
Sebastian Maneth

Lecture 3
DTDs (regular expressions) & DOM

University of Edinburgh - January 23rd, 2017

Applied Databases

2

Outline

1. DTD Regular Expression → Glushkov Automaton

2. DOM Document Object Model

3

1. Regular Expressions

<!DOCTYPE addressbook [

 <!ELEMENT addressbook (person*) >

 <!ELEMENT person (name,greet*,address*,(fax|tel)*,email*)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT greet (#PCDATA)>

 <!ELEMENT address (#PCDATA)>

 <!ELEMENT fax (#PCDATA)>

 <!ELEMENT tel (#PCDATA)>

 <!ELEMENT email (#PCDATA)>

]>

4

1. Regular Expressions

- choice: (.. | .. | ..)

- sequence: (.., .., ..)

- optional: ...?

- zero or more: ...*

- one or more: ...+

- element names

Note

→ #PCDATA may not appear
 in these regular expressions!

→ use mixed content instead

5

Regular Expressions are a very useful concept

 used in EBNF, for defining the syntax of PLs

 used in various unix tools (e.g., grep)

 supported in most PLs (esp. Perl), text editors

 classical concept in CS (Stephen Kleene, 1950’s)

How can you implement a regular expression?

Input: RegEx e, string w
Question: Does w match e?

Example
e = (ab | b)* a* a

w = a b b a a b a
match?

→ use Finite Automata (FA)

6

Finite-State Automata (FA)

 constant memory computation

 as Turing Machines, but read-only and one-way (left-to-right)

 for every ReEx there is a FA (and vice versa)

Deterministic FA (DFA) = no two outgoing edges with same label

DFA Matching: time O(|DFA| + |w|)
 “one finger needed”

FA Matching: time O(|FA| + m * |w|)
 “at most #states many fingers needed”

aa not
allowed

m

7

Running time O(m + mn)
 or O(m + 2^m + n)

FA = BuildFA(e);
FA.run;
 or
DFA = BuildDFA(FA);
DFA.run

How can you implement a regular expression?

Input: RegEx e, string w
Question: Does w match e?

 every FA can be effectively transformed into an equivalent DFA.

 can take exponential time! (“subset construction”)

m = |e|
n = |w|

Regular expressions e for which BuildFA(e)

is deterministic are called deterministic regular expressions.

→ max number of transitions (edges) for m states and k symbols?

builds Glushkov automaton

8

To avoid these expensive running times

W3C requires that BuildFA(e) must be deterministic!

Is small! 
size is only O(m^2)

W3C
DTD-definition

Regular expressions e for which BuildFA(e)

is deterministic are called deterministic regular expressions.

→ max number of transitions (edges) for m states and k symbols?

Running time O(km + n)

builds Glushkov automaton

9

BuildFA(e) = every letter in e becomes a state

(a | b)*aa* 0 11 2

0 1 2 3 4

3 4

BuildFA(e) = “Glushkov Automaton” = “Position Automaton” [Glushkov1961]

plus extra start-state “0”

10

(a | b)*aa* 0 11 2

0 1 2 3 4

→ identify end-position(s)

3 4

BuildFA(e) = “Glushkov Automaton” = “Position Automaton” [Glushkov1961]

BuildFA(e) = every letter in e becomes a state

11

0 11 2 3 4
a

b

(a | b)*aa*

0 1 2 3 4

→ which positions are reachable from “position 0”?

a

BuildFA(e) = “Glushkov Automaton” = “Position Automaton” [Glushkov1961]

BuildFA(e) = every letter in e becomes a state

12

a
0 11 2 3 4

a a

→ which positions are reachable from positions 1 and 2?

b

a

aa

b

b

BuildFA(e) = “Glushkov Automaton” = “Position Automaton” [Glushkov1961]

BuildFA(e) = every letter in e becomes a state

(a | b)*aa*

0 1 2 3 4

13

a
0 11 2 3 4

a

→ which positions are reachable from position 3?

b

a

aa

b

b

a a

BuildFA(e) = “Glushkov Automaton” = “Position Automaton” [Glushkov1961]

BuildFA(e) = every letter in e becomes a state

(a | b)*aa*

0 1 2 3 4

14

a
0 11 2 3 4

a

→ which positions are reachable from position 4?

