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Introduction Overview

Course logistics

Lecturer: Stratis Viglas
I email: sviglas@inf.ed.ac.uk

Days/Times: Mon & Thu, 11:10-12:00

Office hours: Mon, Thu 12:00-13:00 (or, by appointment)
I Room: IF, 5.11

Course webpage: www.inf.ed.ac.uk/teaching/courses/adbs

Mailing list: adbs-students@inf.ed.ac.uk
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Introduction Overview

Syllabus

Introduction

Relational databases overview
I Data model, evaluation model

Storage
I Indexes, multidimensional data

Query evaluation
I Join evaluation algorithms, execution models

Query optimisation
I Cost models, search space exploration, randomised optimisation

Concurrency control and recovery
I Locking and transaction processing

Parallel databases
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Introduction Overview

Assignments and software

Programming assignments

The attica database system
I Home-grown RDBMS, written in Java
I Visit inf.ed.ac.uk/teaching/courses/adbs/attica to download

the system and the API documentation
I All programming assignments will be using the attica front-end and

code-base

Plagiarism policy: You cheat, you’re caught, you fail
I No discussion
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Introduction Overview

Query cycle

Catalog

Query Parser

Syntax
tree

Query
Analyzer

σR.a=5

⋈R.a=T.b

πT.b

Optimiser

Relational
algebra

Statistics

Scheduler
nested-loops
(R, T, a=b)

hash-join
(T, S, b=c)

table-scan
(R)

index-scan
(T.b)

index-scan
(S.c)

Physical
plan

Execution
environment

Query
Engine

Thread-id=12,
operator=3,

in-stream=1,...

DB
Tables

Compiled
code

Results
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Introduction Relational databases overview

Three basic building blocks

Attribute
I A (name, value) pair

Tuple
I A set of attributes

Relation
I A set of tuples with the same

schema

SID

123-ABC

SID

123-ABC

Name

Mary Jones

...

...

Year

4

SID

123-ABC

Name

Mary Jones

...

...

Year

4

456-DEF John Smith ... 3

... ... ... ...

999-XYZ Jack Black ... 4
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Introduction Relational databases overview

Data manipulation

Operations to isolate a subset of a single relation: Selection (σ), Projection
(π)

All set operations: Intersection, union, Cartesian product, set difference

More complex operations: Joins (./), semi-joins, . . .

σyear=3

πname

SID

123-ABC

Name

Mary Jones

Year

4
456-DEF John Smith 3
999-XYZ Jack Black 4

Student

CID

ADBS

Name

Adv. Databases

Year

4
QSX Querying XML 4

Course

CID

ADBS

Name

Adv. Databases

Year

4
QSX Querying XML 4

SID

123-ABC

Name

Mary Jones

Year

4
123-ABC Mary Jones 4
999-XYZ Jack Black 4
999-XYZ Jack Black 4

ADBS Adv. Databases 4
QSX Querying XML 4

⋈student.year = course.yearStudent × Course
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Introduction Relational databases overview

Data storage

Page

Platter

Track

Cylinder Drive}

Disk drives are organised in records
of 512 bytes

The DB (and the OS) I/O unit is a
disk page (typically, 4,096 bytes
long)

Pages (and records) are stored on
tracks

Tracks make up a platter (or a
disk)

Platters make up a drive

The same tracks across all platters
make up a cylinder

The disk head (arm) reads the
same block of all tracks on all
platters
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Introduction Relational databases overview

A bit of perspective

The dimensions of the head are impressive1. With a width of less than
a hundred nanometers and a thickness of about ten, it flies above the
platter at a speed of up to 15,000 RPM, at a height that is the
equivalent of 40 atoms. If you start multiplying these infinitesimally
small numbers, you begin to get an idea of their significance.

Consider this little comparison: if the read/write head were a Boeing
747, and the hard-disk platter were the surface of the Earth

I The head would fly at Mach 800
I At less than one centimeter from the ground
I And count every blade of grass
I Making fewer than 10 unrecoverable counting errors in an area

equivalent to all of Ireland

1Source: Matthieu Lamelot, Tom’s Hardware.
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Introduction Relational databases overview

What about flash memory and solid state?

The geometry is different
I There are no tracks, or platters, or cylinders or anything of the sort

But the issues are similar
I Data is still accessed in blocks
I Blocks are still organised in pages
I Sequential vs. random I/O is still a problem

Most of the things we say in this course are applicable to solid state
as well

I Added complexity: write/read asymmetry
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Introduction Relational databases overview

Storing tuples

Every disk block contains
I A header
I Data (i.e., tuples)
I Padding (maybe)

Two ways of storing tuples
I Either interleave tuples of

multiple relations, or
I Keep the tuples of the same

relation clustered

Header Relation 1

Relation 2

Relation 3 Relation 2

Relation 3

Relation 1 Relation 2

PaddingRelation 3

Interleaved
tuples

Header Relation 1

Relation 1

Padding

Relation 1 Relation 1

Relation 1

Relation 1 Relation 1

Relation 1

Relation 1

Clustered
tuples
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Introduction Relational databases overview

Advantages of clustering

Scan a relation of X tuples, Y
tuples per block

I If unclustered, worst case
scenario: read X blocks

I Clustered: read X/Y blocks

How about clustering disk
blocks?

I Reduces unnecessary arm
movement

Unclustered storage

Clustered storage
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Introduction Relational databases overview

The buffer manager

Though the data is on
disk, real processing is in
main memory

Disk blocks are read and
put into the buffer pool

I A collection of memory
pages

The buffer manager
manages the buffer pool

I Keeping track of page
references, replacing
pages if full, . . .

Database

Buffer pool

free page pinned page

disk page
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Introduction Relational databases overview

What does the buffer manager do?

When a page is requested it:
I Checks to see if the page is in the buffer pool; if so it returns it
I If not, it checks whether there is room in the buffer pool; if so it reads

it in and places it in the available room
I If not, it picks a page for replacement; if the page has been “touched”

it writes the page to disk and replaces it
I In all three cases, it updates the reference count for the requested page
I If necessary, it pins the new page
I It returns a handle to the new page
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Introduction Relational databases overview

Page replacement

Least recently used (LRU): check the number of references for each
page; replace a page from the group with the lowest count (usually
implemented with a priority queue)

I Variant: clock replacement

First In First Out (FIFO)

Most recently used (MRU): the inverse of LRU

Random!
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Introduction Relational databases overview

Why not use the OS

The OS implements virtual memory, so why not use it?
I Page reference patterns and pre-fetching: the RDBMS in most cases

knows which page will be accessed later (think of a clustered sequential
scan)

I Different page replacement policies according to the reference pattern
(check p. 322 of your book)

I Page pinning: certain pages should not be replaced
I Control over when a page is written to disk: at times, pages need to be

forced to disk (we’ll revisit that when discussing crash recovery)
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Storage and indexing Overview

Indexing and sorting

Can be summarised as:
I Forget whatever you’ve learned about indexing, searching and sorting

in main memory (well, almost . . .)

Remember, we are operating over disk files
I The main idea is to minimise disk I/O and not number of comparisons

(i.e., complexity)
I Just an idea: comparing two values in memory costs 4.91 · 10−8

seconds; Comparing two values on disk costs 18.2 · 10−5 seconds (3
orders of magnitude more expensive.)
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Storage and indexing Indexing

Indexing functionality

Indexes can be used for:
I Lookup queries (e.g., [...] where value = ‘‘foo’’)
I Range queries (e.g., [...] where value between 20 and 45)
I Join processing (after all, predicates are value-based, aren’t they?)

The above uses, and much more, are what we call access methods
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Storage and indexing Indexing

Two main classes

Tree-structured indexes
I Much like you would use a binary tree to search, but with a higher

key-per-node cardinality
I Retains order
I Great for range queries
I Both one-dimensional and multi-dimensional

Hash-based indexes
I Fully randomized (i.e., no order)
I Great for single lookup queries
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Storage and indexing One-dimensional indexing

Sorted indexes

The basic idea:
I An index is on an (collection

of) attribute(s) of a relation
(called the index key)

I It is much smaller than the
relation

I Index pages contain (key,
pointer) pairs

F key of the index
F pointer to the data page

I Plus one additional pointer
(low key)

p0 k1 p1 k2 p2 ... kn pn

index page

index entry

k1 k2 ...       kn

index file

Page 1 Page 2 ... Page N

data file
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Storage and indexing One-dimensional indexing

How does it answer range queries?

Query is
low ≤ value ≤ high

Do a binary search on the
index file to identify the
page containing the low
key

Keep scanning the data
file until the high key is
found

All done!

k1 low ...       kn

index file

Page 1 Page l... Page h

data file

... ...
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Storage and indexing One-dimensional indexing

Potential problem (and the solution)

The index is much smaller than
the relation, but it’s still big

Binary search on it is still
expensive

I Remember, data is on disk
I Have to access half the index

file pages, plus the pages
satisfying the predicate, all
doing random I/O

Why not build an index on the
index?

I Tree!

data file

Page 1 Page i... Page N...

index pages
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Storage and indexing One-dimensional indexing

B+trees: the most widely used indexes

...

index entries
direct search

connected data entries

Insertion/deletion at logf N cost
(f = fanout, N = # leaf pages)

Tree is height-balanced

Minimum 50% occupancy
(except for root)

Characterised by its order d ;
each node contains d ≤ m ≤ 2d
entries

Equality and range searches are
efficient

Stratis D. Viglas (University of Edinburgh) Advanced Databases 28 / 1



Storage and indexing One-dimensional indexing

B+tree example

13 17 24 30

2* 3* 5* 7*

14* 16*

19* 20* 22*

24* 27* 29*

33* 34* 38* 30*
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Storage and indexing One-dimensional indexing

B+trees in practice

Typical order: 100, typical fill-factor: 67%
I Average fan-out: 133

Typical capacities
I Height 3: 2,532,637
I Height 4: 312,900,700 (!)

The top levels can often be kept in memory
I 1st level: 4,096, or 8,192 bytes (1 page)
I 2nd level: 0.5, or 1MB (133 pages)
I 3rd level: 62, or 133MB
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Storage and indexing One-dimensional indexing

B+tree insertion

Find correct leaf L

Put data entry into L
I If there is enough space in L, done!
I If there is no space, L needs to be split into L and L′

I Redistribute entries evenly in L and L′

I Insert index entry pointing to L′ into the parent of L

Ascend the tree recursively, splitting and redistributing as needed

Tree tries to grow horizontally; worst case scenario: a root split
increases the height of the tree
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Storage and indexing One-dimensional indexing

B+tree insertion: 8*

13 17 24 30

2* 3* 5* 7*

14* 16*

19* 20* 22*

24* 27* 29*

33* 34* 38* 30*

no room so it
has to be split
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Storage and indexing One-dimensional indexing

B+tree insertion: 8*

5 13

2* 3*

5* 7* 8*

19* 20* 22*

24* 27* 29*

33* 34* 38* 30*

no room so it
has to be split

14* 16*

24 30

17
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Storage and indexing One-dimensional indexing

Insertion observations

Minimum occupancy is guaranteed at both leaf and non-leaf pages

A leaf split leads to copying the key; a non-leaf split leads into
pushing up the key (why?)

The tree tries to first grow horizontally and if this is not possible,
then vertically

I In the example we could have avoided the extra level by redistributing
I But in practice this is hardly ever done (why?)
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Storage and indexing One-dimensional indexing

B+tree deletion

Find leaf L where entry belongs
I Remove the entry
I If L is half-full, done!
I If L only has d − 1 entries

F Try to redistribute entries, borrowing from an adjacent sibling of L
F If redistribution fails, merge L and its sibling
F If merge has occurred, delete the entry for the merged page from the

parent of L

Ascend the tree recursively, performing the same algorithm

Merge could propagate to the root, decreasing the trees height
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Storage and indexing One-dimensional indexing

B+tree deletion: 19*

5 13

2* 3*

5* 7* 8*

20* 22*

24* 27* 29*

33* 34* 38* 30*

no room so it
has to be split

14* 16*

24 30

17
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Storage and indexing One-dimensional indexing

B+tree deletion: 20*

5 13

2* 3*

5* 7* 8*

22* 24*

27* 29*

33* 34* 38* 30*

no room so it
has to be split

14* 16*

27 30

17

if 20 is deleted, minimum occupancy
is compromised - must redistribute

middle key has 
been copied up

(why?)
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Storage and indexing One-dimensional indexing

B+tree deletion: 24*

5 13

2* 3*

5* 7* 8*

22* 24*

27* 29*

33* 34* 38* 30*

no room so it
has to be split

14* 16*

27 30

17

can't redistribute; must merge

middle key has 
been copied up

(why?)

which will result in
an index merge

and this entry
tossed out
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Storage and indexing One-dimensional indexing

B+tree after deletion of 24*

5 13 17 30

2* 3*

5* 7* 8*

22* 27* 29*

33* 34* 38* 30*

14* 16*
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Storage and indexing One-dimensional indexing

Summary of B+tree indexes

Ideal for range searches, good for equality searches

Highly dynamic structure
I Insertions and deletions leave tree height-balanced, logf N cost
I For most typical implementations, height is rarely greater than 3 or 4,

occupancy at 67%
I Which means that the index is almost always in memory! (remember

the buffer pool?)
I Almost always better than maintaining a sorted file
I The most optimised RDBMS structure
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Storage and indexing One-dimensional indexing

Hash indexes

Hash-based indexes are good for equality selections, not for range
selections

I In fact, they cannot support range selections (why?)

Static and dynamic techniques exist here as well
I Trade-offs similar to those between ISAM and B+trees
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Storage and indexing One-dimensional indexing

Static hashing

0

1

2

3

...

M-1

hkey

h(key) mod M

bucket

overflow
page

hash
function

Number of primary pages
fixed

I Allocated sequentially,
never de-allocated

I Overflow pages if
needed

h(k) mod M = bucket
to which data entry with
key k belongs (M =
number of buckets)
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Storage and indexing One-dimensional indexing

Static hashing observations

The buckets contain the actual data!
I But only the key is hashed
I No secondary index like in the tree case

The hash function must uniformly distribute the keys across all
buckets

I Lots of ways to tune the hash function

Again, long overflow chains of pages will develop, and pretty soon
we’re doing random I/O

I Need a dynamic technique (big surprise here. . .)
I Extendible hashing to the rescue
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Storage and indexing One-dimensional indexing

Extendible hashing

Problem: bucket (i.e., primary page) becomes full

Solution: re-organize the file by doubling the number of buckets
I Are you crazy? Reading and writing out everything is expensive!
I Why not keep a directory of buckets and double only the directory?

