
Sebastian Maneth

Lecture 7
Simple SQL Queries

University of Edinburgh - February 6st, 2017

Applied Databases

2

Outline

1. Structured Querying Language (SQL)

2. Creating Tables

3. Simple SQL queries

3

SQL

 Developed in the 1970’s at IBM by Chamberlin and Boyce
 (originally “SEQUEL” = Structured English Query Language”)

→ June 1979 first commercial version by Relational Software Inc (later Oracle)

 ANSI standard in 1986

 ISO standard in 1987, important releases 1992, 1999, 2003, 2008, 2011

 MySQL attempts to comply with 2008 standard

→ Despite the existence of the SQL standards, most SQL code
 is not completely portable among different database systems
 without adjustments :-(

4

2. Creating Tables

CREATE TABLE <name> (attr1 type, …, attrN type);

CREATE TABLE Movies (title char(20),director char(10),actor char(10));

Types

 char(n) - fixed length string of exactly n characters

 varchar(n) - variable length string of at most n characters

 int - signed integer (4 bytes)

 smallint - signed integer (2 bytes, i.e., from -32768 to 32767)

 float(M,D) / double(M,D) - floating-point (approximate value) types (4 / 8 bytes)

up to M digits in total

D digits after decimal point Rounding!
insert 999.00009 into
float(7,4) gives 999.0001

5

2. Creating Tables

mysql> CREATE TABLE test (a float(3,3), b float(4,2), c float(5,1));
mysql> INSERT INTO test VALUES (100.999, 100.999, 100.999);
Query OK, 1 row affected, 2 warnings (0.01 sec)
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1264 | Out of range value for column 'a' at row 1 |
| Warning | 1264 | Out of range value for column 'b' at row 1 |
+---------+------+--+
mysql> INSERT INTO test VALUES (2/3,2/3,2/3);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM test;
+-------+-------+-------+
| a | b | c |
+-------+-------+-------+
| 0.999 | 99.99 | 101.0 |
| 0.667 | 0.67 | 0.7 |
+-------+-------+-------+
2 rows in set (0.00 sec)

6

2. Creating Tables

CREATE TABLE <name> (attr1 type, …, attrN type);

CREATE TABLE Movies (title char(20),director char(10),actor char(10));

Types

 char(n) - fixed length string of exactly n characters

 varchar(n) - variable length string of at most n characters

 int - signed integer (4 bytes)

 smallint - signed integer (2 bytes, i.e., from -32768 to 32767)

 float(M,D) / double(M,D) - floating-point (approximate value) types (4 / 8 bytes)

 text / blob - text and binary strings (length <= 2^16 = 65536)

7

Types cont’d

 date - date type > CREATE TABLE T1 (col1 date PRIMARY KEY);

> INSERT INTO T1 VALUES (“2005-12-24”);
> INSERT INTO T1 VALUES (“01-01-01”);
> INSERT INTO T1 VALUES (“05-05-2010”);
> SELECT * FROM T1;
+------------+
| col1 |
+------------+
| 2001-01-01 |
| 2005-12-24 |
| 0000-00-00 |
+------------+

> CREATE TABLE T1 (col1 date PRIMARY KEY);
> INSERT INTO T1 VALUES (“01-01-2001”);
> INSERT INTO T1 VALUES (“2001-01-01”);
> INSERT INTO T1 VALUES (“Feb-2005”);
> INSERT INTO T1 VALUES (“2005”);
> SELECT * FROM T1;
2005
01-01-2001
2001-01-01
Feb-2005
 sqlite3

MySQL

1 warning

8

Types cont’d

> CREATE TABLE T1 (col1 time PRIMARY KEY);
> INSERT INTO T1 VALUES (“20:15”);
> INSERT INTO T1 VALUES (“20:15:59”);
> INSERT INTO T1 VALUES (“20:15:59:99”);
ERROR 1062: Duplicate entry ‘20:15:59’
> SELECT * FROM T1;
+----------+
| col1 |
+----------+
| 20:15:00 |
| 20:15:59 |
+----------+