→ Done!

b

a

aa

b

b

a a

a

BuildFA(e) = “Glushkov Automaton” = “Position Automaton” [Glushkov1961]

BuildFA(e) = every letter in e becomes a state

(a | b)*aa*

0 1 2 3 4

15

a
0 11 2 3 4

a

→ a “successful run” for the input word “aaa”

b

a

aa

b

b

a a

a

BuildFA(e) = “Glushkov Automaton” = “Position Automaton” [Glushkov1961]

BuildFA(e) = every letter in e becomes a state

(a | b)*aa*

0 1 2 3 4

16

a
0 11 2 3 4

a

→ a “successful run” for the input word “aaa”

→ how many other successful runs are there for “aaa”?

b

a

aa

b

b

a a

a

BuildFA(e) = “Glushkov Automaton” = “Position Automaton” [Glushkov1961]

BuildFA(e) = every letter in e becomes a state

(a | b)*aa*

0 1 2 3 4

17

a
0 11 2 3 4

a

→ a “successful run” for the input word “aaa”

→ how many other successful runs are there for “aaa”?

b

a

aa

b

b

a a

a

BuildFA(e) = “Glushkov Automaton” = “Position Automaton” [Glushkov1961]

BuildFA(e) = every letter in e becomes a state

(a | b)*aa*

0 1 2 3 4

not deterministic

18

19

• The XML specification restricts regular expressions in DTDs to be
deterministic (1-unambiguous).

• Unambiguous regular expression: “each word is witnessed by at
most one sequence of positions of symbols in the expression that
matches the word“ .[Brüggemann-Klein, Wood 1998]

 Ambiguous expression

 For aaa three witnesses: a1a1a2 a1a2a3 a2a3a3

 Unambiguous equivalent expression : (a | b)*a

Document Type Definitions (DTDs)

(a | b)*aa* (a1 | b1)*a2a3*mark with

subscripts

20

• The XML specification restricts regular expressions in DTDs to be
deterministic (1-unambiguous).

• Unambiguous regular expression: “each word is witnessed by at
most one sequence of positions of symbols in the expression that
matches the word“ .[Brüggemann-Klein, Wood 1998]

 Ambiguous expression

 For aaa three witnesses: a1a1a2 a1a2a3 a2a3a3

 Unambiguous equivalent expression : (a | b)*a

Document Type Definitions (DTDs)

(a | b)*aa* (a1 | b1)*a2a3*mark with

subscripts

 1-unambiguous: decide position by looking only at current symbol
 consider baa: b1a?

not
1-unambiguous!

Questions for each expression, deterministic or not?

 a?b?

 a?b?a

 a(aba)*b

 (a?b?c?d?e?)*

21

Questions for each expression, deterministic or not?

 a?b?

 a?b?a

 a(aba)*b

 (a?b?c?d?e?)*
How many edges in the Glushkov automaton?
(a1?a2? …. ak?) for distinct a1,a2,...

22

Questions for each expression, deterministic or not?

 a?b?

 a?b?a

 a(aba)*b

 (a?b?c?d?e?)*

 (a | b)*a is not deterministic.

 Can you find an equivalent expression that is deterministic?

How many edges in the Glushkov automaton?
(a1?a2? …. ak?) for distinct a1,a2,...

23

Questions for each expression, deterministic or not?

 a?b?

 a?b?a

 a(aba)*b

 (a?b?c?d?e?)*

 (a | b)*a is not deterministic.

 Can you find an equivalent expression that is deterministic?

 (a | b)*a(a | b) is not deterministic.

 Can you find an equivalent expression that is deterministic?

How many edges in the Glushkov automaton?
(a1?a2? …. ak?) for distinct a1,a2,...

24

Questions for each expression, deterministic or not?

 a?b?

 a?b?a

 a(aba)*b

 (a?b?c?d?e?)*

Notes

 there exist regular expressions for which no equivalent
 deterministic expression exists

→ this can be decided, and an equivalent deterministic reg expr
 constructed if it exists [Brüggemann-Klein, Wood 1998]

How many edges in the Glushkov automaton?
(a1?a2? …. ak?) for distinct a1,a2,...

25

26

XML Parsers

 Document Object Model - DOM

 Simple API for XML - SAX

27

XML Parsers

28

XML Parsers

 DOM - loads full document into memory

 SAX - generates streaming events
 - by default: nothing stored in memory

29

2. DOM – Document Object Model

 Language and platform-independent view of XML

 DOM APIs exist for many PLs (Java, C++, C, Python, JavaScript …)

DOM relies on two main concepts

(1) The XML processor constructs the
 complete XML document tree (in-memory)

(2) The XML application issues DOM library calls to explore and
 manipulate the XML tree, or to generate new XML trees.

Advantages
• easy to use
• once in memory, no tricky issues with XML syntax anymore
• all DOM trees serialize to well-formed XML (even after arbitrary updates)!

30

2. DOM – Document Object Model

 Language and platform-independent view of XML

 DOM APIs exist for many PLs (Java, C++, C, Python, JavaScript …)

DOM relies on two main concepts

(1) The XML processor constructs the
 complete XML document tree (in-memory)

(2) The XML application issues DOM library calls to explore and
 manipulate the XML tree, or to generate new XML trees.

Disadvantage Uses LOTS of memory!!

