cut of } N. \]

Then

\[|f| = f(S, T). \]

Proof: We apply Lemma 3:

\[
|f| = f(s, V) = f(s, V) + f(S - \{s\}, V) = f(S, V) = f(S, T) + f(S, S) = f(S, T).
\]

Corollary 12

The value of any flow in a network is bounded from above by the capacity of any cut.

Proof: Let \(f \) be a flow and \((S, T) \) a cut. Then

\[|f| = f(S, T) \leq c(S, T). \]

The Max-Flow Min-Cut Theorem

Theorem 13

Let \(N = (G = (V, E), c, s, t) \) be a flow network.

Then the maximum value of a flow in \(N \) is equal to the minimum capacity of a cut in \(N \).

Proof of the Max-Flow Min-Cut Theorem

Let \(f \) be a flow of maximum value and \((S, T) \) a cut of minimum capacity in \(N \). We shall prove that

\[|f| = c(S, T). \]

1. \(|f| \leq c(S, T) \) follows from Corollary 12.

 So all we have to prove is that there is a cut \((S, T) \) such that

 \[c(S, T) \leq |f|. \]

2. First remember that \(|f| \) has no augmenting path.

 Proof: If \(\gamma \) was an augmenting path, then \(f + f_{\gamma} \) would be a flow of larger value

 (because by definition of \(N_f \), all edges in \(N_f \) have strictly positive weights).

3. Thus there is no path from \(s \) to \(t \) in \(N_{f} \). Let

 \[S = \{v \mid \text{there is a path from } s \text{ to } v \text{ in } N_f \} \]

 and \(T = V \setminus S \). Then \((S, T) \) is a cut.
4. By definition of S, and because reachability in graphs is a transitive relation, there cannot be any edge from S to T in N_f. Thus for all $u \in S$, $v \in T$ we have $c(u, v) - f(u, v) = 0$.
5. Thus
\[c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v) = \sum_{u \in S} \sum_{v \in T} f(u, v) = f(S, T) = |f|\]
(by Lemma 11).

Corollaries

Corollary 14

A flow is maximum if, and only if, it has no augmenting path.

Proof: This follows from the proof of the Max-Flow Min-Cut theorem.

Corollary 15

If the Ford-Fulkerson algorithm terminates, then it returns a maximum flow.

Proof: The flow returned by Ford-Fulkerson has no augmenting path.

Termination

Let f^* be a maximum flow in a network N.

- If all capacities are integers, then **Ford-Fulkerson** stops after at most $|f^*|$ iterations of the main loop.
- If all capacities are rationals, then **Ford-Fulkerson** stops after at most $q \cdot |f^*|$ iterations of the main loop, where q is the least common multiple of the denominators of all the capacities.
- For arbitrary real capacities, it may happen that **Ford-Fulkerson** does not stop.

A Nasty Example

[Graphs showing a network with capacities and flows]
The Edmonds-Karp Heuristic

Idea
Always choose a shortest augmenting path.

\(n \) number of vertices, \(m \) number of edges. Recall that \(n \leq m + 1 \)
A shortest augmenting path can be found by Breadth-First-Search (reading assignment) in time \(O(n + m) = O(m) \).

Theorem 16
The Ford-Fulkerson algorithm with the Edmonds-Karp heuristic stops after at most \(O(nm) \) iterations of the main loop.
Thus the running time is \(O(nm^2) \).

Interesting Example
We will run Ford-Fulkerson (with the Edmonds-Karp heuristic) on this network. This is interesting because we will see the “back-edges” being used to “undo” part of an previous augmenting path.

Interesting Example cont.
1st augmenting path: \(s \to r \to w \to t \).
Length is 3 (so we satisfy Edmonds-Karp rule to take a shortest possible path). Min capacity is 10, so we push flow of 10 along the path. Starting flow becomes 10.

Residual network after adding first flow of value 10 along \(s \to r \to w \to t \).
The newly-created “back-edges” are shown in red.
There is no longer any augmenting path of length \(\leq 3 \), and the only one of length 4 is \(s \rightarrow x \rightarrow y \rightarrow z \rightarrow t \), which has a minimum capacity \(\min\{10, 10, 15, 15\} \), i.e. 10.

We push this extra flow of value 10 along \(s \rightarrow x \rightarrow y \rightarrow z \rightarrow t \), bringing overall flow to 20.

Now there is only one simple augmenting path - \(s \rightarrow u \rightarrow v \rightarrow w \rightarrow r \rightarrow y \rightarrow z \rightarrow t \), with minimum residual capacity 5.

Notice we use the “back-edge” \(w \rightarrow r \) in our path. This is essentially “re-shipping” 5 units from the first flow-path away from \(r \rightarrow w \rightarrow t \) and along \(r \rightarrow y \rightarrow z \rightarrow t \) instead.
Problems

 Not in [CLRS] (ed 3). Question is: consider Figure 26.1(b) and find a pair of subsets $X, Y \subseteq V$ such that $f(X, Y) = -f(V \setminus X, Y)$. After that, find a pair of subsets $X', Y' \subseteq V$ for which $f(X', Y') \neq -f(V \setminus X', Y')$.

4. Problem 26-4 of [CLRS].

ADS: lects 12 & 13 – slide 45 –