> CREATE TABLE T1 (col1 time PRIMARY KEY);
> INSERT INTO T1 VALUES (“20:15”);
> INSERT INTO T1 VALUES (“20:15:59”);
> INSERT INTO T1 VALUES (“20:15:59:00”);
> INSERT INTO T1 VALUES (“20:15:59:00:00”);
> SELECT * FROM T1 WHERE col1>”20:15:59”;
20:15:59:00
20:15:59:00:000

sqlite3

MySQL

 time - time type

9

Types cont’d

> CREATE TABLE T1 (col1 timestamp PRIMARY KEY);
> INSERT INTO T1 VALUES (“2001-12-24 11:18:00”);
> INSERT INTO T1 VALUES (“2001-12-24 23:18:00”);
> SELECT * FROM T1;
+---------------------+
| col1 |
+---------------------+
| 2001-12-24 11:18:00 |
| 2001-12-24 23:18:00 |
+---------------------+

MySQL

 timestamp

date / time / timestamp

→ can be compared for equality and less than (<)
→ if date1 < date2, then date 1 is earlier than date2

10

Tables

→ you can use queries for insertion

 INSERT INTO T1 (SELECT … FROM … WHERE)

attributes of the result of the query must be same as those of T1.

→ MySQL is quite relaxed about this, it will often do the insertion….

→ sometimes unexpected behavior!

> CREATE TABLE T1 (a int, b int, c text);
> CREATE TABLE T2 (c1 text, c2 int, c3 int);
> INSERT INTO T1 VALUES (1,1,”a5c”);
> INSERT INTO T1 VALUES (2,3,”7de”);
> INSERT INTO T2 (SELECT * FROM T1);
> SELECT * FROM T2;
+------+------+------+
| c1 | c2 | c3 |
+------+------+------+
| 1 | 1 | 0 |
| 2 | 3 | 7 |
+------+------+------+

11

Tables

> CREATE TABLE T1 (a int, b int, c text);
> CREATE TABLE T2 (c1 text, c2 int, c3 int);
> INSERT INTO T1 VALUES (1,1,”abc”);
> INSERT INTO T1 VALUES (2,3,”7de”);
> INSERT INTO T2 (SELECT c,b,a FROM T1);
> SELECT * FROM T2;
+------+------+------+
| c1 | c2 | c3 |
+------+------+------+
| abc | 1 | 1 |
| 7de | 3 | 2 |
+------+------+------+

→ you can use queries for insertion

 INSERT INTO T1 (SELECT … FROM … WHERE)

attributes of the result of the query must be same as those of T1.

→ MySQL is quite relaxed about this, it will often do the insertion….

→ sometimes unexpected behavior!

12

Tables

→ DELETE FROM T1; - delete all rows from table T1

→ DELETE FROM T1 where c3=1; - delete rows with c3-value equals 1

→ DROP TABLE T1; - remove table T1

→ ALTER TABLE T1 ADD COLUMN col1 int; - adds a column to table T1

→ ALTER TABLE T1 DROP COLUMN col1; - removes a column from table T1

→ DESCRIBE T1; - lists the fields and types of table t1 (MySQL, not SQL!)
 (in sqlite3 this is done via “.schema t1” or “PRAGMA table_info(t1)”)

→ SHOW tables; - lists tables of your database (MySQL, not SQL!)
 (in sqlite3 this is done via “.tables”)

13

Tables

→ default values for some attributes:

 CREATE TABLE T1 (<attribute> <type> DEFAULT <value>)

> CREATE TABLE T1 (col1 int DEFAULT 0, col2 int);
> INSERT INTO T1 VALUES (1,2);
> INSERT INTO T1 (col2) VALUES (5);
> SELECT * FROM T1;
+------+------+
| col1 | col2 |
+------+------+
| 1 | 2 |
| 0 | 5 |
+------+------+

→ ALTER TABLE Movies ADD COLUMN length int DEFAULT 0;

CREATE TABLE Employee (
 employee_id int NOT NULL,
 first_name char(20),
 last_name char(20),
 department char(10),
 salary int default 0,
 PRIMARY KEY (employee_id)
)