Only read the bucket that overflowed
I Directory much smaller; operation much cheaper
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Storage and indexing One-dimensional indexing

Extendible hashing example

Directory: array of size 4

Key k , apply hash
function h(k) and
translate the result to
binary

I e.g., h(k) = 5 = 101

Last global depth number
of bits identify the bucket

4* 12* 32* 16*

2

1* 5* 21* 13*

2

10*

2

15* 7* 19*

2

00

01

10

11

2

global depth

local depth

directory

data pages
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Storage and indexing One-dimensional indexing

Global, local depth and doubling

Global depth (pertains to directory): maximum number of bits needed
to tell which bucket an entry belongs to

Local depth (pertains to bucket): maximum number of bits needed to
tell whether an entry belongs to this bucket

Before insertion (local = global) holds; if insertion causes (local >
global) then directory needs to be doubled
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Storage and indexing One-dimensional indexing

Insertion example: h(k) = 20

32* 16*

3

1* 5* 21* 13*

2

10*

2

15* 7* 19*

2

00

01

10

11

2
4* 12* 20*

3

these two buckets are
called ``split images''

4 = 00100
12 = 01100
32 = 10000
16 = 01000
20 = 10100

20 = 10100

bucket must
be split

but we now
need 3 bits

so we must double
the directory

Stratis D. Viglas (University of Edinburgh) Advanced Databases 47 / 1



Storage and indexing One-dimensional indexing

Doubling the directory

32* 16*

3

1* 5* 21* 13*

2

10*

2

15* 7* 19*

2

4* 12* 20*

3

000

001

010

011

3

100

101

110

111

these originated
from the same

split bucket
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Storage and indexing One-dimensional indexing

Extendible hashing observations

Directory fits in memory: equality search answered with only one disk
I/O (two in the worst case!)

I 100MB file, 100 bytes/tuple, 4kB pages, 1,000,000 data entries, 25,000
directory entries: fits in memory!

I If the value distribution is skewed, directory grows large
I Same hash-value entries are a problem (why?)

Deletion: if removal empties bucket, then it can be merged with split
image; if each directory entry points to the same bucket as its split
image, the directory is halved
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Storage and indexing One-dimensional indexing

Linear hashing

Extendible hashing directory: even if it is small, it is still a
materialised level of indirection

Though the number of buckets grows linearly, the size of the
directory grows exponentially

Objective: no directory, linear growth

Linear hashing gets the job done
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Storage and indexing One-dimensional indexing

Why one, when you can have many?

Key idea: instead of having a single hash function and using a set of
bits, have multiple hash functions

I Multiple hash functions implement the progressive doubling of the
directory

Allocate buckets not when they become full, but whenever we reach
some pretetermined load factor

Single bucket allocation

Each bucket allocation results in another hash function to be used

Keep track of the number of buckets and the number of times the
number of buckets has doubled

Discard unused hash functions
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Storage and indexing One-dimensional indexing

In more detail

Use a family of hash functions h0, h1, h2, . . .
I hi (key) = g(key) mod (2iM)
I M = initial number of buckets
I g is some hash function (range is not [0, . . . ,N − 1])
I If M = 2d0 , for some d0, hi consists of applying g and looking at the

last di bits, where di = d0 + i .
I hi+1 doubles the range of hi (similar to directory doubling)
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Storage and indexing One-dimensional indexing

Bookkeeping

Two variables: Next, and Level
I N points to the bucket to be split next
I L keeps track of the number of times the range of the hash function

has doubled

Splitting proceeds in ‘rounds
I Round ends when all MR initial (for round R) buckets are split
I Buckets 0 to N − 1 have been split
I Buckets N to MR have yet to be split

Current round is L
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Storage and indexing One-dimensional indexing

Search and insert

Search

To find bucket for key K , find hL(K ))
I If hL(K ) ∈ [N, . . .MR ], r belongs here
I Else, r could belong to bucket hL(K ) or bucket hL(r) + MR ; we must

apply hL+1(K ) to find out.

Insert

Find bucket as above, by applying hL or hL+1

If bucket to insert is full
I Add overflow page and insert entry
I (Maybe) Split bucket N and increment N
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Storage and indexing One-dimensional indexing

Linear hashing file

Split image buckets

created thourgh

splitting of other

buckets in this round

Buckets that existed

at beginning of

round; range of hL

Buckets split in this

round; if hL falls

here, must use hL+1
Bucket to

be split Next

Buckets that existed

at beginning of

round; range of hL

Buckets split in this

round; if hL falls

here, must use hL+1

Split image buckets

created thourgh

splitting of other

buckets in this round
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Storage and indexing One-dimensional indexing

Splitting a bucket (0 in this case)

0 1 2 3 4

120

345

605

770

311

606

761

. . . . . . . . .

N

Hash functions

h0(K ) = K mod 5

h1(K ) = K mod 10
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Storage and indexing One-dimensional indexing

Splitting a bucket (0 in this case)

0 1 2 3 4

120 311

606

761

. . . . . . . . .

770

N

5

345

605

Hash functions

h0(K ) = K mod 5

h1(K ) = K mod 10
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Storage and indexing One-dimensional indexing

Algorithms in more detail

Lookup for key K

bucket := hL(K );

if bucket < N then bucket = hL+1(K )

Expansion

N := N + 1;

if N = M2L then

L := L + 1; N := 0;

Contraction

N := N − 1;

if N < 0 then

L := L− 1; N := M2L − 1;
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Storage and indexing One-dimensional indexing

The expansion process (round 0)

Expansion

N := N + 1;

if N = M2L then

L := L + 1; N := 0;

0 1 2 3 4

NN

5

N

5 6

N

5 6 7 8 9

N

5 6 7 8 9 10
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Storage and indexing One-dimensional indexing

Linear hashing observations

Can choose any criterion to trigger split
I Typically, we want to maintain some load factor

Since buckets are split round-robin, long overflow chains do not
develop!

Doubling of directory in extendible hashing is similar
I Switching of hash functions is implicit in how the number of bits

examined is increased
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Storage and indexing Multidimensional indexing

Why more than one dimensions?

Single-dimensional indexes are not enough
I Consider a composite search key e.g., an index on 〈sal , years〉
I The 2-dimensional space is linearised
I We sort entries first by sal and then by years

A multidimensional index clusters entries
I Exploits nearness in multidimensional space.
I Balanced index structures in multiple dimensions are challenging

sal

years

10 20 30 40 50 60 70 80

10

11

12
B+tree order

Spatial clusters

〈10, 11〉, 〈20, 11〉
〈70, 12〉, 〈80, 10〉
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Storage and indexing Multidimensional indexing

The R-tree

The R-tree is a
tree-structured index that
remains balanced on
insertions and deletions

Each key stored in a leaf
entry is intuitively a box,
or collection of intervals,
with one interval per
dimension

Root of the R-tree

Leaf level
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Storage and indexing Multidimensional indexing

R-tree properties

Leaf entry format: 〈 n-dimensional bounding box, pointer to record 〉
I Bounding box is the tightest bounding box for a data object

Non-leaf entry format: 〈 n-dim box, pointer to child node 〉
I The box covers all boxes in child node (in fact, subtree)

All leaves at same distance from root

Nodes can be kept 50% full (except root)
I Can choose some parameter m that is ≤ 50%, and ensure that every

node is at least m% full
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Storage and indexing Multidimensional indexing

R-tree example

R8
R9

R10

R11

R12

R13

R14

R15

R16
R17

R18

R19

R3

R4 R5

R6

R7

R1

R2
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Storage and indexing Multidimensional indexing

R-tree example (cont.)

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

R3 R4 R5 R6 R7

R1 R2
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Search for objects overlapping box Q

Start at root
If current node is non-leaf

For each entry 〈E , ptr〉, if box E overlaps Q, search subtree identified by ptr

If current node is leaf

For each entry 〈E , rid〉, if E overlaps Q, rid identifies an object that might overlap
Q

Note

May have to search several subtrees at each node! (In contrast, a B+tree
equality search goes to just one leaf.)
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Insert entry 〈B , ptr〉

Start at root and go down to “best-fit” leaf L

Go to child whose box needs least enlargement to cover B; resolve ties by
going to smallest area child

If best-fit leaf L has space, insert entry and stop. Otherwise, split L into
L1 and L2

Adjust entry for L in its parent so that the box now covers (only) L1

Add an entry (in the parent node of L) for L2. (This could cause the parent
node to recursively split.)
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Splitting a node

The entries in node L plus the newly inserted entry must be
distributed between L1 and L2

Goal is to reduce likelihood of both L1 and L2 being searched on
subsequent queries

Redistribute so as to minimize area of L1 plus area of L2

Bad split

Good split

Bad split

Good split
Redistribution

Exhaustive algorithm is too slow;
quadratic and linear heuristics are
used in practice
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Comments on R-trees

Deletion consists of searching for the entry to be deleted, removing it,
and if the node becomes under-full, deleting the node and then
re-inserting the remaining entries

Overall, works quite well for 2- and 3-D datasets

Several variants (notably, R+ and R* trees) have been proposed;
widely used

Can improve search performance by using a convex polygon to
approximate query shape (instead of a bounding box) and testing for
polygon-box intersection.
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Overview

Sorting is probably the most classic problem in CS

I Simple idea: impose a total order on a set of values

It is a classic problem in databases too
I Remember ISAM? First step is to sort the file
I In fact, if you’re bulk loading a B+tree, you’re better off sorting the file

first

Useful as well for duplicate elimination

Useful for join evaluation (sort-merge algorithm)

But what if I have a 1GB relation and 1MB of physical memory?
I Remember, its all about minimising I/O
I (Or, why your algorithms class didn’t tell you the whole truth)
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Two-way external merge sort

Requires a maximum of three
buffer pages and multiple passes
over the data

First pass: read one page, sort
it, write it out

Subsequent passes: read two
pages, merge them, write out
the result

Disk

buffer
pool

input
pages

output
page
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How it works

Each pass will read and
write each page in the file

N pages, so the number
of passes is dlog2 Ne+ 1

So, the total I/O cost is
2N(dlog2 Ne+ 1)

3, 4 6, 2 9, 4 8, 7 5, 6 3, 1 2

3, 4 2, 6 4, 9 7, 8 5, 6 1, 3 2

2, 3 4, 7 1, 3 2

4, 6 8, 9 5, 6

2, 3

4, 4

6, 7

8, 9

1, 2

3, 5

6

1, 2 2, 3 3, 4 4, 5 6, 6 7, 8 9
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But why only three pages?

We have an entire buffer pool of more than three pages, can we
utilise it?

I Yes: N-way merge sort

To sort a file of N pages using B buffer pool pages:
I First pass: sorted runs of B pages each ( dNB e)
I Subsequent passes: merge B − 1 runs (why?)
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What is the I/O cost?

Number of passes: 1 + dlogB−1dNB ee
I/O cost: 2N· (Number of passes)

For example: 108 pages in the file, 5 buffer pool pages
I Pass 0: d 108

5 e = 22 sorted runs of 5 pages each
I Pass 1: d 22

4 e = 6 sorted runs of 20 pages each
I Pass 2: 2 sorted runs, 80 pages and 28 pages
I Pass 3: final merge, done!
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A bit of perspective

N

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

B=3 B=5 B=9 B=17 B=129 B=257

7 4 3 2 1 1

10 5 4 3 2 2

13 7 5 4 2 2

17 9 6 5 3 3

20 9 7 5 3 3

23 12 8 6 4 3

26 14 9 7 4 4

30 15 10 8 5 4

257 * 4,096 = 1,052,672
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Are we done?

No! We can actually do much better than this

Key observation: we are using main memory algorithm (e.g.,
quicksort) to sort pages in memory

I But that doesn’t minimise I/O, does it?
I Wouldn’t it be nice if we could generate sorted runs longer than

memory?
I Solution: heapsort (a.k.a. tournament or replacement sort)
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How does heapsort work?

next run 
heapoutput 

buffer

?

current 
run heap

new record

sort key

Keep two heaps in
memory, one for each run
(the current and the next
one)

Sum of memory needed
for the two heaps equals
the buffer size

Keep adding to the
current run until we are
out of buffer space

When buffer is full, swap
heaps and iterate
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The algorithm

Initialisation: read B pages into the current heap

while (not finished) do {
while (r = lowest key from current heap) {

write r to the current run
max = r
get k from input
if (k > max) insert k into current heap
else insert k into next heap

}
swap current and next heaps, max = 0

}
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Heapsort observations

What is the average length of a run?
I Proven to be 2B (!)

Quicksort is computationally cheaper

But heapsort produces longer runs
I Minimises I/O

I Remember, you should “forget” main memory methods when it comes
to databases!
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Good-old B+trees

What if the table to be sorted has a B+tree index on sort field?

Traverse the leaf pages and we’re done!
I Follow the left-most pointers, find the low key, scan forward

Is this always a good idea?
I If the B+tree is clustered, it’s a great idea
I Otherwise, it could lead to random I/O
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Clustered vs. unclustered storage

... ...
clustered means one

sequential scan (good)

unclustered means
random I/O (bad)
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Summary of sorting

Databases spend a lot of their time sorting

In fact, they might dedicate part of their buffer pool for sorting data
I Remember pinning buffer pool pages?

External sorting minimises I/O cost
I First you produce sorted runs, then you merge them

The choice of internal sort matters as well
I Yes, quicksort is computationally cheap
I Though heapsort is computationally more expensive, it produces longer

runs, which means less I/O

Finally, clustered B+trees (when they exist) are a good way of sorting
in one sequential scan
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Query evaluation Overview

Overview

A physical plan is what the query engine uses in order to evaluate
queries

In most cases, it is a tree of physical operators
I Physical in the sense that they access and manipulate the raw, physical

data

Plenty of ways to formulate this tree
I Identifying the “best” tree is the job of the query optimiser
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Query cycle

Catalog

Query Parser

Syntax
tree

Query
Analyzer

σR.a=5

⋈R.a=T.b

πT.b

Optimiser

Relational
algebra

Statistics

Scheduler
nested-loops

(R, T, a=b)

hash-join
(T, S, b=c)

table-scan
(R)

index-scan
(T.b)

index-scan
(S.c)

Physical
plan

Execution
environment

Query
Engine

Thread-id=12,
operator=3,

in-stream=1,...

