
Sebastian Maneth

Lecture 20
Recap II

University of Edinburgh - March 30th, 2017

Applied Databases

2

Recap II

1. Schemas, Normal Forms, SQL

2. TFIDF-ranking, string matching (KMP, automata, Boyer-Moore)

2. Relational DBs

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

2) explain BCNF and how it removes fd-redundancies.

3) are there any “harmful” side-effects when transforming a table to BCNF?

3

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty sets of attributes (column names).

A table R has a functional dependency from S to T,
if R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one
T-tuple in R.

4

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

X A

1 2
2 2

Functional dependencies? (“closed world assumption”)

5

Let S and T be non-empty sets of attributes (column names).

A table R has a functional dependency from S to T,
if R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one
T-tuple in R.

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

X A

1 2
2 2

Functional dependencies? (“closed world assumption”)

X → X
X → A
X → XA
A → A
A → X
A → XA

XA → X
XA → A
XA → XA

6

Let S and T be non-empty sets of attributes (column names).

A table R has a functional dependency from S to T,
if R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one
T-tuple in R.

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

X A

1 2
2 2

Functional dependencies? (“closed world assumption”)

X → X
X → A
X → XA
A → A
A → X
A → XA

XA → X
XA → A
XA → XA

7

X → A

FD's with disjoint S, T

Let S and T be non-empty sets of attributes (column names).

A table R has a functional dependency from S to T,
if R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one
T-tuple in R.

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

X A Z

1 2 5
1 2 6
1 2 7

← how many functional dependencies?

8

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

X A Z

1 2 5
1 2 6
1 2 7

← how many functional dependencies?

at most:
→ (2^3 – 1) * (2^3 – 1) = 7*7 = 49

Which ones are excluded?

A → Z, A → XZ, A → XA, A → XAZ
X → Z, X → AZ, X → XA, X → XAZ
XA → Z, XA → AZ, XA → xZ, XA → XAZ

9

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

A table R has fd-redundancy w.r.t. S → T ,
if R contains two distinct tuples with equal (S,T)-values.

10

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

A table R has fd-redundancy w.r.t. S → T ,
if R contains two distinct tuples with equal (S,T)-values.

X A Z

1 2 5
1 2 6

← are there fd-redundancies?

11

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

A table R has fd-redundancy w.r.t. S → T ,
if R contains two distinct tuples with equal (S,T)-values.

X A Z

1 2 5
1 2 6

← are there fd-redundancies?

Yes: 1) fd-redundancy wrt X → A
 2) fd-redundancy wrt A → X

12

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

13

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

X A

1 2
2 2

← in BCNF?

14

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

X A

1 2
2 2

← in BCNF?
 Yes: X is superkey, and
 X → A is the only functional dependency.

15

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

← in BCNF?
X A Z

1 2 5
1 2 6

16

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

← in BCNF?
 No: X → A is fd, but X is not a superkey
 A → X is fd, but A is not a superkey

X A Z

1 2 5
1 2 6

17

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

X A Z

1 2 5
1 2 6

X A

1 2
1 2

X Z

1 5
1 6

18

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

X A Z

1 2 5
1 2 6

X A

1 2
1 2

X Z

1 5
1 6

In BCNF, there can be no
fd-redundancies.

Why?

19

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

X A Z

1 2 5
1 2 6

X A

1 2
1 2

X Z

1 5
1 6

In BCNF, there can be no
fd-redundancies.

Why?

Would imply that a tuple
exists twice in R with
same superkey-values

20

3) are there any “harmful” side-effects when transforming a table to BCNF?

X A Z

1 2 5
1 2 6
2 2 6

21

3) are there any “harmful” side-effects when transforming a table to BCNF?

X A Z

1 2 5
1 2 6
2 2 6

X A

1 2
2 2

X Z

1 5
1 6
2 6

22

3) are there any “harmful” side-effects when transforming a table to BCNF?

X A Z

1 2 5
1 2 6
2 2 6

X A

1 2
2 2

X Z

1 5
1 6
2 6

dependency XZ → A is lost

23

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

1)

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

1) (1,2,5) and (1,3,5)

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

1) (1,2,5) and (1,3,5)

2)

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

1) (1,2,5) and (1,3,5)

2) (7)

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

1) (1,2,5) and (1,3,5)

2) (7)

3)

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

1) (1,2,5) and (1,3,5)

2) (7)

3) (6)

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

1) (1,2,5) and (1,3,5)

2) (7)

3) (6)

4)

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

1) (1,2,5) and (1,3,5)

2) (7)

3) (6)

4) (1) and (2)

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

1) (1,2,5) and (1,3,5)

2) (7)

3) (6)

4) (1) and (2)

5)

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

1) (1,2,5) and (1,3,5)

2) (7)

3) (6)

4) (1) and (2)

5) (1,2,5,2,2,6) and (2,2,6,2,2,6)

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL queries for

(a) all values (with duplicates) in the entire table R

(b) all distinct values in the entire table R, with their frequencies

(c) all distinct b-values in R, that are smaller than the average
 over all values (with duplicates) in the entire R.