14

Constraints

→ PRIMARY KEY – primary means of accessing a table
→ NOT NULL – specifies that NULL is a forbidden value for the attribute

CREATE TABLE Employee (
 employee_id int NOT NULL PRIMARY KEY,
 first_name char(20),
 last_name char(20),
 department char(10),
 salary int default 0
)

equivalent

mysql> INSERT INTO Employee VALUES (NULL, "a", "b", "c", 5);
ERROR 1048 (23000): Column 'employee_id' cannot be null
mysql>

15

Constraints

→ PRIMARY KEY – primary means of accessing a table
→ NOT NULL – specifies that NULL is a forbidden value for the attribute

CREATE TABLE Employee (
 employee_id int NOT NULL PRIMARY KEY,
 first_name char(20),
 last_name char(20),
 department char(10),
 salary int default 0
)

16

Constraints

→ PRIMARY KEY – primary means of accessing a table
→ NOT NULL – specifies that NULL is a forbidden value for the attribute

→ more than one key: UNIQUE

CREATE TABLE Employee (
 employee_id int NOT NULL,
 first_name char(20),
 last_name char(20),
 department char(10),
 salary int default 0,
 PRIMARY KEY (employee_id),
 UNIQUE (first_name,last_name)
)

→ checked in the same way as primary keys, i.e.,
→ forbids inserting same (first,last)-value
 more than once.

17

Checking Functional Dependencies

T = a table in BCNF

→ if X→Y is a nontrivial fd, then X is a superkey

Question

Does UNIQUE X enforce the fd X→Y?

18

Inclusion Dependencies

→ inclusion dependency T1[a1,a2,...,aN] SUBSET T2[b1,b2,...,bN]
 means every (a1,...,aN)-projection of T1 is a (b1,...,bN)-projection of T2
 “REFERENCES” keyword

→ often as part of a foreign key

CREATE TABLE Movies (title char(20),director char(10),actor char(10));

CREATE TABLE Schedule (title char(20) REFERENCES Movies(title),
 theater char(20));

19

Inclusion Dependencies

CREATE TABLE Person (first_name char(20) NOT NULL,
 last_name char(20) NOT NULL,
 PRIMARY KEY (first_name,last_name));

CREATE TABLE Employee (first char(20) NOT NULL,
 last char(20) NOT NULL,
 FOREIGN KEY (first,last)
 REFERENCES Person(first_name,last_name));

→ inclusion dependency T1[a1,a2,...,aN] SUBSET T2[b1,b2,...,bN]
 means every (a1,...,aN)-projection of T1 is a (b1,...,bN)-projection of T2
 “REFERENCES” keyword

→ often as part of a foreign key

20

Duplicates

In relational algebra, duplicate rows are not permitted.

→ in SQL, the are permitted.
→ most queries have Multiset Semantics, i.e., answers contain duplicates.

> SELECT * FROM T1;
+------+------+
| col1 | col2 |
+------+------+
| 1 | 2 |
| 2 | 1 |
| 1 | 1 |
| 2 | 3 |
+------+------+
> SELECT col1 FROM T1;
+------+
| col1 |
+------+
| 1 |
| 2 |
| 1 |
| 2 |
+------+

21

Duplicates

→ most queries have Multiset Semantics, i.e., answers contain duplicates.
→ not if you use set operators! E.g., UNION, INTERSECT, DIFFERENCE, etc
 or the DISTINCT operator

> SELECT * FROM T1;
+------+------+
| col1 | col2 |
+------+------+
| 1 | 2 |
| 2 | 1 |
| 1 | 1 |
| 2 | 3 |
+------+------+

> SELECT DISTINCT col1 FROM T1;
+------+
| col1 |
+------+
| 1 |
| 2 |
+------+

22

Duplicates

→ most queries have Multiset Semantics, i.e., answers contain duplicates.
→ not if you use set operators! E.g., UNION, INTERSECT, DIFFERENCE, etc
 or the DISTINCT operator