DB
Tables

Compiled
code

Results
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Algebraic operators vs. physical operators

A relational algebraic operator is a procedural abstraction of what
should be retrieved

The physical operator specifies how the retrieval will take place

The same algebraic operator may map to multiple physical operators

Physical operators for the same algebraic operator may be
implemented using different algorithms

I For instance: join → physical join → sort-merge join
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Example

SQL query

select student.id, student.name
from student, course

where student.cid = course.cid and

course.name = ‘ADBS’

Algebraic expression

πstudent.id,student.name

(student ./student.cid=course.cid

σcourse.name=‘ADBS′ (course))

Algebraic operations

πstudent.id, student.name

./student.cid = course.cid

σcourse.name = ‘ADBS’
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Mappings to/of various physical operators

πprojection list
project

(projection list)
σpredicate

select
(predicate)

index-scan
(table-attribute,

predicate)

table

file-scan
(table)

index-scan
(table-attribute)

⋈predicate

nested-loops
(predicate)

sort-merge
(predicate)

hash-join
(predicate)

grace-hash
(predicate)

hybrid-hash
(predicate)

symmetric-hash
(predicate)

tuple-level
(predicate)

block-level
(predicate)

index-level
(predicate)
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Math analogy

Remember factoring?

Same arithmetic
expression can be
evaluated in different ways

If you map arithmetic
expressions to infix
notation, you have
different “plans”

FA

+

. . . .

C G B C B F G A

.

+ +

A B C

F G

.

(AC+FGB+CB+FGA) =
C(A+B) + FG(A+B) =

(A+B)(C+FG)
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Physical plans

Physical plans are trees of physical operators over the physical data
I Just as arithmetic expressions are trees of arithmetic operators over

numbers

There are different ways of organising trees of physical operators
I Just as there are different ways to organise a mathematical expression

Physical plans are what produce query results
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Here’s a plan

SQL query

select student.id, student.name
from student, course

where student.cid = course.cid and

course.name = ‘ADBS’

file-scan
(course)

file-scan
(student)

course × student

select
course.name='ADBS'

select
course.cid=student.cid

project
student.id, student.name
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Here’s a better plan

nested-loops
(course.cid=student.cid)

project
student.id, student.name

index-scan
(course.name, 'ADBS')

project
cid

file-scan
(student)

project
id, name, cid

access
methods

required
fields

join enumeration
and evaluation

SQL query

select student.id, student.name
from student, course

where student.cid = course.cid and

course.name = ‘ADBS’
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Observations

Certain selection predicates can be incorporated into the access
method

If a field is not needed, it is thrown out (why?)

More than two sources need to be combined (even through a
Cartesian product)

The query plan includes operators not present in the original query

Yes, the query specifies what should be retrieved
I But how it is retrieved is an entirely different business
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Issues

Choice of order in which the physical operators are executed
I Heuristics, access methods, optimisation

Choice of algorithms whenever there are more than one
I Again, optimisation (join enumeration, mainly)

How are physical operators connected?
I Different execution models

What does a connection actually imply?
I Pipelining (sometimes)

What about multiple readers or even concurrent updates of the data?
I Concurrency control (be patient . . .)

Finally, how is it all executed?
I Query engine
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A note on duplicates

The relational model calls for sets of tuples

The query language (SQL) does not
I Remember “distinct”?

Sets can be guaranteed on base relations by specifying key (integrity)
constraints

But what happens with intermediate results?
I Set semantics are lost, intermediate results have bag semantics
I But set semantics can always be imposed; they are just more expensive

to ensure
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Types of plan

op

op

op

op

op
op

op

op

op

opop

op

op

op

op op op

left-deep

right-deep

bushy

op op

op

op

op op

op op op op

There are two types of
plan, according to their
shape

I Deep (left or right)
I Bushy

Different shapes for
different objectives
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Plan objectives

A deep plan is better for pipelining
I Because, let’s face it, it’s a line!

A bushy plan is better for parallel computation
I Different branches can be executed concurrently

But all of these depend on the algorithms chosen
I And on the execution model

Stratis D. Viglas (University of Edinburgh) Advanced Databases 99 / 1



Query evaluation Physical plans

Summary

A plan is what the query engine accepts as input
I . . . and what produces the query results

The same algebraic expression can produce multiple plans
I Because the same algebraic operator maps to multiple physical

operators

A physical operator implements an evaluation algorithm

A physical plan does not necessarily contain all the algebraic
operators of the query

I More or fewer, depending on the available physical operators

The optimiser chooses the best physical plan

Types of plans are classified according to their shape and evaluation
objectives
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Overview

Physical plans are trees of connected physical operators

The execution model defines the interface of the connections
I And how data is propagated from one operator to the next

It also defines how operators are scheduled by the query engine
I Different execution models map to different process execution

paradigms
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Operator connections

Operator functionality: relation in,
relation out

The connections are the interface
through which the input is read and
propagated

In fact, there is a producer/consumer
analogy

operator

relation in

relation out
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Pipelining

Pipelining is the following process: read, process, propagate

The opposite is to materialise intermediate results

Pipelining works in theory, but in practice certain intermediate
relations need to be materialised

I This is called blocking (e.g., sorting)

The benefits of pipelining include
I No buffering

F No intermediate relation is materialised

I Faster evaluation
F Since nothing is materialised, no disk I/O

I Better resource utilisation
F No disk I/O means more in-memory operation
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What happens in practice

Pipelining is simulated through the operator interface

But different operations have different evaluation times
I So there will be some need for buffering

If we have joins, chances are the plan will block
I We will see why that happens when talking about join algorithms
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The iterator model

Also known as a cursor

Three basic calls
I open()
I get next()
I close()

Have you ever accessed a
database through external
code?

I For example: exec

sql declare cursor

in embedded SQL,
ResultSets in
Java/JDBC, etc.

operator

operator

open()

operator

operator

get_next()

operator

operator

tuple

operator

operator

end of stream

operator

operator

close()
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Call propagation

project

join

join scan

select scan

scan

open()

open()

open()
open()

open() open()

open()

get_next()

get_next()

get_next()

get_next()

get_next()

get_next()

get_next()

All calls are
propagated
downstream

The query engine
makes the calls to
the topmost
operator only
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Pure implementation

The iterator interface, as described, is a completely synchronous
interface

A pure implementation means that all operators reside in the same
process space

I So calls can be propagated downstream

But certain operators are “faster” than others
I It could be the case that an asynchronous implementation could be

more beneficial
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Different implementations

The iterator interface is what operators use to communicate

But how it is implemented, can be entirely different
I The reason is that there might be need for buffering
I Three possibilities

F Push model (buffering in the operator making the calls)
F Pull model (buffering in the operator accepting the calls)
F Streams (buffering in the connections)
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The push model

Tuple propagation begins at the
lower levels of the evaluation
tree

A lower operator propagates a
tuple as soon as it is done with
it

I Does not “care” if the
receiving operator has called
get next()

operator

operator

lala

get_next()tuple

processing...

this operator
may have not called

get_next()
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Buffering

The main issue: what happens
if the lower operator has
propagated the tuple before the
operator above it has called
get next()?

operator

incoming tuples are buffered
in the calling operator

secondary issue: what should the 
size of the buffer be? (the optimiser

might have an idea...)

tuple
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The pull model

operator

operator

lala

get_next()tuple

processing...

this operator
may have not called

get_next()
The inverse of the push model

If the lower operator is done
processing a tuple it does not
propagate it

I It waits until the operator
above it makes a get next()

call
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Buffering — again

operator

outgoing tuples are buffered
in the operator being called

same question: what should the 
size of the buffer be? (again, the optimiser

might have an idea...)

tuple

The question this time: what
happens if the lower operator is
done processing the tuple before
the operator above it calls
get next()?
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The stream model

The connections become
first-class citizens

Streams are queues of
tuples connecting the
operators

Propagations and
get next() calls are
synchronised on each
stream

operator

operator

propagation as soon as
this operator is done

get_next() succeeds
as soon as there is 
something available
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Buffering — third time

This time, there is no question!

When the lower operator is
done, it propagates the tuple

When the top operator is ready,
it calls get next() on the
incoming stream

operator

operator

tuple

get_next()tuple
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Why all this?

Pure iterator implementation
I If an operator receives get next() and is not ready, it blocks
I In fact, the entire plan blocks (why?)
I Assume there is a sort operation somewhere in the plan

F Congratulations, your plan is officially blocked

Non-pure implementations
I Operators act (almost) independently of one another
I Depending on the implementation of the interface (push-, pull-,

stream-based) there are different benefits
F There could still be blocking, but the time during which a plan is

blocked is minimised

I It could lead to a each operator running in its own process thread
F Though this is not always a good idea
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Benefits of each model

Push model
I Minimises idle time of the operators (why?)
I Great for pipelining

Pull model
I Closest to a pure implementation
I But still on-demand

Streams model
I Fully asynchronous to the operators, the synchronisation is on the

streams
I Highly parallelisable
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Summary

A physical plan is a tree of connected operators

Operators need to communicate data to one another

The iterator interface is the means of this communication
I open(), close(), get next()

As with any interface there are different ways of implementing it,
known as execution models

I Push model
F Data propagated as soon as they are available

I Pull model
F Data retrieved on demand

I Stream model
F Asynchronous communication on the connections between operators
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Overview

The join operation is everywhere
I Any single query with two or more sources will need to have a join

(even in the form of a Cartesian product)
I So common that certain DBMSs implement join indexes

As a consequence, a DBMS spends a lot of time evaluating joins

Probably the most optimised physical operator

A physical operator can be mapped to different algorithms

As is always the case, a good join algorithm minimises I/O

Choosing a join algorithm is not as straightforward; the choice might
depend on

I The cardinality of the input, its properties (clustered, sorted, etc.) and
any available indexes

I Available memory
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Overview (cont.)

Choosing how to evaluate a single join is different than choosing the
order in which joins should be evaluated

The query optimiser spends most of its time enumerating (ordering)
the joins in a query

I In fact, the order in which joins are evaluated affects the choice of
algorithm

I The two are largely interconnected (more on that when discussing
query optimisation)
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Three classes of algorithms

Iteration-based
I Namely, nested loops join (in three flavours)

Order-based
I Sort-merge join (essentially, merging two sorted relations)

Partition-based
I Hash join (again, in three flavours)
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Terminology

We want to evaluate R ./ S , shorthand for R.a = S .b
I Also known as an equi-join

In algebra: R ./ S = S ./ R
I Not true for the physical join: cost(R ./ S) 6= cost(S ./ R)

Three factors to take into account
I Input cardinality in tuples TR and pages PR
I Selectivity factor of the predicate

F Think of it as the percentage of the Cartesian product propagated

I Available memory
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Nested loops join

The simplest way to evaluate a join

But it can still be optimised so that it minimises I/O

Very useful for non-equi joins (the other two approaches will not work)

Three variations
I Tuple-level nested loops
I Block-level nested loops
I Index nested loops
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It doesn’t get simpler than this...

Tuple-level nested loops

for each tuple r ∈ R do
for each tuple s ∈ S do

if r .a == s.b then add 〈r , s〉 to the result

R is the outer relation

S is the inner relation
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What is the cost?

One scan over the outer relation

For every tuple in the outer relation, one scan over the inner relation

If relations are not clustered, then
I cost(R ./ S) = TR + TR · TS

F Assume TR = 100, 000, TS = 50, 000, then cost = 5, 000, 100, 000 I/Os
F At 10ms an I/O, that is 50,001,000 seconds, or, 14,000 hours
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What about clustered storage?

Much, much better; I/O is at a page level

So, the total cost will be
I cost(R ./ S) = PR + PR · PS

I In the previous example, for 100 tuples per page, then PR = 1, 000,
PS = 500, cost = 501, 000 I/Os

I At 10ms an I/O, that is 5010 seconds, or about an hour and a half

But we can improve that even more!
I Block-level I/O and the buffer pool will work wonders
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Here’s an idea

Assume we have B pages available in the buffer pool

Read as many outer relation pages as possible; this constitutes a
block

I Put the pages of the block in the buffer pool, pin them

Read the inner relation in pages

Block size is B − 2 pages (why?)

Even more I/O savings
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The Algorithm

Block-level nested loops

Assumption: B dedicated pages in the buffer pool, block size is B − 2
pages

for each block of B − 2 pages of R do
for each page of S do {

for all matching in-memory tuples r ∈ R-block and s ∈ S-page
add 〈r , s〉 to result

}
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How it works

Disk Result

main memory (holds the buffer pool)

...read a block from R
(B-2 pages)

build a hash
table for the 

block

output page

read a page from S

lookup
matches
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How much does it cost?

The outer relation is still scanned once (PR pages)

The inner relation is scanned d PR
B−2e times

I Each scan costs PS I/Os
I So, cost(R ./ S) = PR + PS · d PR

B−2e
I Same example, PR = 1, 000, PS = 500, assume a block size of 100

pages, then number of I/Os is 6,500
I At 10ms per I/O, it will take 65 seconds
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Query evaluation Join algorithms

Key observation

The inner relation is scanned a number of times that is dependent on
the size of the outer relation

So, the outer relation should be the smaller one

Let’s forget the ceilings and assume two relations: big and small

Then we are comparing

I big+ small · bigB−2

I small +big · small

B−2

And big > small

Remember, cost(R ./ S) 6= cost(S ./ R) when it comes to physical
operators
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Query evaluation Join algorithms

What if there is an index?

Suppose the inner relation has an index on the join attribute

We can use the index to evaluate the join
I Remember, the join predicate, if we fix one of the join attribute values,

is just a selection

Scan the outer relation
I Look at the join attribute’s value and use it to perform an index lookup

on the inner relation
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The algorithm

Index nested loops

Assumption: there is an index on S .b

for each tuple r ∈ R do
for each tuple s ∈ S where r .a == s.b

add 〈r , s〉 to the result

Predicate evaluation is an index lookup in the index over S .b
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Query evaluation Join algorithms

What is the cost?

