Algorithmic Paradigms

Divide and Conquer

Idea: Divide problem instance into smaller sub-instances of the same problem, solve these recursively, and then put solutions together to a solution of the given instance.

Examples: Mergesort, Quicksort, Strassen’s algorithm, FFT.

Greedy Algorithms

Idea: Find solution by always making the choice that looks optimal at the moment — don’t look ahead, never go back.

Examples: Prim’s algorithm, Kruskal’s algorithm.

Dynamic Programming

Idea: **Turn recursion upside down.**

Example: Floyd-Warshall algorithm for the all pairs shortest path problem.

Dynamic Programming - A Toy Example

Fibonacci Numbers

\[
F_0 = 0, \\
F_1 = 1, \\
F_n = F_{n-1} + F_{n-2} \quad \text{for } n \geq 2.
\]

A recursive algorithm

Algorithm `REC-FIB(n)`

1. if \(n = 0 \) then
2. \quad return 0
3. else if \(n = 1 \) then
4. \quad return 1
5. else
6. \quad return \(\text{REC-FIB}(n-1) + \text{REC-FIB}(n-2) \)

Ridiculously slow: **exponentially many** repeated computations of `REC-FIB(j)` for small values of \(j \).

Fibonacci Example (cont’d)

Why is the recursive solution so slow?

Running time \(T(n) \) satisfies

\[
T(n) = T(n-1) + T(n-2) + \Theta(1) \geq F_n \sim 1.6^n.
\]

Board: We show \(F_n \geq \frac{1}{2} (3/2)^n \) for \(n \geq 8 \).
Fibonacci Example (cont’d)

Dynamic Programming Approach

Algorithm \textsc{Dyn-Fib}(n)

1. \(F[0] = 0 \)
2. \(F[1] = 1 \)
3. \textbf{for} \(i \leftarrow 2 \) to \(n \) \textbf{do}
4. \(F[i] \leftarrow F[i - 1] + F[i - 2] \)
5. \textbf{return} \(F[n] \)

Build “from the bottom up”

Running Time
\[\Theta(n) \]

Very fast in practice - just need an array (of linear size) to store the \(F(i) \) values.

Example

Compute
\[A \cdot B \cdot C \cdot D \]
\[30 \times 1 \quad 1 \times 40 \quad 40 \times 10 \quad 10 \times 25 \]

Multiplication order \((A \cdot B) \cdot (C \cdot D)\) requires
\[30 \cdot 1 \cdot 40 + 40 \cdot 10 \cdot 25 + 30 \cdot 40 \cdot 25 = 41,200 \]

Multiplications.

Multiplication order \(A \cdot ((B \cdot C) \cdot D)\) requires
\[1 \cdot 40 \cdot 10 + 1 \cdot 10 \cdot 25 + 30 \cdot 1 \cdot 25 = 1,400 \]

Multiplications.

Multiplying Sequences of Matrices

Recall

Multiplying a \((p \times q)\) matrix with a \((q \times r)\) matrix (in the standard way) requires \(pqr \) multiplications.

We want to compute products of the form
\[A_1 \cdot A_2 \cdots A_n. \]

How do we set the parentheses?

The Matrix Chain Multiplication Problem

Input:
Sequence of matrices \(A_1, \ldots, A_n \), where \(A_i \) is a \(p_{i-1} \times p_i \)-matrix

Output:
Optimal number of multiplications needed to compute \(A_1 \cdot A_2 \cdots A_n \), and an optimal parenthesisation to realise this

Running time of algorithms will be measured in terms of \(n \).
Solution “Attempts”

Approach 1: Exhaustive search (CORRECT but SLOW).
Try all possible parenthesisations and compare them. Correct, but extremely slow; running time is $\Omega(3^n)$. UGLY PROOF

Approach 2: Greedy algorithm (INCORRECT).
Always do the cheapest multiplication first. Does not work correctly — sometimes, it returns a parenthesisation that is not optimal:

Example: Consider

$A_1 \cdot A_2 \cdot A_3$

$3 \times 100 \quad 100 \times 2 \quad 2 \times 2$

Solution proposed by greedy algorithm: $(A_1 \cdot (A_2 \cdot A_3))$ with

$100 \cdot 2 \cdot 2 + 3 \cdot 100 = 1000$ multiplications.

Optimal solution: $(A_1 \cdot A_2) \cdot A_3$ with

$3 \cdot 100 \cdot 2 + 3 \cdot 2 \cdot 2 = 612$ multiplications.