> SELECT * FROM T1;
+------+------+
| col1 | col2 |
+------+------+
| 1 | 2 |
| 2 | 1 |
| 1 | 1 |
| 2 | 3 |
+------+------+

> SELECT col1 FROM T1 UNION SELECT col2 FROM T1;
+------+
| col1 |
+------+
| 1 |
| 2 |
| 3 |
+------+

23

Set Operations with Duplicates
→ add “ALL” keyword
→ e.g. “UNION ALL” instead of “UNION”

> SELECT * FROM T1;
+------+------+
| col1 | col2 |
+------+------+
| 1 | 2 |
| 2 | 1 |
| 1 | 1 |
| 2 | 3 |
+------+------+

> SELECT col1 FROM T1 UNION ALL SELECT col2 FROM T1;
+------+
| col1 |
+------+
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 1 |
| 1 |
| 3 |
+------+

24

Set Operations with Duplicates
→ add “ALL” keyword
→ e.g. “UNION ALL” instead of “UNION”

> SELECT * FROM T1;
+------+------+
| col1 | col2 |
+------+------+
| 1 | 2 |
| 2 | 1 |
| 1 | 1 |
| 2 | 3 |
+------+------+

> SELECT col1 FROM T1 UNION ALL SELECT col2 FROM T1;
+------+
| col1 |
+------+
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 1 |
| 1 |
| 3 |
+------+

Why??

25

Set Operations with Duplicates
→ add “ALL” keyword
→ e.g. “UNION ALL” instead of “UNION”

> SELECT * FROM T1;
+------+------+
| col1 | col2 |
+------+------+
| 1 | 2 |
| 2 | 1 |
| 1 | 1 |
| 2 | 3 |
+------+------+

> SELECT col1 AS d FROM T1 UNION ALL SELECT col2 FROM T1;
+------+
| d |
+------+
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 1 |
| 1 |
| 3 |
+------+

26

Set Operations with Duplicates
→ add “ALL” keyword
 “UNION ALL” – adds multiplicities
 “INTERSECT ALL” – keeps minimum (non-0) number of occ's of an element

> SELECT * FROM T1;
+------+------+
| col1 | col2 |
+------+------+
| 1 | 2 |
| 2 | 1 |
| 1 | 1 |
| 2 | 3 |
+------+------+

> SELECT col1 AS d FROM T1 INTERSECT ALL SELECT col2 FROM T1;

??

27

Set Operations with Duplicates
→ add “ALL” keyword
 “UNION ALL” – adds multiplicities
 “INTERSECT ALL” – keeps minimum (non-0) number of occ's of an element

> SELECT * FROM T1;
+------+------+
| col1 | col2 |
+------+------+
| 1 | 2 |
| 2 | 1 |
| 1 | 1 |
| 2 | 3 |
+------+------+

> SELECT col1 AS d FROM T1 INTERSECT ALL SELECT col2 FROM T1;

→ MySQL does not support INTERSECT and INTERSECT ALL

→ how can you formulate an “INTERSECT ALL” in MySQL??

28

Set Operations with Duplicates
→ add “ALL” keyword
 “UNION ALL” – adds multiplicities
 “INTERSECT ALL” – keeps minimum number of occurrences of an element
 “EXCEPT ALL” – subtracts multiplicities

Empty Set Trap

→ want to compute: R intersect (S union T)
Assume R = S = { 1 } and T is the empty set.

SELECT R.a FROM R, S, T
WHERE R.a=S.a OR R.a=T.a; Returns empty! → why??

29

Set Operations with Duplicates
→ add “ALL” keyword
 “UNION ALL” – adds multiplicities
 “INTERSECT ALL” – keeps minimum number of occurrences of an element
 “EXCEPT ALL” – subtracts multiplicities

Empty Set Trap

→ want to compute: R intersect (S union T)
Assume R = S = { 1 } and T is the empty set.

SELECT R.a FROM R, S, T
WHERE R.a=S.a OR R.a=T.a; Returns empty! → why??

SELECT R.a FROM R, S, T
WHERE R.a=S.a; Returns empty!