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL query for

(a) all values (with duplicates) in the entire table R

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL query for

(a) all values (with duplicates) in the entire table R

→ SELECT a FROM R UNION ALL
 SELECT b FROM R UNION ALL
 SELECT c FROM R;

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL query for

(b) all distinct values in the entire table R, with their frequencies

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL query for

(b) all distinct values in the entire table R, with their frequencies

→ SELECT a,COUNT(a) FROM
 (SELECT a FROM R UNION ALL
 SELECT b FROM R UNION ALL
 SELECT c FROM R) z
 GROUP BY a;

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL query for

(c) all distinct b-values in R, that are smaller than the average
 over all values (with duplicates) in the entire R.

SQL

a b c

1 2 5
1 3 6
2 2 6

List the result tuples for each of these SQL SQL queries:

1) SELECT * FROM R where b>a;
2) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3) SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4) SELECT a FROM R UNION SELECT a FROM R;
5) SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL query for

(c) all distinct b-values in R, that are smaller than the average
 over all values (with duplicates) in the entire R.

→ SELECT DISTINCT b FROM R WHERE b< (SELECT AVG(a) FROM
 (SELECT a FROM R UNION ALL
 SELECT b FROM R UNION ALL
 SELECT c FROM R) z);

TFIDF Ranking

TFIDF Ranking

Assume casefolding and stemming. We only care about these words:

 big, house, keep, night, old

1) make a table of term frequencies of these words (rows=words, columns=docs)
2) normalize by dividing column-wise by maximum
3) compute IDF of each word w as log_10(N/df_w)
4) multiply normalized term frequencies by IDF, to obtain TFIDF table.
5) compute cosine similarity between doc-2 and “big old house”

Assume casefolding and stemming. We only care about these words:
 big, house, keep, night, old
1) make a table of term frequencies of these words (rows=words, columns=docs)

 1 2 3 4 5 6
big 2 1
house 1 1
keep 3 1 1 3 1
night 1 1 2
old 1 2 1 1

2) normalize by dividing column-wise by maximum

 1 2 3 4 5 6
big 1 1
house 1/2 1
keep 1 1 1 1 1
night 1/3 1 2/3
old 1/3 1 1 1

3) compute IDF of each word w as log_10(N/df_w)

 1 2 3 4 5 6 IDF
big 1 1 log(6/2)=.477
house 1/2 1 .477
keep 1 1 1 1 1 log(6/5)=.079
night 1/3 1 2/3 log(6/3)=.301
old 1/3 1 1 1 log(6/4)=.176

4) multiply normalized term frequencies by IDF, to obtain TFIDF table.

 1 2 3 4 5 6 IDF
big .477 .477 .477
house .239 .477 .477
keep .079 .079 .079 .079 .079 .079
night .100 .301 .201 .301
old .059 .176 .176 .176 .176

5) compute cosine similarity between doc-2 and “big old house”

 1 2 3 4 5 6 IDF
big .477 .477 .477 .477
house .239 .477 .477 .477
keep .079 .079 .079 .079 .079 .079
night .100 .301 .201 .301
old .059 .176 .176 .176 .176 .176

cos-sim(Q,d2) = (.477*.477 + .239*.477 + .176*.176) /
(sqrt(.477^2 +.239^2 + .176^2)*sqrt(.477^2 + .477^2 + .176^2))
= .3725 / (0.5618 * 0.6972) = 0.9510

5) compute cosine similarity between doc-2 and “big old house”

 1 2 3 4 5 6 IDF
big .477 .477 .477 .477
house .239 .477 .477 .477
keep .079 .079 .079 .079 .079 .079
night .100 .301 .201 .301
old .059 .176 .176 .176 .176 .176

String Matching

1) explain the difference between the Matching Automaton and KMP.
2) draw the Matching Automaton for the string abaaba
3) give the KMP table for abaaba
4) how many comparisons does Horspool need for this pattern
 on the string aababaaba?

String Matching

1) explain the difference between the Matching Automaton and KMP.
2) draw the Matching Automaton for the string abaaba
3) give the KMP table for abaaba
4) how many comparisons does Horspool need for this pattern
 on the string aababaaba?

1) → size of matching automaton is |P||S| which can be |P|^2 (S = alphabet)

 → KMP table has only |P|-many entries.

 → automaton uses one look-up per text-symbol, i.e., O(|T|) matching time

 → KMP may require several look-ups per text-symbol
 (at most (log |P|)–many)

String Matching

1) explain the difference between the Matching Automaton and KMP.
2) draw the Matching Automaton for the string abaaba
3) give the KMP table for abaaba
4) how many comparisons does Horspool need for this pattern
 on the string aababaaba?