Depending on whether the outer relation is clustered or not, PR or
TR I/Os to scan it

Selectivity factor f : percentage of the Cartesian product propagated;
this means that every outer tuple joins with f · TS tuples

I Depending on the index, each lookup will be, say, avg lookup I/Os

If R is clustered
I cost(R ./ S) = PR + TR · f · TS · avg lookup

If R is not clustered
I cost(R ./ S) = TR + TR · f · TS · avg lookup
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Query evaluation Join algorithms

Index nested loops

If the selectivity factor and the average lookup cost are small, then
the cost is essentially a (few) scan(s) of the outer relation

If the outer relation is the smaller one, it leads to significant I/O

savings

Again, it is the job of the query optimiser to figure out if this is the
case
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Query evaluation Join algorithms

Sort-merge join

Really simple idea

The join is evaluated in two phases
I First, the two input relations are sorted on the join attribute
I Then, they are merged and join results are propagated

External sorting can be used to sort the input relations

The merging phase is a straightforward generalisation of the merging
phase used in merge-sort
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Query evaluation Join algorithms

How it works

Key idea: there exist groups in
the sorted relations with the
same value for the join attribute

We need to take that into
account when merging

I The reason is that we will
have to do some backtracking
when generating the complete
result

1*

2*

2*

5*

6*

6*

6*

7*

2*

3*

3*

6*

6*

6*

6*

8*
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The algorithm

Merge-join

r ∈ R, s ∈ S , gs ∈ S

while (more tuples in inputs) do {
while (r .a < gs.b) do advance r
while (r .a > gs.b) do advance gs // a group might begin here
while (r .a == gs.b) do {
s = gs // mark group beginning
while (r .a == s.b) do // while in group

add 〈r , s〉 to the result; advance s // produce result
advance r // move forward

}
gs = s // candidate to begin next group

}
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What is the cost?

We know the cost of externally sorting either relation: 2 · PR · log PR ,
or 2 · PS · log PS

The merge phase is essentially one scan of each sorted input: PR or
PS (these scans are always clustered)

cost(R ./ S) = PR · (2 · log PR + 1) + PS · (2 · log PS + 1)
I Running example: PR = 1, 000, PS = 500, 100 buffer pool pages to

sort, the number of I/Os is 7,500
I At 10ms an I/O, this is one minute and fifteen seconds (about the same

as block nested loops)
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Query evaluation Join algorithms

A few issues

If there are large groups in the two relations, then we may have to do
a lot of backtracking

I Performance will suffer due to possible extra I/O

I Hopefully, pages will be in the buffer pool

Most relations can be sorted in 2-3 passes
I Which means that we can compute the join in 4 passes max (almost

regardless of input size!)
I In fact, we can combine the final merge of external sorting with the

merging phase of the join and save even more I/Os
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Hash join

Partition-based join algorithms

Key idea: partition R and S into m partitions, Ri and Si , so that
every Ri fits in memory

I Observation: joining tuples will fall into the same partition

Then, for every Ri load it in memory, scan Si and produce the join
results

Three flavours: Simple hash join, grace hash join, hybrid hash join
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The simple algorithm

Simple hash join

Assumption: m partitions, each partition Pi fits in main memory

for all partitions Pi , i ∈ [1,m]
for each r ∈ R read r and apply hash function h1(r .a)

if r falls into Pi apply hash function h2(r .a) and put it in an in-memory hash table
for Pi

otherwise, write it back out to disk

for each s ∈ S read s and apply hash function h1(s.b)

if s falls into Pi apply hash function h2(s.b) and for all matching tuples r ∈ Pi , add
〈r , s〉 to the result
otherwise, write it back out to disk
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Query evaluation Join algorithms

How it works — partitioning R , iteration i

Disk Result

main memory (holds the buffer pool)

Hash table for Ri

read R
use h1(R.a)

output page

use h2(R.a)

if it falls in Ri

buffer

write to buffer for 
all other partitions

when buffer full
write to disk
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How it works — paritioning and joining S , iteration i

Disk Result

main memory (holds the buffer pool)

Hash table for Ri

read S
use h1(S.b)

output page

use h2(S.b)

if it falls in Si

buffer

write to buffer for 
all other partitions

when buffer full
write to disk

matches
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What is the cost?

Assume equal partition sizes, input T , PT pages

For m partitions, we will make m passes over each input
I For the first pass:

F Read PT pages, write PT − PT
m

pages: 2PT − PT
m

I/Os
I For the second pass:

F Read PT − PT
m

, write PT − PT
m

+ PT − 2PT
m

pages: 2PT − 3PT
m

I/Os

I Pass i : 2PT − (2i − 1) PT

m I/Os

In the end, m (m + 1) PT I/Os

For two relations R and S , total cost is m (m + 1) (PR + PS)

Makes sense if m is small, or we have a lot of memory

Effectively, this is nested loops join
I But the number of iterations is decided by the number of partitions,

not the input sizes!
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The “grace” algorithm

Grace hash join

for each r ∈ R read r and add it to the buffer page for h1(r .a)

for each s ∈ S read s and add it to the buffer page for h1(s.b)

for i = 1, . . . ,m do {
for each r ∈ Ri read r and insert it into a hash table using h2(r .a)
for each s ∈ Si do {

read s, probe the hash table using h2(s.b)
for all matching tuples r ∈ Ri add 〈r , s〉 to the result

}
clear hash table

}
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How it works — partitioning R

Disk

main memory (holds the buffer pool)

R1 R2 Rm...read R
use h1(R.a)

as soon as a page
for Ri fills up

write it to disk
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How it works — partitioning S

Disk

main memory (holds the buffer pool)

S1 S2 Sm...read S
use h1(S.b)

as soon as a page
for Si fills up

write it to disk
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How it works — joining

Disk Result

main memory (holds the buffer pool)

Hash table for Ri
read Ri

use h2(R.a)

output page

lookup

matches
read Si

use h2(S.b)
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What is the cost?

Scan R and write it to disk, so 2 · PR

Do the same for S , so 2 · PS

Read R in partition-by-partition, so PR

Scan S partition-by-partition and probe for matches, so PS

cost(R ./ S) = 3 · (PR + PS)
I Same example, PR = 1, 000, PS = 500, cost is 4,500 I/Os
I At 10ms an I/O the join will take 45 seconds to evaluate
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Memory requirements

Objective: the hash table for a partition must fit in memory
I Minimise partition size by maximising number of partitions

What are the optimum sizes?
I For B buffer pool pages, maximum number of partitions m = B − 1

(why?)

Size of each partition is d PR
B−1e

Size of the hash table is d f ·PR
B−1e (f = fudge factor to capture the

increase in partition size due to the hash table)

During the probing phase, in addition to the hash table, we need one
page to read S , plus one page for output

I So, B > d f ·PR

B−1e+ 2 ⇒ B >
√

f · PR
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Hybrid hash join

An improvement over hash join if there is extra memory
I Minimum amount of memory for hash join B >

√
f · PR

I Suppose that B > f ·PR

k , for some integer k
I Divide R into k partitions of size PR

k (k + 1 buffer pool pages needed)
I This leaves B − (k + 1) extra buffer pool pages
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How it works

Suppose that B − (k + 1) > f ·PR
k

I We have enough memory during partitioning to hold an in-memory
hash table of size B − (k + 1) pages

Idea: keep R1 in memory at all times

While partitioning S , if a tuple falls into S1, don’t write it to disk;
instead probe the hash table for R1 for matches

For all partitions Ri ,Si , i > 2, continue as in hash join
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How it works — partitioning and joining

Disk Result

main memory (holds the buffer pool)

Hash table for R1
read S

use h1(S.b)

output page

as soon as page 
for Si (i>1)

fills up, flush to disk

R2 Rm...

use h2(S.b)

if tuple falls in S1

matches
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Query evaluation Join algorithms

Savings over grace hash join

Essentially, reduces the number of full passes

Running example, PR = 1, 000, PS = 500, assume 300 pages in the
buffer pool

Choose the smaller relation, S

Two partitions for it, each 250 pages
I But one will stay in memory; so, cost is 500+250=750 I/Os

Scan R, use two partitions, each 500 pages
I But the first one is not written to disk; so cost is 1,000+500=1500 I/Os

Join the two on-disk partitions, cost 250+500=750 I/Os

Total cost 750+1500+750=300 I/Os

At 10ms an I/O, this is half a minute
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On predicates

The algorithms we talked about will work on equi-join predicates
I If there are no equi-join predicates (inequality joins) the only algorithm

that will work is nested loops (why?)
I If there are indexes on the inequality join predicate’s attributes, we can

use index nested loops and revert the join to multiple scans
F Hoping that we will have buffer pool hits
F Remember access patterns and page replacement policy?

I Luckily, in a typical query workload there will mostly be equi-join
predicates
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On pipelining

Pipelining is great, but it cannot always be achieved

All three algorithms will essentially block at some point
I In the best case, between matches
I In the worst case, until after a few scans of the input relations

This is not necessarily bad; in fact, even if the algorithms block, the
time needed to compute the complete join result might be less

In reality, more than two stages of pipelining can rarely be obtained in
a single plan
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Query evaluation Join algorithms

Summary

The physical join is the most optimised physical evaluation operator
I Because a DBMS spends most of its time evaluating joins

Three main classes of algorithms
I Iteration-based, order-based, partition-based

Three main choice criteria
I Physical layout, indexes, available memory
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Summary (cont.)

Iteration-based methods
I Essentially, nested loops
I Very simple to implement, but if implemented poorly very inefficient
I But also very useful because they evaluate non-equi-join predicates

Order-based methods
I Sort the inputs, merge them afterwards
I Well-behaved cost — 3-4 passes over the data will do the trick
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Summary (cont.)

Partition-based methods
I Simple hash join, Grace hash join, and hybrid hash join
I If there is extra memory, hybrid hash join’s behaviour is excellent

Figuring out the best join algorithm for a particular pair of inputs is
the job of the query optimiser

Which, along with good implementations, will choose the one that
evaluates a join in 30 seconds and not in 14,000 hours
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Query optimisation Overview

Query cycle

Catalog

Query Parser

Syntax
tree

Query
Analyzer

σR.a=5

⋈R.a=T.b

πT.b

Optimiser

Relational
algebra

Statistics

Scheduler
nested-loops
(R, T, a=b)

hash-join
(T, S, b=c)

table-scan
(R)

index-scan
(T.b)

index-scan
(S.c)

Physical
plan

Execution
environment

Query
Engine

Thread-id=12,
operator=3,

in-stream=1,...

DB
Tables

Compiled
code

Results
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Query optimisation Overview

Query optimiser

The query optimiser is the heart of the evaluation engine
I Yes, the physical operators get the job done
I Yes, the execution model makes sure the operators actually run
I But, unless the query optimiser decides on those things, the query will

never run
I And the decision needs to be a good one
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Query optimisation Overview

Decisions

Two crucial decisions the optimiser makes
I The order in which the physical operators are applied on the inputs

(i.e., the plan employed)
I The algorithms that implement the physical operators

These two decisions are not independent
I In fact, one affects the other in more ways than one
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Query optimisation Overview

Cost-based query optimisation

The paradigm employed is cost-based query optimisation
I Simply put: enumerate alternative plans, estimate the cost of each

plan, pick the plan with the minimum cost

For cost-based optimisation, we need a cost model
I Since what “hurts” performance is I/O, the cost model should use I/O

as its basis
I Hence, the cardinality-based cost model

F Cardinality is the number of tuples in a relation
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Query optimisation Overview

Plan enumeration

Plan enumeration consists of two parts (again, not necessarily
independent from one another)

I Access method selection (i.e., what is the best way to access a relation
that appears in the query?)

I Join enumeration (i.e., what is the best algorithm to join two relations,
and when should we apply it?)

Access methods, join algorithms and their various combinations define
a search space

I The search space can be huge
I Plan enumeration is the exploration of this search space
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Query optimisation Overview

Search space exploration

As was stated, the search space is huge
I Exhaustive exploration is out of the question
I Because it could be the case that exploring the search space might take

longer than actually evaluating the query
I The way in which we explore the search space describes a query

optimisation method
F Dynamic programming, rule-based optimisation, randomised

exploration, . . .
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Query optimisation Overview

Just an idea . . .

A query over five relations, only one access method, only one join
algorithm, only left-deep plans

I Remember, cost(R ./ S) 6= cost(S ./ R)
I So, the number of possible plans is 5! = 120
I If we add one extra access method, the number of possible plans

becomes 25 · 5! = 3840
I If we add one extra join algorithm, the number of possible plans

becomes 24 · 25 · 5! = 61440
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Query optimisation Overview

Cardinality-based cost model

A cardinality-based cost model means we need good ways of doing
the following

I Using cardinalities to estimate costs (e.g., accurate cost functions)
I Estimating output cardinalities after we apply certain operations (e.g.,

after a selection the cardinality will change; it will not change after a
projection)

F Because these output cardinalities will be used as inputs to the cost
functions of other operations
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Cardinality estimation

An entire area of query optimisation

Largely a matter of statistics

It has triggered the “percentage wars”
I “This estimation technique is within x% of the true value with a y%

probability”

Fact: the better the statistics, the better the decisions

Another fact: errors in statistics propagate exponentially; after 4 or 5
joins, you might as well flip a coin

Third fact: cost functions are discontinuous, so in certain scenarios
only perfect statistics will help
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Query optimisation Overview

Are we done?

The previous issues were only a subset of the problems an optimiser
solves

I We also need to worry about certain properties of the data
F For instance, if we use a B+tree as an access method, then we won’t

have to sort (e.g., interesting orders in System R)
F If we use a hash join later on the order is spoiled
F So we will have to sort again

I Depending on the algorithm and the environment, we need to allocate
memory

And as if all these were not enough, optimisation time assumptions
do not necessarily hold at run time

Stratis D. Viglas (University of Edinburgh) Advanced Databases 172 / 1



Query optimisation Overview

The final nail . . .

These are all for one query

Now, imagine a system doing that for 1000 queries
I Simultaneously

And it all has to be done fast
I Once a decision is made, it cannot be undone
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Query optimisation Overview

Conclusion

Query optimisation is a very, very hard problem

But without it a dbms is doomed to seriously sub-optimal
performance

The problem is not nearly solved
I All we have is decent optimisation strategies
I And decent sub-problem solutions

Fact: rarely will an optimiser pick the “best” plan
I But it will almost always pick a plan with good performance and stay

away from bad choices
I At the end of the day, thats what counts
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Query optimisation Overview

The agenda

Mapping SQL queries to relational algebra
I Query blocks, uncorrelated vs. correlated queries

Optimisation of a single query block

Equivalence rules

Statistics and cardinality estimation

Search space exploration
I Dynamic programming (System-R)
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Query optimisation Block decomposition and equivalence rules

SQL decomposition

SQL queries are optimised
by decomposing them
into a collection of query
blocks

A block is optimised in
isolation, resulting in a
plan for a block

Plans for blocks are
combined to form the
complete plan for the
query

SQL Query

Optimiser

Block 1 Block 2 Block n...