30

Set Operations with Duplicates
→ add “ALL” keyword
 “UNION ALL” – adds multiplicities
 “INTERSECT ALL” – keeps minimum number of occurrences of an element
 “EXCEPT ALL” – subtracts multiplicities

Empty Set Trap

→ want to compute: R intersect (S union T)
Assume R = S = { 1 } and T is the empty set.

SELECT R.A FROM R, S, T
WHERE R.A=S.A OR R.A=T.A; Returns empty! → why??

SELECT R.a FROM R, S, T
WHERE R.a=S.a; Returns empty!

SELECT R.a FROM R
WHERE R.a IN (SELECT * FROM S) UNION (SELECT * FROM T);
+------+
| a |
+------+
| 1 |
+------+

SELECT R.a FROM R, S, T
WHERE R.a=S.a OR R.a=T.a;

31

Set Operations with Duplicates
→ add “ALL” keyword
 “UNION ALL” – adds multiplicities
 “INTERSECT ALL” – keeps minimum number of occurrences of an element
 “EXCEPT ALL” – subtracts multiplicities

Empty Set Trap

→ want to compute: R intersect (S union T)
Assume R = S = { 1 } and T is the empty set.

SELECT R.a FROM R, S, T
WHERE R.a=S.a OR R.a=T.a;

We select from the
Cartesian product of R, S, and T!
→ empty if one of the tables is empty!

32

3. Simple SQL Queries

Aggregates: COUNT, SUM, AVG, MIN, MAX

Conditions: AND, OR, NOT, IN, <, =, >, LIKE

Combine tables (using set-semantics): UNION, INTERSECT, EXCEPT

 query returns a table

 where a table is allowed,
 you can place a nested query: (SELECT * FROM ...)

SELECT list, of, attributes
FROM list of tables
WHERE conditions
GROUP BY list of attributes
ORDER BY attribute ASC | DESC

optionally with aggregates

INSERT INTO foo VALUES (1);
INSERT INTO foo VALUES (5);
SELECT 2+2 FROM foo;
+-----+
| 2+2 |
+-----+
| 4 |
| 4 |
+-----+

SELECT 2+2;
+-----+
| 2+2 |
+-----+
| 4 |
| 4 |
+-----+

No problem in MySQL

40

Aggregates

SELECT COUNT(*) FROM Movies;

→ count the number of tuples in Movies

SELECT SUM(length) FROM Movies;

→ add up all movie lengths

41

Aggregates

SELECT COUNT(director) FROM Movies;

→ find the number of directors

Naive approach:

Returns the number of tuples in Movies

SELECT COUNT(DISTINCT director) FROM Movies;

→ correct query (remove duplicates!)

42

Aggregation and Grouping

SELECT director, AVG(length)
FROM Movies
GROUP BY director;

→ for each director return the average running time of his/her movies

43

Aggregation and Grouping

SELECT director, ???
FROM Movies
GROUP BY director;

→ for each director return the number of his/her movies

44

Aggregation and Grouping

→ generating histograms

> SELECT * FROM T1;
+------+------+
| col1 | col2 |
+------+------+
| 1 | 2 |
| 2 | 1 |
| 1 | 1 |
| 2 | 3 |
+------+------+

> SELECT col1,COUNT(col1) FROM T1 GROUP BY col1;
+------+-------------+
| col1 | COUNT(col1) |
+------+-------------+
| 1 | 2 |
| 2 | 2 |
+------+-------------+

45

Grouping wo Aggregation?
→ CAVE! Not sensible!!
→ No clearly defined semantics (implementation dependent)!

sqlite> select * from T;
1|1
2|3
1|5
2|7
3|3
1|5
sqlite> select a,b from T group by a;
1|5
2|7
3|3
sqlite> select * from R;
2|7
1|5
1|5
2|3
3|3
1|1
sqlite> select a,b from R group by a;
1|1
2|3
3|3