Dynamic Programming Solution

As before:

$m[i,j] =$ least number of multiplications needed to compute $A_i \cdots A_j$

This implies

$T(n) = \Omega(2^n)$.

BOARDS

The Recursive Algorithm (SLOW)

Running time $T(n)$ satisfies the recurrence

$T(n) = \sum_{k=1}^{n-1} (T(k) + T(n-k)) + \Theta(n)$.

Moreover,

$s[i,j] =$ (the smallest) k such that $i \leq k < j$ and

$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$.

$s[i,j]$ can be used to reconstruct the optimal parenthesisation.

Idea

Compute the $m[i,j]$ and $s[i,j]$ in a bottom-up fashion.

TURN RECURSION UPSIDE DOWN :-)

Solution “Attempts” (cont’d)

Approach 3: Alternative greedy algorithm (INCORRECT).
Set outermost parentheses such that cheapest multiplication is done last.

Doesn’t work correctly either (Exercise!).

Approach 4: Recursive (Divide and Conquer) - (SLOW - see over).
Divide:

$(A_1 \cdots A_k) \cdot (A_{k+1} \cdots A_n)$

For all k, recursively solve the two sub-problems and then take best overall solution.

For $1 \leq i \leq j \leq n$, let

$m[i,j] = \begin{cases}
0 & \text{if } i = j, \\
\min_{i \leq k < j} (m[i,k] + m[k+1,j] + p_{i-1}p_kp_j) & \text{if } i < j.
\end{cases}$

As before:

$m[i,j] =$ least number of multiplications needed to compute $A_i \cdots A_j$

Moreover,

$s[i,j] =$ (the smallest) k such that $i \leq k < j$ and

$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$.

$s[i,j]$ can be used to reconstruct the optimal parenthesisation.

Idea

Compute the $m[i,j]$ and $s[i,j]$ in a bottom-up fashion.

TURN RECURSION UPSIDE DOWN :-)

ADS: lects 12 and 13 – slide 12 –
Implementation

Algorithm Matrix-Chain-Order(p)

1. \(n \leftarrow p.length - 1 \)
2. \(\text{for } i \leftarrow 1 \text{ to } n \text{ do} \)
3. \(m[i, i] \leftarrow 0 \)
4. \(\text{for } \ell \leftarrow 2 \text{ to } n \text{ do} \)
5. \(\text{for } i \leftarrow 1 \text{ to } n - \ell + 1 \text{ do} \)
6. \(j \leftarrow i + \ell - 1 \)
7. \(m[i, j] \leftarrow \infty \)
8. \(\text{for } k \leftarrow i \text{ to } j - 1 \text{ do} \)
9. \(q \leftarrow m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j \)
10. \(\text{if } q < m[i, j] \text{ then} \)
11. \(m[i, j] \leftarrow q \)
12. \(s[i, j] \leftarrow k \)
13. \(\text{return } s \)

Running Time: \(\Theta(n^3) \)

Example

<table>
<thead>
<tr>
<th></th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30 \times 1</td>
<td>1 \times 40</td>
<td>40 \times 10</td>
<td>10 \times 25</td>
</tr>
</tbody>
</table>

Solution for \(m \) and \(s \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1200</td>
<td>700</td>
<td>1400</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>400</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Optimal Parenthesisation

\(A_1 \cdot ((A_2 \cdot A_3) \cdot A_4)) \)

Multiplying the Matrices

Algorithm Matrix-Chain-Multiply(A, p)

1. \(n \leftarrow A.length \)
2. \(s \leftarrow \text{Matrix-Chain-Order}(p) \)
3. \(\text{return } \text{Rec-Mult}(A, s, 1, n) \)

Algorithm Rec-Mult(A, s, i, j)

1. \(\text{if } i < j \text{ then} \)
2. \(C \leftarrow \text{Rec-Mult}(A, s, i, s[i, j]) \)
3. \(D \leftarrow \text{Rec-Mult}(A, s, s[i, j] + 1, j) \)
4. \(\text{return } (C) \cdot (D) \)
5. \(\text{else} \)
6. \(\text{return } A_i \)

Problems

see Wikipedia:
[CLRS] Sections 15.2-15.3

1. Review the Edit-Distance Algorithm and try to understand why it is a dynamic programming algorithm.
2. Exercise 15.2-1 of [CLRS].