Advantages
• easy to use
• once in memory, no tricky issues with XML syntax anymore
• all DOM trees serialize to well-fromed XML (even after arbitrary updates)!

31

2. DOM – Document Object Model

Items

Item Item Item Item

Name

“screwdriver”

fir
stC

hil
d

par
ent

Nod
e

nextSibling

previousSibling

lastChild

n2

n1

n3 n4 n5

“ItemID”  a1
“xyz”  a2

A NamedNodeMap

attributes

ItemID “107378154”
nodeValue

a1

This is also a text node t1
which is the firstChild of a1

32

2. DOM – Document Object Model

Items

Item Item Item Item

Name

“screwdriver”

fir
stC

hil
d

par
ent

Nod
e

nextSibling

previousSibling

lastChild

n2

n1

n3 n4 n5

“ItemID”  a1
“xyz”  a2

A NamedNodeMap

attributes

ItemID “107378154”
nodeValue

a1

→ how much memory is needed for a typical XML document of 1GB?

33

2. DOM – Document Object Model

→ how much memory is needed for a typical XML document of 1GB?

Example

XML size DOM process size

81M 164M Text only, with one embracing element

52M 680M Treebank, deep tree structure, short tagnames

x2

x13

34

DOM Level 1 (Core)
Some methods

DOM type Method Comment

Node nodeName
 nodeValue
 parentNode : Node
 firstChild : Node leftmost child
 lastChild : Node rightmost child
 nextSibling : Node returns NULL for root elem
 or last child or attributes
 previousSibling : Node
 childNodes : NodeList
 attributes : NamedNodeMap
 ownerDocument: Document
 replaceChild : Node

Document createElement : Element creates element with
 given tag name
 createComment : Comment
 getElementsByTagName: NodeList list of all Elem nodes
 in document order

: DOMString redefined in subclasses

35

DOM Level 1 (Core)

Node

ProcessingInstruction CharacterData Attr Element Document

Text Comment

CDATAsection

NameNodeMap NodeList

Character strings (DOM type DOMString) are defined to be encoded
using UTF-16 (e.g., Java DOM reresents type DOMString using
its String type).

36

DOM Level 1 (Core)
Name,Value, and attributes depend on the type of the current node.

37

DOM Level 1 (Core)
Some details

Creating an element/attribute using createElement/createAttribute does not
wire the new node with the XML tree structure yet.
Call insertBefore, replaceChild, …, to wire a node at an explicity position

DOM type NodeList makes up fo the lack of collection data types in many
programming languages

DOM type NamedNodeMap represents an association table (nodes may be
accessed by name)

Example:

v0

a1

getAttributes

Methods: getNamedItem, setNamedItem,…

“ItemID”  a1
“xyz”  a2

A NamedNodeMap

“17”

v
nodeValue firstChild

lastChild

text node! (with nodeValue=“17”)

38

public static void recursiveDescent(Node n, int level) {

 // adjust indentation according to level
 for(int i=0; i<4*level; i++) System.out.print(" ");

 // dump out node name, type, and value
 String ntype = typeName[n.getNodeType()];
 String nname = n.getNodeName();
 String nvalue = n.getNodeValue();
 System.out.println("Type = " + ntype + ", Name = " + nname + ",
 Value = " + nvalue);

 // dump out attributes if any
 org.w3c.dom.NamedNodeMap nattrib = n.getAttributes();
 if(nattrib != null && nattrib.getLength() > 0)
 for(int i=0; i<nattrib.getLength(); i++)
 recursiveDescent(nattrib.item(i), level+1);

 // now walk through children list
 org.w3c.dom.NodeList nlist = n.getChildNodes();
 for(int i=0; i<nlist.getLength(); i++)
 recursiveDescent(nlist.item(i), level+1);
}

39

<?xml version=“1.0”?>
<!DOCTYPE greeting [
 <!ENTITY hi “Hello”>
 <!ENTITY hi1 “&hi;&hi;”>
 <!ENTITY hi2 “&hi1;&hi1;”>
 <!ENTITY hi3 “&hi2;&hi2;”>
 <!ENTITY s “<d></d>”>
]>
<a a1='17' a2='29'>xy &hi3; world &s; zz

$ java MyDOM file.xml
Successfully parsed - file.xml
Type = Document, Name = #document, Value = null
 Type = DocType, Name = greeting, Value = null
 Type = Element, Name = a, Value = null
 Type = Attr, Name = a1, Value = 17
 Type = Text, Name = #text, Value = 17
 Type = Attr, Name = a2, Value = 29
 Type = Text, Name = #text, Value = 29
 Type = Element, Name = b, Value = null
 Type = Text, Name = #text, Value = xy HelloHelloHelloH
elloHelloHelloHelloHello world
 Type = Element, Name = d, Value = null
 Type = Text, Name = #text, Value = zz

file.xml

element node!

40

END
Lecture 3

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