46

> SELECT col1,COUNT(col1) FROM T1 GROUP BY col1;
+------+-------------+
| col1 | COUNT(col1) |
+------+-------------+
| 1 | 2 |
| 2 | 2 |
+------+-------------+
> SELECT col2,COUNT(col2) FROM T1 GROUP BY col2;
+------+-------------+
| col2 | COUNT(col2) |
+------+-------------+
| 1 | 2 |
| 2 | 1 |
| 3 | 1 |
+------+-------------+
> SELECT Z.a,min(Z.b) FROM (
 SELECT R1.a,R1.b FROM R1 JOIN R2 ON R1.a=R2.a UNION ALL
 SELECT R2.a,R2.b FROM R1 JOIN R2 on R1.a=R2.a) Z
 GROUP BY Z.a;
+------+----------+
| a | min(Z.b) |
+------+----------+
| 1 | 2 |
| 2 | 1 |
+------+----------+

R1

R2

MySQL often
requires a name
for nested queries
(even if not used
elsewhere..)

Sample data: bibliography data (from XML)

<article mdate="2011-01-11" key="journals/acta/Milner96">
<author>Robin Milner</author>
<title>Calculi for Interaction.</title>
<year>1996</year>
.
.
</article>

AID NAME
.
.
 7 Robin Milner
 8
.
.

PID NAME YEAR
.
.
 13 Calculi for Interaction 1996
 14
.
.

PID AID
.
.
 13 7
 8
.
.

author.csv paper.csv writtenBy.csv

> CREATE TABLE Author (aid int PRIMARY KEY,
 name text);
> CREATE TABLE Paper (pid int PRIMARY KEY,
 title text,
 year int);
> CREATE TABLE WrittenBy (pid int,
 aid int, PRIMARY KEY (pid,aid));
> CREATE INDEX ai ON Author (name);
> CREATE INDEX wi ON WrittenBy (pid, aid);

> .separator ";"
> .import author.csv author
> .import paper.csv paper
> .import writtenBy.csv writtenBy
> .timer on

sqlite3

-- title and year of papers by Robin Milner

SELECT P.title, P.year
FROM Paper P, Author A, WrittenBy W
WHERE A.name = “Robin Milner”
AND A.aid = W.aid AND W.pid = P.pid;
Calculi for Interaction.;1996
Elements of Interaction - Turing Award Lecture.;1993
An Interview with Robin Milner.;1993
.
.
.

49

A Join Query

-- number of papers per year by aid=314 (Jeffrey D. Ullman)

SELECT P.year, COUNT(P.year) as count
FROM (Paper p JOIN WrittenBy W ON (P.pid = W.pid))
WHERE W.aid=314
GROUP BY year;

1966|1
1967|4
1968|8
1969|7
1970|6
1971|4
1972|12
.
.

50

Join and Grouping

-- most prolific authors??

SELECT A.name, count(W.pid) as count
FROM Author A, WrittenBy W
WHERE A.aid = W.aid
GROUP BY W.aid
ORDER BY count DESC LIMIT 40;
H. Vincent Poor|1114
Wei Wang|1064
Yan Zhang|999
Wei Liu|981
Wen Gao|926
Philip S. Yu|885
Thomas S. Huang|838
Chin-Chen Chang|795
Lajos Hanzo|790
Elisa Bertino|782
Wei Zhang|779
...

51

Sorting (Ordering)

52

Co-Author Graph

Question

Give a SQL query that defines the co-author graph G

→ two authors a,b are in the relation G, if and only if
 there exists a paper that was written by a, and was also written by b.

53

Expressive Power of SQL

SQL is not Turing-complete

→ there are many things that you cannot express in SQL

→ can you think of an example?

54

Expressive Power of SQL

SQL is not Turing-complete

→ there are many things that you cannot express in SQL

→ can you think of an example?

Hint:

R
1 | 3
3 | 4
4 | 6
4 | 7
7 | 3

1 3

4
6

7has a cycle?

55

Expressive Power of SQL

SQL is not Turing-complete

→ there are many queries you cannot express in SQL

→ why is that wanted?

→ what is the time complexity of evaluating a SQL query?

56

END
Lecture 7

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

