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Recap II

1.   Schemas, Normal Forms, SQL

2.   TFIDF-ranking, string matching (KMP, automata, Boyer-Moore)



2. Relational DBs

1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      
2)  explain BCNF and how it removes fd-redundancies.

3)  are there any “harmful” side-effects when transforming a table to BCNF?
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1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

Let S and T be non-empty sets of attributes (column names).

A table R has a functional dependency from S to T, 
if R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one 
T-tuple in R. 
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1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

X  A  

1  2
2  2  
    
  

Functional dependencies?      (“closed world assumption”)
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Let S and T be non-empty sets of attributes (column names).

A table R has a functional dependency from S to T, 
if R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one 
T-tuple in R. 



1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

X  A  

1  2
2  2  
    
  

Functional dependencies?      (“closed world assumption”)

X → X
X → A
X → XA
A → A
A → X
A → XA

XA → X
XA → A
XA → XA
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Let S and T be non-empty sets of attributes (column names).

A table R has a functional dependency from S to T, 
if R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one 
T-tuple in R. 



1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

X  A  

1  2
2  2  
    
  

Functional dependencies?      (“closed world assumption”)

X → X
X → A
X → XA
A → A
A → X
A → XA

XA → X
XA → A
XA → XA
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X → A

FD's with disjoint S, T

Let S and T be non-empty sets of attributes (column names).

A table R has a functional dependency from S to T, 
if R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one 
T-tuple in R. 



1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

Let S and T be non-empty sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R. 

X  A  Z

1  2  5
1  2  6
1  2  7

←   how many functional dependencies? 
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1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

Let S and T be non-empty sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R. 

X  A  Z

1  2  5
1  2  6
1  2  7

←   how many functional dependencies? 

at most:
→  (2^3 – 1) * (2^3 – 1) = 7*7 = 49

Which ones are excluded?

A → Z, A → XZ, A → XA, A → XAZ
X → Z, X → AZ, X → XA, X → XAZ
XA → Z, XA → AZ, XA → xZ, XA → XAZ
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1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

Let S and T be non-empty sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R. 

A table R has fd-redundancy w.r.t. S → T , 
if R contains two distinct tuples with equal (S,T)-values.
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1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

Let S and T be non-empty sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R. 

A table R has fd-redundancy w.r.t. S → T , 
if R contains two distinct tuples with equal (S,T)-values.

X  A  Z

1  2  5
1  2  6

←  are there fd-redundancies?
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1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

Let S and T be non-empty sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R. 

A table R has fd-redundancy w.r.t. S → T , 
if R contains two distinct tuples with equal (S,T)-values.

X  A  Z

1  2  5
1  2  6

←  are there fd-redundancies?

Yes:    1)  fd-redundancy wrt X → A
           2)  fd-redundancy wrt A → X
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2)  explain BCNF and how it removes fd-redundancies.
      

BCNF  =  if S → T is a functional dependency of R, then S is a superkey.

                (assuming S disjoint T)
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2)  explain BCNF and how it removes fd-redundancies.
      

BCNF  =  if S → T is a functional dependency of R, then S is a superkey.

                (assuming S disjoint T)

X  A  

1  2
2  2  
    
  

← in BCNF?
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2)  explain BCNF and how it removes fd-redundancies.
      

BCNF  =  if S → T is a functional dependency of R, then S is a superkey.

                (assuming S disjoint T)

X  A  

1  2
2  2  
    
  

← in BCNF?
    Yes:   X is superkey, and 
              X → A is the only functional dependency.
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2)  explain BCNF and how it removes fd-redundancies.
      

BCNF  =  if S → T is a functional dependency of R, then S is a superkey.

                (assuming S disjoint T)

← in BCNF?
X  A  Z

1  2  5
1  2  6
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2)  explain BCNF and how it removes fd-redundancies.
      

BCNF  =  if S → T is a functional dependency of R, then S is a superkey.

                (assuming S disjoint T)

← in BCNF?
     No:   X → A is fd, but X is not a superkey
             A → X is fd, but A is not a superkey

X  A  Z

1  2  5
1  2  6
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2)  explain BCNF and how it removes fd-redundancies.
      

BCNF  =  if S → T is a functional dependency of R, then S is a superkey.