Plan 1

Plan 2

Plan n

...

Plan 1 Plan 2

Plan n

⋈

⋈

⋈

...
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Query optimisation Block decomposition and equivalence rules

What is a block?

An SQL query with no nesting

Exactly one select-clause

Exactly one from-clause

At most one
I Where-clause in conjunctive normal form
I Group by-/sort by-clause
I Having-clause

Stratis D. Viglas (University of Edinburgh) Advanced Databases 178 / 1



Query optimisation Block decomposition and equivalence rules

Example

Sample schema
Sailors (sid, sname, rating, age)

Boats (bid, bname, color

Reserves (sid, bid, day, rname)

Example
For each sailor with the highest rating over all sailors,
and at least two reservations for red boats, find the
sailor id and the earliest date on which the sailor has
a reservation for a red boat.

SQL query
select s.sid, min(r.day)

from sailors s, reserves r, boats b

where s.sid = r.sid and r.bid = b.bid and

b.color = ’red’ and

s.rating = ( select max(s2.rating) from sailors s2)

group by s.sid

having count(*) > 1
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Query optimisation Block decomposition and equivalence rules

Two blocks in the query

select   s.sid, min(r.day)
from     sailors s, reserves r, boats b
where    s.sid = r.sid and r.bid = b.bid and
         b.color = ‘red’ and 
         s.rating = ( )
group by s.sid
having   count(*) > 1

select   s.sid, min(r.day)
from     sailors s, reserves r, boats b
where    s.sid = r.sid and r.bid = b.bid and
         b.color = ‘red’ and 
         s.rating = (select max(s2.rating)
                     from   sailors s2)
group by s.sid
having   count(*) > 1

select max(s2.rating)
from   sailors s2

outer
block

nested
block

reference
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Query optimisation Block decomposition and equivalence rules

Single block optimisation — step 1

SQL query
select s.sid, min(r.day)

from sailors s, reserves r, boats b

where s.sid = r.sid and r.bid = b.bid and

b.color = ’red’ and

s.rating = ( select max(s2.rating) from sailors s2)

group by s.sid

having count(*) > 1

Relational algebra

πs.sid,min(r .day)(

havingcount(∗)>2(

group bys.sid(

σs.sid=r .sid∧r .bid=b.bid∧b.color=red∧s.rating=nested−value(

sailors × reserves × boats))))

Express the
query in
relational
algebra

More specifically,
extended
relational
algebra
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Query optimisation Block decomposition and equivalence rules

Single block optimisation — step 2

Relational algebra — before
πs.sid,min(r.day)(

havingcount(∗)>2(

group bys.sid (

σs.sid=r.sid∧r.bid=b.bid∧b.color=red∧s.rating=nested−value (

sailors × reserves × boats))))

Relational algebra — after

πs.sid(

σs.sid=r .sid∧r .bid=b.bid∧b.color=red∧s.rating=nested−value(

sailors × reserves × boats))

Ignore the
aggregate
operations

I They only
have
meaning for
the complete
result

I Convert the
query into a
subset of
relational
algebra
called σπ×
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Query optimisation Block decomposition and equivalence rules

Single block optimisation — step 3

Use equivalence rules to identify alternative ways of formulating the
query

“Plug in” algorithms

Enumerate plans

Estimate the cost of each plan

Pick the one with the minimum cost
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Query optimisation Block decomposition and equivalence rules

Equivalence rules

Essentially, every query block consists of three things
I Cartesian product of all relations in the from-clause
I Selection predicates of the where-clause
I Projections of the select-clause

The equivalence rules define the space of alternative plans considered
by an optimiser

I In other words, the search space of a query
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Query optimisation Block decomposition and equivalence rules

Selection and projections

Cascading of selections
I σc1∧c2∧...∧cn ( R ) ≡ σ c1 (σ c2 (. . . (σ cn ( R ))))

Commutativity
I σ c1 (σ c2 ( R )) ≡ σ c2 (σ c1 ( R ))

Cascading of projections
I π a1 ( R ) ≡ π a1 (π a2 (. . . (π an ( R )) . . .)
I iff ai ⊆ ai+1, i = 1, 2, . . . n − 1
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Query optimisation Block decomposition and equivalence rules

Cartesian products and joins

Commutativity
I R × S ≡ S × R
I R ./ S ≡ S ./ R

Assosiativity
I R× ( S × T ) ≡ ( R × S ) ×T
I R ./ ( S ./ T ) ≡ ( R ./ S ) ./ T

Their combination
I R ./ ( S ./ T ) ≡ R ./ ( T ./ S ) ≡ ( R ./ T ) ./ S
≡ ( T ./ R ) ./ S
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Query optimisation Block decomposition and equivalence rules

Among operations

Selection-projection commutativity
I πa ( σc (R)) ≡ σc ( πa (R))
I iff every attribute in c is included in the set of attributes a

Combination (join definition)
I σc ( R × S ) ≡ R ./ c S

Selection-Cartesian/join commutativity
I σc ( R × S ) ≡ σc(R) ./ S
I iff the attributes in c appear only in R and not in S

Selection distribution/replacement
I σc(R ./ S) ≡ σ c1 ∧ c2 ( R ./ S ) ≡ σc1 ( σc2 ( R ./ S )) ≡
σc1 (R) ./ σc2 (S)

I iff c1 is relevant only to R and c2 is relevant only to S
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Query optimisation Block decomposition and equivalence rules

Among operations (cont.)

Projection-Cartesian product commutativity
I πa ( R × S ) ≡ πa1 (R) × πa2 (R)
I iff a1 is the subset of attributes in a appearing in R and a2 is the subset

of attributes in a appearing in S

Projection-join commutativity
I πa ( R ./c S ) ≡ πa1 (R) ./c πa2 (R)
I iff same as before and every attribute in c appears in a

Attribute elimination
I πa( R ./c S ) ≡ πa( πa1 (R) ./c πa2 (S) )
I iff a1 subset of attributes in R appearing in either a or c and a2 is the

subset of attributes in S appearing in either a or c
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Query optimisation Block decomposition and equivalence rules

What do we have and what do we need?

We have
I A way to decompose SQL queries into multiple query blocks
I A way to map a block to relational algebra
I Equivalence rules between different algebraic expressions, i.e., a search

space

We need
I A way to estimate the cost of each alternative expression

F Depending on the algorithms used

I A way to explore the search space
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Query optimisation Cardinality estimation

Cost estimation

A plan is a tree of operators

Two parts to estimating the
cost of a plan

I For each node, estimate the
cost of performing the
corresponding operation

I For each node, estimate the
size of the result and any
properties it might have (e.g.,
sorted)

Combine the estimates and
produce an estimate for the
entire plan

reserves sailors

σbid=100 σrating>5

⋈
r.sid=s.sid

πsname

cost
(σbid=100)

|σbid=100(Reserves)|
cost

(reserves ⋈ sailors)

|reserves ⋈ sailors|
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Query optimisation Cardinality estimation

Cost and cardinality

We have seen various storage methods and algorithms
I And know the cost of using each one, depending on the input

cardinality

The problem is estimating the output cardinality of the operations
I Namely, selections and joins
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Query optimisation Cardinality estimation

Selectivity factor

The maximum number of tuples in the result of any query is the
product of the cardinalities of the participating relations

Every predicate in the where-clause eliminates some of these potential
results

Selectivity factor of a single predicate is the ratio of the expected
result size to the maximum result size

Total result size is estimated as the maximum size times the product
of the selectivity factors

Key assumption: the predicates are statistically independent
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Query optimisation Cardinality estimation

How it works

SQL query

select a1, a2, . . . ak
from R1,R2, . . .Rn

where P1 and P2 and . . . and Pm

Maximum output
cardinality

|R1| · |R2| · . . . · |Rn|

Selectivity factor
product

fP1 · fP2 · . . . · fPm

Estimated output cardinality

(fP1 · fP2 · . . . · fPm) · |R1| · |R2| · . . . · |Rn|
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Query optimisation Cardinality estimation

Various selectivity factors

column = value → 1
#keys(column)

I Assumes uniform distribution in the values
I Is itself an approximation

column1 = column2 → 1
max(#keys(column1),#keys(column2))

I Each value in column1 has a matching value in column2; given a value
in column1, the predicate is just a selection

I Again, an approximation
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Query optimisation Cardinality estimation

Various selectivity factors (cont.)

column > value → (high(column)−value)
(high(column)−low(column))

value1 < column < value2 → (value2−value1)
(high(column)−low(column))

column in list → number of items in list times s.f. of column = value

column in sub-query → ratio of subquery’s estimated size to the
number of keys in column

not (predicate) → 1 - (s.f. of predicate)

P1 ∨ P2 → fP1 + fP2 − fP1 · fP2
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Query optimisation Cardinality estimation

Key assumptions made

The values across columns are uncorrelated

The values in a single column follow a uniform distribution

Both of these assumptions rarely hold

The first assumption is hard to lift
I Only recently have researchers started tackling the problem

The uniform distribution assumption can be lifted with better
statistical methods

I In our case, histograms
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Query optimisation Cardinality estimation

What we would like

0

2.25

4.50

6.75

9.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Estimated distribution (uniform assumption) True distribution
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Query optimisation Cardinality estimation

Lifting the uniform distribution assumption

At the basic level, all we need is
a collection of (value,
frequency) pairs

Which is just a relation!
I So, scan the input and build it

But this is unacceptable
I Because the size might be

comparable to the size of the
relation

I And we need to answer
queries about the value
distribution fast

name color stock

bolt

bolt

red

green

10

5

nut

nut

blue

black

4

10

nut

nut

red

green

5

10

cam

cam

blue

green

5

10

cam black 10

value freq

red

green

2

3

blue

black

2

2

value freq

10

5

4

3

4 1

parts
parts.color

parts.stock
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Query optimisation Cardinality estimation

Histograms

Elegant data structures to capture value distributions
I Not affected by the uniform distribution assumption (though this is not

entirely true)

They offer trade-offs between size and accuracy
I The more memory that is dedicated to a histogram, the more accurate

it is
I But also, the more expensive to manipulate

Two basic classes: equi-width and equi-depth
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Query optimisation Cardinality estimation

Desirable histogram properties

Small
I Typically, a DBMS will allocate a single page for a histogram!

Accurate
I Typically, less than 5% error

Fast access
I Single lookup access and simple algorithms
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Query optimisation Cardinality estimation

Mathematical properties

A histogram approximates the value distribution for attribute X of
table T

The value distribution is partitioned into a number of b subsets,
called buckets

There is a partitioning constraint that identifies how the partitioning
takes place

I Different constraints, lead to different classes of histograms

The values and frequencies in each bucket are approximated in some
common fashion
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Query optimisation Cardinality estimation

Equi-width histogram

0
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Query optimisation Cardinality estimation

Equi-width histogram construction

The total range is divided into
sub-ranges of equal width

Each sub-range becomes a
bucket

The total number of tuples in
each bucket is stored

0

2.25

4.50

6.75

9.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

True distribution Distribution approximation

min max count

0 2 8

3 5 4

6 8 15

9 11 3

12 14 15
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Query optimisation Cardinality estimation

Equi-width histogram estimation

To estimate the output cardinality
of a range query

I The starting bucket is
identified

I The histogram is then
scanned forward until the
ending bucket is identified

I The numbers of tuples in the
buckets of the range are
summed

I Within each bucket the
uniform distribution
assumption is made

6 ≤ v ≤ 10: 3
3 · 15 + 2

3 · 3 = 17

0

2.25

4.50

6.75

9.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

True distribution Distribution approximation

min max count

0 2 8

3 5 4

6 8 15

9 11 3

12 14 15
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Query optimisation Cardinality estimation

Equi-depth histogram

0
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True distribution Distribution approximation

Bucket 1
count = 8

Bucket 2
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Query optimisation Cardinality estimation

Equi-depth histogram construction and estimation

The total range is divided into
sub-ranges so that the number
of tuples in each range is
(approximately) equal

Each sub-range becomes a
bucket

The same schema as in
equi-width histograms is used

In fact, the same algorithm is
used for estimation (!)

6 ≤ v ≤ 10:
2
4 · 10 + 2

2 · 10 + 1
4 · 7 ≈ 17

0

2.25

4.50

6.75

9.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

True distribution Distribution approximation

min max count

0 3 8

4 7 10

8 9 10

10 13 7

14 14 9
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Query optimisation Cardinality estimation

Comparison

Equi-depth histograms are generally better than equi-width
I Buckets with frequently occurring values contain fewer values
I Infrequently occurring values are approximated less accurately (but the

error is less significant)
I So the uniform distribution assumption within each bucket leads to

better approximation
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Query optimisation Cardinality estimation

What do we have and what do we need?

