Algorithms and Data Structures:
Dynamic Programming; Matrix-chain multiplication
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Dynamic Programming - A Toy Example

Fibonacci Numbers

Fb = 0,
R = 1,
F, = F,_1+F,> (for n > 2).
A recursive algorithm
Algorithm REC-F1B(n)
1. if n=0 then
2 return 0
3. elseif n=1 then
4. return 1
5. else
6. return REC-FIB(n — 1)+ REC-FIB(n — 2)

Ridiculously slow: exponentially many repeated computations of REC-F1B(j)
for small values of ;.
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Algorithmic Paradigms

Divide and Conquer
Idea: Divide problem instance into smaller sub-instances of the
same problem, solve these recursively, and then put solutions
together to a solution of the given instance.

Examples: Mergesort, Quicksort, Strassen’s algorithm, FFT.

Greedy Algorithms
Idea: Find solution by always making the choice that looks
optimal at the moment — don't look ahead, never go back.

Examples: Prim’'s algorithm, Kruskal's algorithm.

Dynamic Programming
Idea: Turn recursion upside down.

Example: Floyd-Warshall algorithm for the all pairs shortest path
problem.
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Fibonacci Example (cont'd)

Why is the recursive solution so slow?
Running time T (n) satisfies

T(n)=T(n—1)+T(n—2)+0O(1) > F, ~(1.6)".

BOARD: We show F, > 3(3/2)" for n > 8.
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Fibonacci Example (cont'd)

Dynamic Programming Approach

Algorithm DyYN-F1B(n)

1. FI0O]=0

2. F[1] =1

3. fori—2tondo

4, Fli] <« F[li — 1]+ F[i — 2]

5. return F[n]
Build “from the bottom up”

Running Time
O(n)

Very fast in practice - just need an array (of linear size) to store the F(/)
values.
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Example

Compute
A . B . C . D
30x1 1 x40 40 x 10 10 x 25

Multiplication order (A- B) - (C - D) requires
30-1-40+40-10-25+30-40-25=41,200

multiplications.
Multiplication order A- ((B - C) - D) requires

1-40-10+1-10-25+30-1-25=1,400

multiplications.
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Multiplying Sequences of Matrices

Recall
Multiplying a (p X g) matrix with a (g x r) matrix (in the
standard way) requires
pqr

multiplications.

We want to compute products of the form
Al -As--- A,

How do we set the parentheses?
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The Matrix Chain Multiplication Problem

Input:
Sequence of matrices Aj,...,A,, where A; is a
pi—1 X pi-matrix

Output:
Optimal number of multiplications needed to compute
A1 -As--- A, and an optimal parenthesisation to realise
this

Running time of algorithms will be measured in terms of n.
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Solution “Attempts”

Approach 1: Exhaustive search (CORRECT but SLOW).
Try all possible parenthesisations and compare them. Correct,
but extremely slow; running time is QQ(3"). UGLY PROOF

Approach 2: Greedy algorithm (INCORRECT).
Always do the cheapest multiplication first. Does not work
correctly — sometimes, it returns a parenthesisation that is not
optimal:

Example: Consider

Ai : Ay - Az
3 x 100 100 x 2 2x2

Solution proposed by greedy algorithm: A; - (A - A3) with
100-2-2+43-100 -2 = 1000 multiplications.

Optimal solution: (A; - Ag) - Az with 3-100-2 4 3-2-2 = 612
multiplications.
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The Recursive Algorithm (SLOW)

Running time T (n) satisfies the recurrence
T(n) = (T(k)+ T(n—k)) +0O(n).

This implies
T(n)=2Q(2").

BOARD
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Solution “Attempts” (cont'd)

Approach 3: Alternative greedy algorithm (INCORRECT).
Set outermost parentheses such that cheapest multiplication is
done last.

Doesn’t work correctly either (Exercise!).

Approach 4: Recursive (Divide and Conquer) - (SLOW - see over).
Divide:
(Ar - Ad) - (Aksr -+ An)

For all k, recursively solve the two sub-problems and then take
best overall solution.

For1<i<j<n,let

mli, j] = least number of multiplications needed to com-
pute A;--- A

Then

il ifi—j,
) min;<i; (mli, kI + mlk + 1,51 + pi—1pep;) if i <J.
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Dynamic Programming Solution
As before:

mli, j] = least number of multiplications needed to
compute A;--- A;

Moreover,

s[i, jl = (the smallest) k such that i < k < j and
m[’»J] = m“» k] + mlk + 1)]] + Pi—1PkPj-
s[i,j] can be used to reconstruct the optimal parenthesisation.

Idea
Compute the mli, ] and s[i, ] in a bottom-up fashion.

TURN RECURSION UPSIDE DOWN :-)
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Implementation

Algorithm MATRIX-CHAIN-ORDER(p)

—= = =
N o= O

13.

© 0N o kR =

n« p.length—1

for i — 1 to ndo

mliyi] « 0

for { — 2 to ndo

fori—1lton—{+1do
jeitt—1
mli, j] « oo
for k—itoj—1do
q < mli, k] + mlk + 1, j1 + pi_1pkpj
if g < mli,j] then
mli,jl « q
sliyjl « k

return s

Running Time: ©(n%)
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Multiplying the Matrices

Algorithm MATRIX-CHAIN-MULTIPLY (A, p)

1.
2.
3.

n — A.length
s «MATRIX-CHAIN-ORDER/(p)
return REC-MULT(A, s, 1, n)

Algorithm REC-MULT(A, s, i, j)
if i <j then

1.

Sk wN

else

C «REC-MULT(A, s, i, s[i, j])
D «RECc-MULT(A, s, sli, jl +1,))
return (C) - (D)

return A;
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Example

A. - A - As ' Ay
30x1 1 x40 40 x 10 10 x 25

Solution for m and s

m|1 2 3 4 s|1 2 3 4
1,0 1200 700 1400 1 1 11
2 0 400 650 2 2 3
3 0 10000 3 3
4 0 4

Optimal Parenthesisation

A1 - ((Ax- A3) - Ag))
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Problems

see Wikipedia:
http://en.wikipedia.org/wiki/Dynamic_programming
[CLRS] Sections 15.2-15.3

1. Review the Edit-Distance Algorithm and try to understand why it is
a dynamic programming algorithm.
2. Exercise 15.2-1 of [CLRS].
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