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Horspool

Match  RIGHT-TO-LEFT 

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

R(c) = 5
R(b) = 1

Horspool
If mismatch and P[m] aligned to z in T, shift pattern to the RIGHT by R(z).

R(a) = 2

Question    →  can you do Horspool on Unicode (e.g. UTF-8)??

variable length encoding



→  try to solve it yourself
→  possibly consult Patent US8819045 

Question    →  can you do Horspool on Unicode (e.g. UTF-8)??

variable length encoding
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Outline

1.   Suffix Tree

2.   Suffix Tree Construction

3.   Applications of Suffix Trees

4.   Suffix Array



5

1. Suffix Tree

New Idea 

→  collapse paths of white nodes!
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1. Suffix Tree

New Idea 

→  collapse paths of white nodes!
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1. Suffix Tree

4,8]

    12345678
T = abaababa
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1. Suffix Tree

4,8]
[7,8

    12345678
T = abaababa
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Suffix Tree

4,8]
7,8]

[7,8

    12345678
T = abaababa

[4,8]
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Suffix Tree

→  how many nodes (at most)
      In the suffix tree of T?4,8]

7,8]

[7,8

    12345678
T = abaababa

[4,8]
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Suffix Tree

    123456789
T = abaababa$

→  add end marker “$” 

→  one-to-one correspondence of
      leaves to suffixes

→  a tree with n+1 leaves (and no
      nodes with only one child)
      has  <=  2n+1  nodes!

Lemma
Size of  suffix tree  for “T$” is
linear in n=|T|, i.e., in O(n).
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Suffix Tree

    123456789
T = abaababa$

→  search time still O(|P|), as for suffix trie!
→  perfect data structure for our task!

→  add end marker “$” 

→  one-to-one correspondence of
      leaves to suffixes

→  a tree with n+1 leaves (and no
      nodes with only one child)
      has  <=  2n+1  nodes!

Lemma
Size of  suffix tree  for “T$” is
linear in n=|T|, i.e., in O(n).
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2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

But, rather complex construction algorithms

→  Weiner 1973        [Knuth:  “Algorithm of the year 1973”]
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2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→  Weiner 1973        [Knuth:  “Algorithm of the year 1973”]

→  McCreight 1976   Simplification of Weiner’s algorithm
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2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→  Weiner 1973        [Knuth:  “Algorithm of the year 1973”]

→  McCreight 1976   Simplification of Weiner’s algorithm

→  Ukkonen 1995 first online algorithm!
→  T may come from a stream
→  build suffix tree for TT’ from suffix tree for T
→  huge breakthrough!!
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2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→  Weiner 1973        

→  McCreight 1976

→  Ukkonen 1995

Linear time only for constant-size alphabets!
Otherwise, O(n log n)
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2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→  Weiner 1973        

→  McCreight 1976

→  Ukkonen 1995

→  Farach 1997

Linear time for any integer alphabet, 
                      drawn from a polynomial range

→ again a big breakthrough

Linear time only for constant-size alphabets!
Otherwise, O(n log n)
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2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→  Weiner 1973        

→  McCreight 1976

→  Ukkonen 1995

→  Farach 1997

→  Kurtz 1999 

Linear time only for constant-size alphabets!
Otherwise, O(n log n)

Practical algorithm
13–15n Bytes space requirement.

(→  e.g. McCreight:  28n Bytes )
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2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→  Weiner 1973        

→  McCreight 1976

→  Ukkonen 1995

→  Farach 1997
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Suffix Link
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Suffix Link
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Suffix Link
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Suffix Link
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3. Applications of Suffix Trees
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         11   1    2
12345678901   5    0         
fornialives#sealiver

[6,10] = alive

[20,e][11,e]

(1,6) (2,15)
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g
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Proceed downwards to longest match
(as in ordinary search)
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(d)  Compression 

→  E.g., infinite-window Lempel-Ziv like compression

a b a abaa aba baba ab b   →   a b a (1,4) (1,3) (9,4) (1,2) b   

M. C. Escher (1948)

(position, length)
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3. Applications of Suffix Trees
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Space Consumption of Suffix Trees



Questions

→  is the size of this tree really in O(n)?
→  in terms of #nodes/edges: OK

→  how about the sizes of labels ??



Questions

→  is the size of this tree really in O(n)?
→  in terms of #nodes/edges: OK

→  how about the sizes of labels ??
each requires log(n) bits!?



Yes,  but:

→  log(n) is small, e.g.,  64 bits

→  can be considered constant! each requires log(n) bits!?



Lesson to learn:

→   log(n) in terms of a run-time factor,
      can be fatal 

→   in terms of a  space-factor, it is fine!
       how long will a text be?
       2^64???

4 / 8 Bytes each is enough!



“For any text with fewer characters than
 #atoms in the universe, the label size for 
 the suffix tree is a constant of x bits.. “ x Bits each is enough!



→  label size is not an issue

→  but, size of edge-pointers?

→  imagine each edge requires a 32-bit pointer!!

5*4 Bytes = 20 Bytes 
for edge pointers
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Actual Space of Suffix Trees

Space for edge-pointers is problematic:

→   actual space of suffix tree, ca.   20|T|  

→   on commodity hardware, texts of more than 1GB are not doable



→  how to avoid the huge space needed for edges?
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4. Suffix Array
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Suffix Array Construction

p
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4. Suffix Array

→  read leaves from left-to-right!

SA(T) = [ 12,11,8,5,2,10,9,7,4,6,3 ]
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4. Suffix Array

→  read leaves from left-to-right!

SA(T) = [ 12,11,8,5,2,10,9,7,4,6,3 ]

Theorem
The suffix array of T can be constructed in time O(|T|).
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Search
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Search
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Search
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Search
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Search
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Search
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Search
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Search
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Search
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Search
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Search
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Search
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Search

→  O(|P| + log|T|) in practise, using a simple trick

→  O(|P| + log|T|) guaranteed, using LCP-array

                             LCP(k,j) = longest common prefix of T[SA[k]...] 
                                                                                and T[SA[j]...]
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Suffix Arrays

→  much more space efficient than Suffix Tree
→  used in pratise  (suffix tree more used in theory)

→  Suffix Array Construction, without Suffix Trees?

[  Linear Work Suffix Array Construction, 
   J. Kärkkäinen, Sanders, Burkhardt,
   Journal of the ACM, 2006  ]

→  See also   (linked from course web page)

[  A taxonomy of suffix array construction algorithms,
   S. J. Puglisi, W. F. Smyth, A. Turpin,
   ACM Computing Surveys 39,  2007  ]

PST
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Suffix Arrays

From 
p.7 of

PST
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END
Lecture 15
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