We have
I A way to decompose a query
I A way to identify equivalent, alternative representations of it (i.e., a

search space)
I A statistical framework to estimate cardinalities
I A cost model to estimate the cost of an alternative

We need
I A way to explore the search space
I Dynamic programming
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Query optimisation Plan enumeration

Dynamic programming

In the beginning, there was System R, which had an optimiser

System R’s optimiser was using dynamic programming
I An efficient way of exploring the search space

Heuristics: use the equivalence rules to push down selections and
projections, delay Cartesian products

I Minimise input cardinality to, and memory requirements of the joins

Constraints: left-deep plans, nested loops and sort-merge join only
I Left-deep plans took better advantage of pipelining
I Hash-join had not been developed back then
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Query optimisation Plan enumeration

Interesting orders

If there is an order by or group by clause on an attribute, we say that
this attribute has an interesting order associated with it

I Interesting, because depending on the access method we can get away
with fewer physical operations (e.g., sorting)

The same holds for attributes participating in a join
I Again, interesting because we can use the access method in evaluating

the join
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Query optimisation Plan enumeration

Dynamic programming steps

Identify the cheapest way to access every single relation in the query,
applying local predicates

I For every relation, keep the cheapest access method overall and the
cheapest access method for an interesting order

For every access method, and for every join predicate, find the
cheapest way to join in a second relation

I For every join result keep the cheapest plan overall and the cheapest
plan in an interesting order

Join in the rest of the relations using the same principle
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Query optimisation Plan enumeration

An example

job

dept

select name, title, salary, dname
from   emp, dept, job
where  job.title=’Clerk’ and 
       dept.location = ‘Edinburgh’ and 
       emp.dno = dept.dno and 
       emp.job = job.job

name dno job salary

Smith 50 12 8500

Jones 50 5 15000

Doe 51 5 9500

dno dname location

50 MFG Edinburgh

51 Billing London

52 Shipping Glasgow

job

5

6

8

12

title

clerk

typist

sales

mechanic

name, salary, job title, department name
of employees who are clerks and work in 
departments in Edinburgh

local predicates

join predicates interesting orders

emp
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Query optimisation Plan enumeration

Access methods and local predicates

emp

n1 n1

index
(emp.dno)

cost
(emp.dno)

index
(emp.job)

cost
(emp.job)

n1

scan
(emp)

cost
(emp)

dept

n2 n2

index
(dept.dno)

cost
(dept.dno)

scan
(dept)

cost
(dept)

job

n3 n3

index
(job.job)

cost
(job.job)

scan
(job)

cost
(job)

Scanning emp is the most expensive method for emp; emp.dno and emp.job are interesting orders

Scanning dept is the most expensive method for dept; dept.dno is an interesting order

Scanning job is the cheapest method for job; but, job.job is an interesting order
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Query optimisation Plan enumeration

Search tree for access methods

emp dept job

n1

index
(emp.dno)

cost
(emp.dno)

index
(emp.job)

cost
(emp.job)

n2

index
(dept.dno)

cost
(dept.dno)

n3

index
(job.job)

cost
(job.job)

scan
(job)

cost
(job)
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Query optimisation Plan enumeration

Join enumeration for relation emp (nested loops join)

index
(emp.dno)

index
(emp.job)

index
(dept.dno)

index
(dept.dno)

cost(emp.dno)
+ cost(dept.dno)

+ cost-nl(emp⋈dept)
dno order

emp⋈dept

n4

n1

cost(emp.job)
+ cost(dept.dno)

+ cost-nl(emp⋈dept)
dno order

emp⋈job

index
(emp.dno)

index
(emp.job)

index
(job.job)

scan
(job)

index
(job.job)

scan
(job)

cost(emp.dno)
+ cost(job.job)

+ cost-nl(emp⋈job)
dno order

cost(emp.dno)
+ cost(job)

+ cost-nl(emp⋈job)
dno order

cost(emp.job)
+ cost(job.job)

+ cost-nl(emp⋈job)
job order

cost(emp.job)
+ cost(job)

+ cost-nl(emp⋈job)
job order

n5

n1

Both emp ./ dept results are in different interesting orders so they are propagated

Only the cheapest result in any interesting order is propagated for each pair of inputs

Stratis D. Viglas (University of Edinburgh) Advanced Databases 217 / 1



Query optimisation Plan enumeration

Join enumeration for relations dept, job (nested loops)

index
(dept.dno)

index
(emp.dno)

index
(emp.job)

cost(dept.dno)
+ cost(emp.dno)

+ cost-nl(dept⋈emp)
dno order

dept⋈emp

n4

n2

cost(dept.dno)
+ cost(emp.job)

+ cost-nl(dept⋈emp)
dno order

job⋈emp

index
(job.job)

scan
(job)

index
(emp.dno)

index
(emp.job)

index
(emp.dno)

index
(emp.job)

cost(job.job)
+ cost(emp.job)

+ cost-nl(job⋈emp)
job order

cost(job.job)
+ cost(emp.job)

+ cost-nl(job⋈emp)
job order

cost(job)
+ cost(emp.dno)

+ cost-nl(job⋈emp)
unordered

cost(job)
+ cost(emp.job)

+ cost-nl(job⋈emp)
unordered

n5

n3

cost(emp ./ dept) 6= cost(dept ./ emp) so we will enumerate dept’s joins even though we have an alternative for
generating the same result (same for job ./ emp)

Both dept ./ emp results in the same order, only one propagated

Since there is no dept ./ job predicate in the query, that join is not enumerated (same for job ./ dept)

The unordered result for job ./ emp is propagated because it is the cheapest overall
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Query optimisation Plan enumeration

Search tree — 2 relations, nested loops join

index
(dept.dno)

index
(emp.dno)

cost(dept.dno)
+ cost(emp.dno)

+ cost-nl(dept⋈emp)
dno order

dept⋈emp

n4

n2

job⋈emp

index
(job.job)

scan
(job)

index
(emp.job)

index
(emp.job)

cost(job.job)
+ cost(emp.job)

+ cost-nl(job⋈emp)
job order

cost(job)
+ cost(emp.job)

+ cost-nl(job⋈emp)
unordered

n5

n3

index
(emp.dno)

index
(dept.dno)

cost(emp.dno)
+ cost(dept.dno)

+ cost-nl(emp⋈dept)
dno order

emp⋈dept

n4

n1

emp⋈job

index
(emp.dno)

index
(emp.job)

index
(job.job)

index
(job.job)

cost(emp.dno)
+ cost(job.job)

+ cost-nl(emp⋈job)
dno order

cost(emp.job)
+ cost(job.job)

+ cost-nl(emp⋈job)
job order

n5

n1

index
(emp.job)

index
(dept.dno)

cost(emp.job)
+ cost(dept.dno)

+ cost-nl(emp⋈dept)
job order
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Query optimisation Plan enumeration

Join enumeration for relation emp (sort-merge)

index
(emp.dno)

index
(emp.job)

merge
(dept.dno)

sort - dno
(emp.job)

cost(emp.dno)
+ cost(dept.dno)

+ cost-m(emp⋈dept)
dno order

emp⋈dept

n4

n1

cost(emp.job)
+ cost-sort(emp.job)

+ cost(dept.dno)
+ cost-m(emp⋈dept)

dno order

emp⋈job

index
(emp.dno)

index
(emp.job)

sort - job
(emp.dno)

index
(job.job)

sort - job
(job)

cost(emp.dno)
+ cost-sort(emp.dno)

+ cost(job.job)
+ cost-m(emp⋈job)

job order

cost(emp.job)
+ cost(job.job)

+ cost-m(emp⋈job)
job order

cost(emp.job)
+ cost(job)

+ cost-sort(job)
+ cost-m(emp⋈job)

job order

n5

n1

merge
(dept.dno)

merge
(job.job)

sort - job
(job)

merge
(job)

cost(emp.dno)
+ cost-sort(emp.dno)

+ cost(job)
+ cost-sort(job)

+ cost-m(emp⋈job)
job order

merge
(job)
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Query optimisation Plan enumeration

Join enumeration for relations dept, job (sort-merge)

index
(dept.dno)

merge
(emp.dno)

cost(dept.dno)
+ cost(emp.dno)

+ cost-m(dept⋈emp)
dno order

n4

n2

dept⋈emp

job⋈emp

scan
(job)

sort
(job)

cost(job)
+ cost-sort(job)
+ cost(emp.dno)

+ cost-sort(emp.dno)
+ cost-m(job⋈emp)

job order

n5

n3

index
(job.job)

sort job
(emp.dno)

merge
(job)

cost(job.job)
+ cost(jemp.dno)

+ cost-sort(emp.dno)
+ cost-m(job⋈emp)

job order

index
(emp.job)

cost(job.job)
+ cost(jemp.job)

+ cost-m(job⋈emp)
job order

sort job
(emp.dno)

merge
(job)

index
(emp.job)

cost(job)
+ cost-sort(job)
+ cost(emp.job)

+ cost-m(job⋈emp)
job order
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Query optimisation Plan enumeration

Search tree — 2 relations, sort-merge join

index
(emp.dno)

merge
(dept.dno)

cost(emp.dno)
+ cost(dept.dno)

+ cost-m(emp⋈dept)
dno order

emp⋈dept

n4

n1

emp⋈job

index
(emp.job)

index
(job.job)

cost(emp.job)
+ cost(job.job)

+ cost-m(emp⋈job)
job order

n5

n1

index
(dept.dno)

merge
(emp.dno)

cost(dept.dno)
+ cost(emp.dno)

+ cost-m(dept⋈emp)
dno order

n4

n2

dept⋈emp job⋈emp

n5

n3

index
(job.job)

index
(emp.job)

cost(job.job)
+ cost(jemp.job)

+ cost-m(job⋈emp)
job order
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Query optimisation Plan enumeration

Search tree — 2 relations, both join methods

index
(dept.dno)

index
(emp.dno)

cost(dept.dno)
+ cost(emp.dno)

+ cost-m(dept⋈emp)
dno order

dept⋈emp

n4

n2

job⋈emp

index
(job.job)

scan
(job)

index
(emp.job)

index
(emp.job)

cost(job.job)
+ cost(emp.job)

+ cost-m(job⋈emp)
job order

cost(job)
+ cost(emp.job)

+ cost-nl(job⋈emp)
unordered

n5

n3

index
(emp.dno)

index
(dept.dno)

cost(emp.dno)
+ cost(dept.dno)

+ cost-m(emp⋈dept)
dno order

emp⋈dept

n4

n1

emp⋈job

index
(emp.dno)

index
(emp.job)

index
(job.job)

index
(job.job)

cost(emp.dno)
+ cost(job.job)

+ cost-nl(emp⋈job)
dno order

cost(emp.job)
+ cost(job.job)

+ cost-m(emp⋈job)
job order

n5

n1

index
(emp.job)

index
(dept.dno)

cost(emp.job)
+ cost(dept.dno)

+ cost-nl(emp⋈dept)
job order

For each pair or relations, for each different join order and for each interesting order for that pair one plan is propagated

An unordered result is only propagated if it is the cheapest overall for a pair in a given join order
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Query optimisation Plan enumeration

Three relations

Repeat the process
I For every pair of two relations
I For every join method
I For every access method of the remaining relation
I Find the cheapest way to join the third relation with the pair

F Estimate cardinalities
F Estimate the cost of computing the join

I Keep the cheapest choice for every interesting order and the cheapest
for the unordered case if it is the cheapest overall

Stratis D. Viglas (University of Edinburgh) Advanced Databases 224 / 1



Query optimisation Plan enumeration

Rule-based optimisation

Basically an issue of if-then rules
I If (condition list) then apply some transformation to the plan

constructed so far
F Estimate the cost of the new plan, keep it only if it is cheaper than the

original

I The order in which the rules are applied is significant
I As a consequence, rules are applied by precedence

F For instance, pushing down selections is given high precedence
F Combining two relations with a Cartesian product is given low

precedence
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Query optimisation Plan enumeration

Randomised exploration

Mostly useful in big queries (more than 15 joins or so)

The problem is one of exploring a bigger portion of the search space
I So, every once in a while the optimiser “jumps” to some other part of

the search space with some probability

As a consequence, it gets to explore parts of the search space it would
not have explored otherwise
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Query optimisation Plan enumeration

The “well”

cost

"plans"

comparable, but good
performance

diverse, but bad performance

Stratis D. Viglas (University of Edinburgh) Advanced Databases 227 / 1



Query optimisation Plan enumeration

The “well” and local minima

cost

"plans"

comparable, but good
performance

diverse, but bad performance

local minima
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Query optimisation Plan enumeration

Final step — the entire plan

The optimiser has produced plans for each query block

The question is now one of combining the sub-plans to formulate the
entire query plan

The strategy used depends on whether the outer and nested queries
are correlated or not

I If they are, then in all probability the two sub-plans will be combined
through a join
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Query optimisation Plan enumeration

Uncorrelated queries

Usually, they can
be executed in
isolation

The nested query
feeds the outer
query with results

select s.sname
from   sailors s
where  s.rating = (select max(s2.rating)
                   from sailors s2)

executed first

once the nested query is executed,
the outer is simply a selection
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Query optimisation Plan enumeration

Correlated queries

Sometimes, it is not
possible to execute the
nested query just once

In those cases the
optimiser reverts to a
nested loops approach

I The nested query is
executed once for every
tuple of the outer query

select s.sname
from   sailors s
where  exists (select *
               from reserves r
               where r.bid = 103 and
                     s.sid = r.sid)

⋈
s.sid=r.sid

σr.bid=103

reserves

sailors

nested loops

this could be
an entire plan
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Query optimisation Plan enumeration

In practice

Before breaking up the query into blocks, most systems try to rewrite
the query in some other way (de-correlation)

I The idea is that there will probably be a join, so it will be better if the
query is optimised in its entirety

If de-correlation is not possible, then it is nested loops all the way
I Usually, compute the nested query, store it in a temporary relation and

do nested loops with the outer
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Query optimisation Plan enumeration

What do we have and what do we need?

We have
I A way to decompose a query
I A way to identify equivalent, alternative representations of it (i.e., a

search space)
I A statistical framework to estimate cardinalities
I A cost model to estimate the cost of an alternative
I Ways of exploring the search space

We need
I Nothing!
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Summary

The query optimiser is the heart of the query engine
I If it does not do a good job, the engine is doomed to sub-optimal

performance

Two key, closely related decisions
I Order in which operations are performed
I Algorithms that perform the operations

The paradigm used is cost-based optimisation
I Three steps: generate alternative plans, estimate the cost of each plan,

pick the cheapest

The cost model used is the cardinality-based cost model
I Because cardinality is a good I/O metric
I As a consequence, we need good ways of doing two things

F Estimating the cost of an algorithm
F Estimating the output cardinality of operations
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Query optimisation Summary

Summary (cont.)

Cardinality estimation is 50% of the problem
I Two approaches: uniform distribution assumption, or histograms
I The uniform distribution assumption essentially does not “care” about

the values themselves, they all have an equal probability of appearing
I Histograms are a better and more elegant distribution approximation

technique
F Equi-width and equi-depth histograms are the two dominant classes
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Summary (cont.)

The remaining 50% is search space exploration
I Largely based on the equivalence rules of relational algebra
I Dynamic programming is the dominant approach

F Find the cheapest way to access single relations
F Find the cheapest way to join two relations
F For each pair, find the cheapest way to join in a third relation
F Keep going . . .
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Summary (cont.)

Other approaches include rule-based optimisation, randomised
exploration, . . .