2)

a b a a b a

String Matching

1) explain the difference between the Matching Automaton and KMP.
2) draw the Matching Automaton for the string abaaba
3) give the KMP table for abaaba
4) how many comparisons does Horspool need for this pattern
 on the string aababaaba?

2)

a b a a b a

→ blue edges w.o. label means “else” = “any other letter”

a
b a a

b

String Matching

1) explain the difference between the Matching Automaton and KMP.
2) draw the Maatching automaton for the string abaaba
3) give the KMP table for abaaba
4) how many comparisons does Horspool need for this pattern
 on the string aababaaba?

3) KMP table = longest prefix that is proper suffix (up to current character)
 and such that the next letter (if exists) is different
 (“–1” if such a prefix not exist)

a b a a b a

String Matching

1) explain the difference between the Matching Automaton and KMP.
2) draw the Maatching automaton for the string abaaba
3) give the KMP table for abaaba
4) how many comparisons does Horspool need for this pattern
 on the string aababaaba?

3) KMP table = longest prefix that is proper suffix (up to current character)
 and such that the next letter (if exists) is different
 (“–1” if such a prefix not exist)

a b a a b a

0

String Matching

1) explain the difference between the Matching Automaton and KMP.
2) draw the Maatching automaton for the string abaaba
3) give the KMP table for abaaba
4) how many comparisons does Horspool need for this pattern
 on the string aababaaba?

3) KMP table = longest prefix that is proper suffix (up to current character)
 and such that the next letter (if exists) is different
 (“–1” if such a prefix not exist)

a b a a b a

0 -1

String Matching

1) explain the difference between the Matching Automaton and KMP.
2) draw the Maatching automaton for the string abaaba
3) give the KMP table for abaaba
4) how many comparisons does Horspool need for this pattern
 on the string aababaaba?

3) KMP table = longest prefix that is proper suffix (up to current character)
 and such that the next letter (if exists) is different
 (“–1” if such a prefix not exist)

a b a a b a

0 -1 1

String Matching

1) explain the difference between the Matching Automaton and KMP.
2) draw the Maatching automaton for the string abaaba
3) give the KMP table for abaaba
4) how many comparisons does Horspool need for this pattern
 on the string aababaaba?

3) KMP table = longest prefix that is proper suffix (up to current character)
 and such that the next letter (if exists) is different
 (“–1” if such a prefix not exist)

a b a a b a

0 -1 1 0 -1 3

String Matching

1) explain the difference between the Matching Automaton and KMP.
2) draw the Matching automaton for the string abaaba
3) give the KMP table for abaaba
4) how many comparisons does Horspool need for this pattern
 on the string aababaaba?

4) If mismatch with P[m] aligned to z in T, shift RIGHT by R(z).

 R(z) = distance from the right-most (non-last) “z” in P to the end of P
 (and |P| if there is no occurrence)

String Matching

1) explain the difference between the Matching Automaton and KMP.
2) draw the Matching automaton for the string abaaba
3) give the KMP table for abaaba
4) how many comparisons does Horspool need for this pattern
 on the string aababaaba?

4) If mismatch with P[m] aligned to z in T, shift RIGHT by R(z).

 R(z) = distance from the right-most (non-last) “z” in P to the end of P
 (and |P| if there is no occurrence)

a b a a b a

a a b a b a a b a

#comparisons = 4

String Matching

a b

a b a a b a

a a b a b a a b a

→ R(a) = 2
→ shift RIGHT by 2

1) explain the difference between the Matching Automaton and KMP.
2) draw the Matching automaton for the string abaaba
3) give the KMP table for abaaba
4) how many comparisons does Horspool need for this pattern
 on the string aababaaba?

4) If mismatch with P[m] aligned to z in T, shift RIGHT by R(z).

 R(z) = distance from the right-most (non-last) “z” in P to the end of P
 (and |P| if there is no occurrence)

#comparisons = 4 + 1

a a b a

String Matching

a b

a b a a b

a a b a b a a b a

SHIFT by 1

Mismatch with “b” aligned to P[m].
→ shift by 1 = R(b)

1) explain the difference between the Matching Automaton and KMP.
2) draw the Matching automaton for the string abaaba
3) give the KMP table for abaaba
4) how many comparisons does Horspool need for this pattern
 on the string aababaaba?

4) If mismatch with P[m] aligned to z in T, shift RIGHT by R(z).

 R(z) = distance from the right-most (non-last) “z” in P to the end of P
 (and |P| if there is no occurrence)

#comparisons = 4 + 1 + 6 = 11

a a b a

a

a a b a b a

END
Lecture 20

 All the best with the exam!!
 Remember: no lectures next week!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