                (assuming S disjoint T)

X  A  Z

1  2  5
1  2  6

X  A  

1  2  
1  2  

X  Z

1  5
1  6
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2)  explain BCNF and how it removes fd-redundancies.
      

BCNF  =  if S → T is a functional dependency of R, then S is a superkey.

                (assuming S disjoint T)

X  A  Z

1  2  5
1  2  6

X  A  

1  2  
1  2  

X  Z

1  5
1  6

In BCNF, there can be no
fd-redundancies.

Why?
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2)  explain BCNF and how it removes fd-redundancies.
      

BCNF  =  if S → T is a functional dependency of R, then S is a superkey.

                (assuming S disjoint T)

X  A  Z

1  2  5
1  2  6

X  A  

1  2  
1  2  

X  Z

1  5
1  6

In BCNF, there can be no
fd-redundancies.

Why?

Would imply that a tuple
exists twice in R with
same superkey-values

20



3)  are there any “harmful” side-effects when transforming a table to BCNF?
      

X  A  Z

1  2  5
1  2  6
2  2  6

21



3)  are there any “harmful” side-effects when transforming a table to BCNF?
      

X  A  Z

1  2  5
1  2  6
2  2  6

X  A  

1  2  
2  2  

X  Z

1  5
1  6
2  6
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3)  are there any “harmful” side-effects when transforming a table to BCNF?
      

X  A  Z

1  2  5
1  2  6
2  2  6

X  A  

1  2  
2  2  

X  Z

1  5
1  6
2  6

dependency XZ → A  is lost
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SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

1)   



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

1)   (1,2,5) and (1,3,5)



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

1)   (1,2,5) and (1,3,5)

2) 



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

1)   (1,2,5) and (1,3,5)

2)   (7)



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

1)   (1,2,5) and (1,3,5)

2)   (7)

3)   



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

1)   (1,2,5) and (1,3,5)

2)   (7)

3)   (6)



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

1)   (1,2,5) and (1,3,5)

2)   (7)

3)   (6)

4)  



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

1)   (1,2,5) and (1,3,5)

2)   (7)

3)   (6)

4)   (1) and (2)



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

1)   (1,2,5) and (1,3,5)

2)   (7)

3)   (6)

4)   (1) and (2)

5)   



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

1)   (1,2,5) and (1,3,5)

2)   (7)

3)   (6)

4)   (1) and (2)

5)   (1,2,5,2,2,6) and (2,2,6,2,2,6)



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL queries for

(a)  all values (with duplicates) in the entire table R

(b)  all distinct values in the entire table R, with their frequencies

(c)  all distinct b-values in R, that are smaller than the average 
                    over all values (with duplicates) in the entire R.



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL query for

(a)  all values (with duplicates) in the entire table R



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL query for

(a)  all values (with duplicates) in the entire table R

→  SELECT a FROM R UNION ALL 
   SELECT b FROM R UNION ALL 
   SELECT c FROM R;



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL query for

(b)  all distinct values in the entire table R, with their frequencies



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL query for

(b)  all distinct values in the entire table R, with their frequencies

→  SELECT a,COUNT(a) FROM 
      (SELECT a FROM R UNION ALL
    SELECT b FROM R UNION ALL 
    SELECT c FROM R) z
   GROUP BY a;



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL query for

(c)  all distinct b-values in R, that are smaller than the average 
                    over all values (with duplicates) in the entire R.



SQL

a  b  c

1  2  5
1  3  6
2  2  6

List the result tuples for each of these SQL SQL queries:

1)  SELECT * FROM R where b>a;
2)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r2.a;
3)  SELECT COUNT(*) FROM R r1, R r2 where r1.b>r1.a;
4)  SELECT a FROM R UNION SELECT a FROM R;
5)  SELECT * FROM R r1, R r2 where r1.b=r2.a;

Give SQL query for

(c)  all distinct b-values in R, that are smaller than the average 
                    over all values (with duplicates) in the entire R.