All approaches aim at one thing
I Picking a good evaluation plan
I It might not be the cheapest overall, but it usually is of comparable cost

Query optimisation is still an open issue
I We have good ways of solving sub-problems, but the entire problem

remains largely unsolved
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Transactions, concurrency, and recovery Overview

Overview

So far, we have focussed on query processing
I In other words, reading and manipulating data

A database system, however, not only reads, but also stores data
I At the same time as others are querying it

We need a way to ensure concurrent access to the data
I Without compromising system performance
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Overview (cont.)

The basic concept is transaction processing

Every transaction needs to satisfy four basic properties
I Atomicity, consistency, isolation, durability

How does the system guarantee these properties?
I Remember, without compromising performance
I Solution: by interleaving transactions
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Overview (cont.)

How can we decide if, after we have interleaved transactions, the
result is correct?

I Interleaving transactions actually causes certain anomalies
I Solution: the system uses locks to ensure correctness

How are locks used?
I Lock granularity, degrees of consistency and two-phase locking

What impact do locks have on performance?
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Overview (cont.)

Locking poses significant overhead
I Luckily, however, this overhead can be “tuned” by the user
I Transaction isolation levels

But what if the worse comes to worst?
I System crashes
I Transactional semantics and recovery
I Write-ahead logging and the ARIES algorithms
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Transactions

A DBMS spends a lot of time waiting on I/O

I It is important to keep the CPU busy while waiting
I In other words, execute other operations concurrently

Fact: the DBMS does not “care” what the user does with the data
that is being read or written

I All it cares about is that data is being read or written

A transaction is the DBMS’s abstract view of user programs: a
sequence of reads and writes
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Concurrent execution

The transaction user abstraction: when a user submits a transaction
it is as if the transaction is executing by itself

I The DBMS achieves concurrency by interleaving transactions
I If the transaction begins with the DB in a consistent state, it must

leave the DB in a consistent state after it finishes

The semantics of the transactions are unknown to the system
I Whether the transaction updates a bank account or it fires a rocket

missile, the DBMS will never know!
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ACID properties

Atomicity: all the actions in a transaction are executed as a single
atomic operation; either they are all carried out or none are

Consistency: if a transaction begins with the DB in a consistent state,
it must finish with the DB in a consistent state

Isolation: a transaction should execute as if it is the only one
executing; it is protected (isolated) from the effects of concurrently
running transactions

Durability: if a transaction has been successfully completed, its effects
should be permanent
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Example

Consider two transactions
I First transaction transfers

funds, second transaction
pays 6% interest

If they are submitted at the
same time, there is no guarantee
as to which is executed first

I But the end effect should be
equivalent to the transactions
running serially

Begin
A = A+100
B = B-100
End

T1

Begin
A = 1.06*A
B = 1.06*B
End

T2
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Example (cont.)

T1 A = A+100 B = B-100

T2 A = 1.06*A B = 1.06*B

T1 A = A+100 B = B-100

T2 A = 1.06*A B = 1.06*B

T1 R(A), W(A) R(B), W(B)

T2 R(A), W(A) R(B), W(B)

Acceptable schedule

Problematic schedule

DBMS's view
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Scheduling

A schedule is a sequence of reads and writes for some transaction
workload incorporating all actions of the workload’s transactions

I Serial schedule: the actions of different transactions are not interleaved
I Equivalent schedules: for any database state, the effect of executing the

first schedule is identical to the effect of executing the second schedule
I Serialisable schedule: a schedule that is equivalent to a serial schedule
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Conflicts

T1 R(A), W(A) R(B), W(B), A

T2 R(A), W(A) R(B), W(B), C

Reading uncommitted data (WR conflicts, or "dirty reads")

Unrepeatable reads (RW conflicts)

Overwriting uncommitted data (WW conflicts, or "lost updates") 

T1 R(A) R(A), W(A), C

T2 R(A)  W(A), C

T1 W(A) W(B), C

T2 W(A)  W(B), C
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The solution: locks

Before a transaction “touches” a DB object it has to obtain a lock for
it

I S (Shared) lock for reading
I X (eXclusive) lock for writing

Strict two-phase locking (Strict 2PL)
I Each transaction must obtain an S lock for everything it reads before it

starts reading it and an X lock for everything it writes before it starts
writing

I All locks held by a transaction are released only when the transaction
commits

I Once a transaction obtains an X lock for a DB object no other
transaction can obtain an X or an S lock for that object

Strict 2PL produces only serialisable schedules
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What can go wrong?

If a transaction Ti is aborted, then all its actions have to be undone;
not only that, but if Tj reads an object written by Ti , Tj needs to be
aborted as well (cascading aborts)

Most systems avoid cascading aborts with the following rule:
I If Ti writes an object Tj can read this object only after Ti commits

In order to know what needs to be undone, the system keeps a log,
recording all writes

The log is also helpful when recovering from system crashes
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The log

The following actions are recorded in the log
I Whenever a transaction writes an object

F The log record must be on disk before the data record reaches the disk

I Whenever a transaction commits/aborts

Log records are chained by transaction ID (why?)

All log-related activities (in fact, all concurrency control related
activities) are handled by the DBMS

I The user does not know anything
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Crash recovery

Three phases to recovery (ARIES)
I Analysis: scan log forward, identifying committed and

aborted/unfinished transactions
I Redo: all committed transactions are made durable
I Undo: the actions of all aborted and/or unfinished transactions are

undone
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Concurrency control

Serial schedule: the actions of different transactions are not
interleaved

Equivalent schedules: for any database state, the effect of executing
the first schedule is identical to the effect of executing the second
schedule

Serialisable schedule: a schedule that is equivalent to a serial schedule

Two schedules are conflict equivalent if:
I They involve the same actions of the same transactions
I Every pair of conflicting actions is ordered the same way

Schedule S is conflict serialisable if S is conflict equivalent to some
serial schedule
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Dependency graphs

Given a schedule S
I One node per transaction
I An edge from Ti to Tj , if Tj reads or writes an object written by Ti

Theorem: a schedule S is conflict serialisable if and only if its
dependency graph is acyclic

Stratis D. Viglas (University of Edinburgh) Advanced Databases 258 / 1



Transactions, concurrency, and recovery Concurrency control

Example: not conflict serialisable schedule

T1 R(A), W(A) R(B), W(B)

T2 R(A), W(A) R(B), W(B)

T1 T2

A

B

T2 reads A, 
written by T1

T1 reads B, 
written by T2

Stratis D. Viglas (University of Edinburgh) Advanced Databases 259 / 1



Transactions, concurrency, and recovery Concurrency control

Review: Strict 2PL

Strict two-phase locking (Strict 2PL)
I Each transaction must obtain an S (Shared) lock for everything it

reads before it starts reading it and an X (eXclusive) lock for
everything it writes before it starts writing

I All locks held by a transaction are released only when the transaction
commits

I Once a transaction obtains an X lock for a DB object no other
transaction can obtain an X or an S lock for that object

Strict 2PL produces only serialisable schedules
I In other words: schedules with acyclic dependency graphs
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Simple 2PL

Two-phase locking (2PL)
I Each transaction must obtain an S (Shared) lock for everything it

reads before it starts reading it and an X (eXclusive) lock for
everything it writes before it starts writing

I A transaction cannot request additional locks once it releases any locks
I Once a transaction obtains an X lock for a DB object no other

transaction can obtain an X or an S lock for that object

Stratis D. Viglas (University of Edinburgh) Advanced Databases 261 / 1



Transactions, concurrency, and recovery Concurrency control

Lock management

Lock and unlock requests are handled by the lock manager that
maintains a lock table

Lock table entry:
I Number of transactions currently holding a lock
I Type of lock held (shared or exclusive)
I Pointer to queue of lock requests

Locking and unlocking have to be atomic operations

Lock upgrade: transaction that holds a shared lock can be upgraded
to hold an exclusive lock
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Deadlocks

As always, where there are locks, there are deadlocks

Deadlocks: cycle of transactions waiting for locks to be released by
each other

Two ways of dealing with deadlocks
I Deadlock prevention
I Deadlock detection
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Deadlock prevention

The solution involves timestamps; a timestamp is the transaction’s
priority

If Ti wants a lock that Tj holds, there are two possible policies
I Wait-Die: if Ti has higher priority, Ti waits for Tj ; otherwise Ti aborts
I Wound-Wait: if Ti has higher priority, Tj aborts; otherwise Ti waits

If a transaction re-starts, it has its original timestamp
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Deadlock detection

Create a waits-for graph
I Nodes are transactions
I There is an edge from

Ti to Tj if Ti is waiting
for Tj to release a lock

Periodically check for
cycles in the waits-for
graph

T1 S(A) R(A) S(B)

T2 X(B) W(B) X(C)

T3 S(C) R(C) X(A)

T4 X(B)

T1 T2

T3T4
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Multiple granularity locks

What should we lock?
Tuples, pages, tables, ...

But there is an implicit
containment

Idea: lock DB objects
hierarchically

Database

Schema

Table

Page

Tuple

Attribute

containment
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Hierarchical locks and new locking modes

Allow transactions to lock at each level of the hierarchy

Introduce “intention” locks: IS and IX
I Before locking an item, a transaction must introduce intention locks on

all the item’s ancestors in the hierarchy
I Release locks in reverse order

One extra lock: SIX — “share, with intention to write”
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Compatibility matrix

IS IX SIX S X

NL Y Y Y Y Y

IS Y Y Y Y N

IX Y Y N N N

SIX

S

X

Y N N N N

Y N N Y N

NL

Y

Y

Y

Y

Y

Y N N N N N

held lock

w
an

te
d

 lo
ck
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In more detail

Each transaction starts from the root of the hierarchy

To obtain S or IS lock on a node, must hold IS or IX on parent node
I What if a transaction holds SIX on parent? S on parent?

To obtain X or IX or SIX on a node, must hold IX or SIX on parent
node

Must release locks in bottom-up order
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A few examples

T1 scans R, and updates a few tuples
I T1 gets an SIX lock on R, then repeatedly gets an S lock on tuples of

R, and occasionally upgrades to X on the tuples

T2 uses an index to read only part of R
I T2 gets an IS lock on R, and repeatedly gets an S lock on tuples of R

T3 reads all of R
I T3 gets an S lock on the entire relation
I Or, it gets an IS lock on R, escalating to S lock on every tuple
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Here’s the catch (the phantom problem)

If we relax the assumption that the DB is a fixed collection of objects,
even Strict 2PL will not assure serialisability!

I T1 locks all pages containing sailor records with rating = 1, and finds
oldest sailor (say, age = 71)

I Next, T2 inserts a new sailor: rating = 1, age = 96
I T2 also deletes oldest sailor with rating = 2 (and, say, age=80), and

commits
I T1 now locks all pages containing sailor records with rating = 2, and

finds oldest (say, age=63)

No lock conflicts, but also no consistent DB state where T1 is
“correct”!
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The problem

T1 implicitly assumes that it has locked the set of all sailor records
with rating = 1

I The assumption only holds if no sailor records are added while T1 is
executing!

I We need some mechanism to enforce this assumption
F Index locking
F Predicate locking

The example shows that conflict serialisability guarantees
serialisability only if the set of objects is fixed!
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Index locking

If there is an index on the rating field,
T1 should lock the index page
containing the data entries with
rating = 1

I If there are no records with
rating = 1, T1 must lock the index
page where such a data entry would
be, if it existed!

If there is no suitable index, T1 must
lock all pages, and lock the file/table
to prevent new pages from being
added, to ensure that no new records
with rating = 1 are added

r = 1

...
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Predicate locking

Grant lock on all records that satisfy some logical predicate, e.g.,
salary > 2 · salary

I Index locking is a special case of predicate locking for which an index
supports efficient implementation of the predicate lock

I What is the predicate in the sailor example?

In general, predicate locking imposes a lot of locking overhead
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B+tree locking

How can we efficiently lock a particular node?
I This is entirely different than multiple granularity locking (why?)

One solution: ignore the tree structure, just lock pages while
traversing the tree, following 2PL

I Terrible performance
I Root node (and many higher level nodes) become bottlenecks because

every tree access begins at the root
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Key observations

Higher levels of the tree only direct searches to leaf pages

For insertions, a node on a path from the root to a modified leaf must
be locked (in X mode, of course), only if a split can propagate up to
it from the modified leaf (similar point holds for deletions)

We can exploit these observations to design efficient locking protocols
that guarantee serialisability even though they violate 2PL
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The basic algorithm

Search: start at root and descend; repeatedly, S lock child then
unlock parent

Insert/Delete: start at root and descend, obtaining X locks as needed;
once child is locked, check if it is safe:

I Safe node: a node such that changes will not propagate up beyond this
node

F Insertion: node is not full
F Deletion: node is not half-empty

I If child is safe, release all locks on ancestors
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Example: search 38*

20

10 35

12 236 38 44

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 38* 41* 44*35* 36*

S lock

S lock

S lock

S lock

Obtain and release S-locks level-by-level
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Example: delete 38*

20

10 35

12 236 38 44

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 41* 44*35* 36*

X lock

X lock

X lock

X lock

Obtain X-locks while descending; release them top-down once the node is designated safe
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Example: insert 25*

20

10 35

12 23 256 38 44

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 25* 38* 41* 44*35* 36*

X lock

X lock

X lock

X lock

31*

X lock

Obtain X-locks while descending; leaf-node is not safe so create a new one and lock it in X-mode; first release locks on leaves
and then the rest top-down
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Optimistic B+tree locking

Search: as before

Insert/delete: set locks as if for search, get to the leaf, and set X lock
on the leaf

I If the leaf is not safe, release all locks, and restart transaction, using
previous insert/delete protocol

“Gambles” that only leaf node will be modified; if not, S locks set on
the first pass to leaf are wasteful

I In practice, better than previous algorithm
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Example: insert 25*

20

10 35

12 236 38 44

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 38* 41* 44*35* 36*

S lock

S lock

S lock

X lock

failure: node not safe

Obtain S-locks while descending, and X-lock at leaf; the leaf is not safe, so abort, release all locks and restart using the previous
algorithm
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Even better algorithm

Search: as before

Insert/delete: use original insert/delete protocol, but set IX locks
instead of X locks at all nodes

I Once leaf is locked, convert all IX locks to X locks top-down: i.e.,
starting from the unsafe node nearest to root

I Top-down reduces chances of deadlock
F Remember, this is not the same as multiple granularity locking!
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Hybrid approach

S locks

SIX locks

X locks

The likelihood that we will
need an X lock decreases
as we move up the tree

Set S locks at high levels,
SIX locks at middle levels,
X locks at low levels
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Transaction isolation

Isolation level Dirty read
Unrepeatable 

read
Phantoms

Read 
uncommitted

Maybe Maybe Maybe

Read 
committed

No Maybe Maybe

Repeatable
reads

No No Maybe

Serialisable No No No
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Review: ACID properties

Atomicity: all the actions in a transaction are executed as a single
atomic operation; either they are all carried out or none are

Consistency: if a transaction begins with the DB in a consistent state,
it must finish with the DB in a consistent state

Isolation: a transaction should execute as if it is the only one
executing; it is protected (isolated) from the effects of concurrently
running transactions

Durability: if a transaction has been successfully completed, its effects
should be permanent

Atomicity and durability are ensured by the recovery algorithms
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What can go wrong?

Atomicity
I Transactions may

abort; their effects
need to be undone

Durability
I What if the system

stops running?

T1

T2

T3

T4

T5

crash

Transactional semantics
T1,T2,T3 should be durable

T4,T5 should be aborted
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Problem statement

Updates are happening in place
I There is a buffer pool

F Data pages are read from disk
F Data pages are modified in memory
F Overwritten on, or deleted from disk

We need a simple scheme to guarantee atomicity and durability
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More on the buffer pool

Two issues: force and steal

Force: when a data page is
modified it is written straight to
disk

I Poor response time
I But durable

Steal: effects of uncommitted
transactions reach the disk

I Higher throughput
I But not atomic

Trivial

Desired

No steal Steal

Force

No force
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The problems

Steal’s problems are all about atomicity
I What if a transaction modifying a page aborts?
I If we steal a page, we need to remember its old value so it can be

restored (UNDO)

No force’s problems are all about durability
I What if a system crashes before a modified page is written to disk?
I We need to record enough information to make the changes permanent

(REDO)
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The solution: logging

Record REDO and UNDO information in a record of a separate
structure: the log

I Sequential writes for every update
I Minimal information written (more efficient!)
I Keep it on a separate disk!

Log: a list of REDO and UNDO actions
I Each log record contains at least:

F Transaction id, modified page, old data, new data
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Write-ahead logging

The log adheres to the write-ahead protocol (WAL)
1 Must force the log record for an update before the corresponding data

page gets to disk
2 Must force all log records for a transaction before it commits

#1 guarantees atomicity

#2 guarantees durability
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Normal execution

Series of reads and writes

Followed by a commit (success) or abort (failure)

Steal, No-force management

Adherence to the WAL protocol

Checkpoints: periodically, the system creates a checkpoint to
minimise the time taken to recover

I Assume the DB is consistent after a checkpoint
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WAL and the log

Each log record has a unique log
sequence number (LSN)

I LSNs are always increasing

Each data page contains a
pageLSN

I The LSN of the most recent
log record for an update to
that page

The system keeps track of
flushedLSN

I The max LSN flushed so far

WAL: before a page is written,
pageLSN ≤ flushedLSN

pageLSN

page

log records
flushed to disk

log tail
in memory
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Log records

Possible log records types
I Update
I Commit
I Abort
I End (signifies commit or

abort!)
I Compensation Log Records

(CLR)
F Logging UNDO actions!
F But we will not talk about

them in more detail

prevLSN
transID
type
pageID
length
offset
before-image
after-image

log record

undo records
only
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Other log-related state

Transaction table: one entry per active transaction
I Contains transaction id, status (running/commited/aborted) and

lastLSN — log sequence number of the last log record for that
transaction

Dirty page table: one entry per dirty page in buffer pool
I Contains recLSN — the LSN of the log record which first caused the

page to be dirty
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Transactions, concurrency, and recovery Recovery

Checkpoint records

begin checkpoint record: indicates when checkpoint began

end checkpoint record: contains current transaction table and dirty
page table

This is a “fuzzy checkpoint”
I Other transactions continue to run; so these tables accurate only as of

the time of the begin checkpoint record
I No attempt to force dirty pages to disk; effectiveness of checkpoint

limited by oldest unwritten change to a dirty page
I So it’s a good idea to periodically flush dirty pages to disk

Store LSN of checkpoint record in a safe place (master record)
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Transactions, concurrency, and recovery Recovery

What’s stored where

log records
flushed to disk

log tail
in memory

prevLSN
transID
type
pageID
length
offset
before-image
after-image

log record

DB

data pages
   (each with a
    pageLSN)

master record

main memory

transaction table
  lastLSN
  status

dirty page table
  recLSN

flushedLSN
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Transactions, concurrency, and recovery Recovery

Simple transaction abort

For now, consider an explicit abort of a transaction
I No crash involved

We want to “play back” the log in reverse order, UNDO ing updates
I Get lastLSN of transaction from transaction table
I Follow chain of log records backward via the prevLSN field
I Before starting UNDO, write an Abort log record

F For recovering from crash during UNDO!
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Transactions, concurrency, and recovery Recovery

Abort (cont.)

To perform UNDO, must have a lock on data
I No problem

Before restoring old value of a page, write a CLR

I Continue logging while you UNDO!
I CLR has one extra field: undonextLSN

F Points to the next LSN to undo (i.e., the prevLSN of the record we’re
currently undoing)

I CLRs are never undone (but they might be redone when repeating
history: guarantees atomicity)

At the end of UNDO, write an “end” log record
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Transactions, concurrency, and recovery Recovery

Transaction commit

Write commit record to log

All log records up to the transaction’s lastLSN are flushed
I Guarantees that flushedLSN ≥ lastLSN
I Note that log flushes are sequential, synchronous writes to disk
I Many log records per log page

Commit() returns

Write end record to log
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Transactions, concurrency, and recovery Recovery

Recovery: big picture

crash

last checkpoint

smallest recLSN
in DPT after

analysis

oldest log record
of transaction
active at crash

A R U

Start from a checkpoint
(found via master record)

Three phases
I Analysis: figure out

which transactions
committed since the
checkpoint, and which
failed

I REDO all actions
F Repeat history

I UNDO effects of failed
transactions
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Transactions, concurrency, and recovery Recovery

Additional issues

What happens if the system crashes during the analysis phase?
During REDO phase?

How can the amount of work during REDO be limited?
I Flush asynchronously in the background

How can the amount of work during UNDO be limited?
I Avoid long-running transactions
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Transactions, concurrency, and recovery Summary

Summary

Concurrency control and recovery are key concepts of a DBMS

Both are ensured by the system itself; the user does not (and should
not!) know of their existence

The key abstraction is the transaction
I The processing unit of the system
I Four key properties

F Atomicity, consistency, isolation, durability
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Summary (cont.)

A transaction is viewed by the system as a series of reads and writes

To improve throughput, the system interleaves the actions of the
transactions (i.e., a schedule)

I At all times, ensuring serialisability of the produced schedules

Locks are the mechanism that ensures serialisability
I Before reading, obtain a Shared lock
I Before writing, obtain an eXclusive lock
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Summary (cont.)

Multiple granularity of locks
I Leads to an escalation of locks, as we are descending the hierarchy

Special protocols for indexes and predicates

Transactions help after recovering from a crash
I As the processing unit, we know what needs to be repeated or deleted
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Transactions, concurrency, and recovery Summary

Summary (cont.)

Steal, no-force buffer pool management
I Higher response time (steal)
I Higher throughput (no-force)

Need to use it, without satisfying correctness

Use a log to record all actions
I Employ the Write-Ahead Logging protocol
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Summary (cont.)

Use checkpoints to periodically record consistent states and limit the
amount of the log that needs to be scanned during recovery

Recovery in three phases
I Analysis: from checkpoint, figure out REDO and UNDO extents
I REDO: repeat entire history
I UNDO: delete effects of failed transactions

Repeating history simplifies the logic
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Parallel data management

Why parallelism?

The very definition of parallelism: divide a big problem into many
smaller ones to be solved in parallel

Consider we have a terabyte of data to scan
I With one pipe of 10MB/s, we need 1.2 days
I By partitioning the data in disjoint subsets and having 1, 000 parallel

pipes of the same bandwidth, we need 90s
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Parallel data management

Parallelism and DBMSs

Parallelism is natural to DBMS processing
I Pipeline parallelism: many machines each doing one step in a

multi-step process
I Partition parallelism: many machines doing the same thing to different

pieces of data.
I Both are natural in a DBMS

Pipeline
Any sequential

program
Any sequential

program
Results

Partition

Any sequential
program

Any sequential
program

Results
Any sequential

program
Any sequential

program
Any sequential

program
Any sequential

program
Any sequential

program
Any sequential

program
Any sequential

program
Any sequential

program

Partitioning: split inputs, merge outputs
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Parallel data management

The parallelism success story

DBMSs are the most (only?) successful application of parallelism
I Teradata, Tandem vs. Thinking Machines, KSR, . . .
I Every major DBMS vendor has some parallel server
I Workstation manufacturers now depend on parallel DB server sales

Reasons for success
I Bulk-processing (partition parallelism)
I Natural pipelining
I Inexpensive hardware can do the trick
I Users/app-programmers do not need to think in parallel
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Parallel data management

Terminology

Speed-up

More resources means
proportionally less time for
given amount of data
(throughput)

throughput

level of par-
allelism

Ideal

Scale-up

If resources increased in
proportion to increase in
data size, time is constant

response

level of par-
allelism

Ideal
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Parallel data management

Architecture: what to share?

Clients

Memory

Processors

Shared memory

Easy to program

Expensive to build

Difficult to scale
up

Clients

Processors

Memories

Shared disk

Middle of the road

Distributed file
system

Cluster computing

Clients

Processors

Memories

Shared nothing

Hard to program

Cheap to build

Easy and ideal to
speed/scale up
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Parallel data management

Different types of parallelism

Intra-operator parallelism
I All machines working to compute a single operation (scan, sort, join)

Inter-operator parallelism
I Each operator may run concurrently on a different site (exploits

pipelining)

Inter-query parallelism
I Different queries run on different sites

We shallfocus on intra-operator parallelism
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Parallel data management

Automatic data partitioning

Range

Good for
equi-joins

Range-queries

Good for
aggregation

Hash

Good for
equi-joins

No range-queries

Problematic with
skew

Round-robin

Indifferent for
equi-joins

Range-queries
complicated

Load-balanced
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Parallel data management

Parallel scans

Scan in parallel, and merge

Selections may not require all sites for range or hash partitioning

Indexes can be built at each partition

Question: how do indexes differ in the different schemes?
I Think about both lookups and inserts!
I What about key indexes?
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Parallel data management

Parallel sorting

Key idea: sorting phases are
intrinsically parallelisable

I Scan in parallel, range-partition as
you go

I As tuples come in, begin “local”
sorting using standard algorithm

I Resulting data is sorted, and
range-partitioned

Problem: skew
I Solution: sample the data to

determine partition points

Stratis D. Viglas (University of Edinburgh) Advanced Databases 319 / 1



Parallel data management

Parallel aggregation

For each aggregate function, need a decomposition
I count(S) =

∑
i count(s(i)), ditto for sum()

I avg(S) = (
∑

i sum(s(i))) /
∑

i count(s(i))
I and so on . . .

For groups
I Sub-aggregate groups close to the source
I Pass each sub-aggregate to its group’s site

F Chosen via a hash function
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Parallel data management

Parallel joins

Nested loops
I Each outer tuple must be compared with each inner tuple that might

join
I Easy for range partitioning on join columns, hard otherwise

Sort-merge (or plain merge-) join
I Sorting gives range-partitioning
I Merging partitioned tables is local
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Parallel data management

Parallel hash join

During the first phase, partitions are distributed to different sites
I A good hash function automatically distributes work evenly

Second phase is local at each site
I Almost always the winner for equi-join

Good use of split/merge makes it easier to build parallel versions of
sequential join code
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Parallel data management

Dataflow network for parallel join

A1 B1

Ai Ai

Aj ./ Bj

joinscan scan

A2 B2

scan scan

Ai ./ Bi

join

Aj ./ Bj

join

Ai AiAj AjAi AiAj AjBi BiBj BjBi BiBj Bj

Stratis D. Viglas (University of Edinburgh) Advanced Databases 323 / 1



Parallel data management

Complex parallel query plans

Complex queries: inter-operator parallelism
I Pipelining between operators

F Note that sorting and phase one of hash-join block the pipeline (yet
again!)

I Bushy execution trees

./

./

A B

./

R S

Sites 1-8

Sites 5-8Sites 1-4
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Parallel data management

Observations

It is relatively easy to build a fast parallel query executor

It is hard to write a robust and world-class parallel query optimizer
I There are many tricks
I One quickly hits the complexity barrier
I Still open research
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Parallel data management

Parallel query optimization

Common approach: two phases
I Pick best sequential plan (System R algorithm)
I Pick degree of parallelism based on current system parameters

Allocate operators to processors
I Take query tree, decorate as in previous example
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Parallel data management

What can go wrong?

Best sequential plan 6= best parallel plan

Trivial counter-example
I Table partitioned with local secondary index at two nodes
I Range query: all of node 1 and 1% of node 2

F e.g., select * from telephone book where name < “NoGood”

I Node 1 should do a scan of its partition
I Node 2 should use secondary index

A . . . M N . . . Z

Table scan Index scan
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Parallel data management

Parallel databases summary

Parallelism natural to query processing
I Both pipeline and partition parallelism

Shared-nothing vs. Shared-memory
I Shared-disk too, but less standard
I Shared-mem easy, costly; does not scaleup
I Shared-nothing cheap, scales well, harder to implement

Intra-operator, inter-operator, and inter-query parallelism all possible.
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Parallel data management

Parallel database summary (cont.)

Data layout choices important

Most database operations can be done using partition-parallelism
I Sort
I Sort-merge join, hash-join

Complex plans
I Allow for pipeline-parallelism, but sorts, hashes block the pipeline
I Partition-parallelism achieved through bushy trees
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Parallel data management

Parallel database summary (cont.)

Hardest part: optimization
I Two-phase optimization simplest, but can be ineffective
I More complex schemes still at the research stage

We have not discussed transactions, logging
I Easy in shared-memory/shared-disk architecture
I Takes some care in shared-nothing
I Some ideas from distributed transactions are handy
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