→  SELECT DISTINCT b FROM R WHERE b< (SELECT AVG(a) FROM 
                  (SELECT a FROM R UNION ALL 
                   SELECT b FROM R UNION ALL 
                   SELECT c FROM R) z);



TFIDF Ranking



TFIDF Ranking

Assume casefolding and stemming. We only care about these words:  

            big, house, keep, night, old

1) make a table of term frequencies of these words (rows=words, columns=docs)
2) normalize by dividing column-wise by maximum
3) compute IDF of each word w as log_10(N/df_w)
4) multiply normalized term frequencies by IDF, to obtain TFIDF table.
5) compute cosine similarity between doc-2 and “big old house”



Assume casefolding and stemming. We only care about these words:  
            big, house, keep, night, old
1) make a table of term frequencies of these words (rows=words, columns=docs)

       1  2  3  4  5  6
big       2  1  
house     1  1
keep   3     1  1  3  1
night  1        1  2
old    1  2  1  1  



2) normalize by dividing column-wise by maximum

       1    2    3  4  5   6
big         1    1  
house       1/2  1
keep   1         1  1  1   1
night  1/3          1  2/3
old    1/3  1    1  1  



3) compute IDF of each word w as log_10(N/df_w)

       1    2    3  4  5   6  IDF
big         1    1            log(6/2)=.477  
house       1/2  1            .477
keep   1         1  1  1   1  log(6/5)=.079
night  1/3          1  2/3    log(6/3)=.301
old    1/3  1    1  1         log(6/4)=.176



4) multiply normalized term frequencies by IDF, to obtain TFIDF table.

       1    2    3    4    5     6  IDF
big        .477 .477                .477  
house      .239 .477                .477
keep  .079      .079 .079 .079 .079 .079
night .100           .301 .201      .301
old   .059 .176 .176 .176           .176



5) compute cosine similarity between doc-2 and “big old house”

       1    2    3    4    5     6  IDF
big        .477 .477                .477      .477  
house      .239 .477                .477      .477
keep  .079      .079 .079 .079 .079 .079
night .100           .301 .201      .301
old   .059 .176 .176 .176           .176      .176



cos-sim(Q,d2) = (.477*.477 + .239*.477 + .176*.176) / 
(sqrt(.477^2 +.239^2 + .176^2)*sqrt(.477^2 + .477^2 + .176^2))
= .3725 / (0.5618 * 0.6972) = 0.9510

5) compute cosine similarity between doc-2 and “big old house”

       1    2    3    4    5     6  IDF
big        .477 .477                .477      .477  
house      .239 .477                .477      .477
keep  .079      .079 .079 .079 .079 .079
night .100           .301 .201      .301
old   .059 .176 .176 .176           .176      .176



String Matching

1)  explain the difference between the Matching Automaton and KMP.
2)  draw the Matching Automaton for the string abaaba
3)  give the KMP table for abaaba
4)  how many comparisons does Horspool need for this pattern
     on the string aababaaba?



String Matching

1)  explain the difference between the Matching Automaton and KMP.
2)  draw the Matching Automaton for the string abaaba
3)  give the KMP table for abaaba
4)  how many comparisons does Horspool need for this pattern
     on the string aababaaba?

1)  → size of matching automaton is |P||S| which can be |P|^2 (S = alphabet)

     → KMP table has only |P|-many entries.  

     → automaton uses one look-up per text-symbol, i.e., O(|T|) matching time

     → KMP may require several look-ups per text-symbol
          (at most (log |P|)–many)



String Matching

1)  explain the difference between the Matching Automaton and KMP.
2)  draw the Matching Automaton for the string abaaba
3)  give the KMP table for abaaba
4)  how many comparisons does Horspool need for this pattern
     on the string aababaaba?

2)

a b a a b a



String Matching

1)  explain the difference between the Matching Automaton and KMP.
2)  draw the Matching Automaton for the string abaaba
3)  give the KMP table for abaaba
4)  how many comparisons does Horspool need for this pattern
     on the string aababaaba?

2)

a b a a b a

→  blue edges w.o. label means “else” = “any other letter”

a
b a a

b



String Matching

1)  explain the difference between the Matching Automaton and KMP.
2)  draw the Maatching automaton for the string abaaba
3)  give the KMP table for abaaba
4)  how many comparisons does Horspool need for this pattern
     on the string aababaaba?

3)  KMP table = longest prefix that is proper suffix (up to current character)
                          and such that the next letter (if exists) is different
                          (“–1” if such a prefix not exist)

a b a a b a



String Matching

1)  explain the difference between the Matching Automaton and KMP.
2)  draw the Maatching automaton for the string abaaba
3)  give the KMP table for abaaba
4)  how many comparisons does Horspool need for this pattern
     on the string aababaaba?

3)  KMP table = longest prefix that is proper suffix (up to current character)
                          and such that the next letter (if exists) is different
                          (“–1” if such a prefix not exist)

a b a a b a

0



String Matching

1)  explain the difference between the Matching Automaton and KMP.
2)  draw the Maatching automaton for the string abaaba
3)  give the KMP table for abaaba
4)  how many comparisons does Horspool need for this pattern
     on the string aababaaba?

3)  KMP table = longest prefix that is proper suffix (up to current character)
                          and such that the next letter (if exists) is different
                          (“–1” if such a prefix not exist)

a b a a b a

0 -1



String Matching

1)  explain the difference between the Matching Automaton and KMP.
2)  draw the Maatching automaton for the string abaaba
3)  give the KMP table for abaaba
4)  how many comparisons does Horspool need for this pattern
     on the string aababaaba?

3)  KMP table = longest prefix that is proper suffix (up to current character)
                          and such that the next letter (if exists) is different
                          (“–1” if such a prefix not exist)

a b a a b a

0 -1 1



String Matching

1)  explain the difference between the Matching Automaton and KMP.
2)  draw the Maatching automaton for the string abaaba
3)  give the KMP table for abaaba
4)  how many comparisons does Horspool need for this pattern
     on the string aababaaba?

3)  KMP table = longest prefix that is proper suffix (up to current character)
                          and such that the next letter (if exists) is different
                          (“–1” if such a prefix not exist)

a b a a b a

0 -1 1 0 -1 3



String Matching

1)  explain the difference between the Matching Automaton and KMP.
2)  draw the Matching automaton for the string abaaba
3)  give the KMP table for abaaba
4)  how many comparisons does Horspool need for this pattern
     on the string aababaaba?

4)  If mismatch with P[m] aligned to z in T, shift RIGHT by R(z).

     R(z) = distance from the right-most (non-last) “z” in P to the end of P
                                                                 (and |P| if there is no occurrence)



String Matching

1)  explain the difference between the Matching Automaton and KMP.
2)  draw the Matching automaton for the string abaaba
3)  give the KMP table for abaaba
4)  how many comparisons does Horspool need for this pattern
     on the string aababaaba?

4)  If mismatch with P[m] aligned to z in T, shift RIGHT by R(z).

     R(z) = distance from the right-most (non-last) “z” in P to the end of P
                                                                 (and |P| if there is no occurrence)

a b a a b a

a a b a b a a b a

#comparisons  =  4



String Matching

a b

a b a a b a

a a b a b a a b a

→  R(a) = 2
→  shift RIGHT by 2

1)  explain the difference between the Matching Automaton and KMP.
2)  draw the Matching automaton for the string abaaba
3)  give the KMP table for abaaba
4)  how many comparisons does Horspool need for this pattern
     on the string aababaaba?

4)  If mismatch with P[m] aligned to z in T, shift RIGHT by R(z).

     R(z) = distance from the right-most (non-last) “z” in P to the end of P
                                                                 (and |P| if there is no occurrence)

#comparisons  =  4 + 1

a a b a



String Matching

a b

a b a a b

a a b a b a a b a

SHIFT by 1

Mismatch with “b” aligned to P[m].
→  shift by 1 = R(b)

1)  explain the difference between the Matching Automaton and KMP.
2)  draw the Matching automaton for the string abaaba
3)  give the KMP table for abaaba
4)  how many comparisons does Horspool need for this pattern
     on the string aababaaba?

4)  If mismatch with P[m] aligned to z in T, shift RIGHT by R(z).

     R(z) = distance from the right-most (non-last) “z” in P to the end of P
                                                                 (and |P| if there is no occurrence)

#comparisons  =  4 + 1 + 6 = 11

a a b a

a

a a b a b a



END
Lecture 20

 All the best with the exam!!
 Remember: no lectures next week!
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