
Sebastian Maneth

Lecture 15
Suffix Trees and Suffix Arrays

University of Edinburgh - March 13th, 2017

Applied Databases

2

Horspool

Match RIGHT-TO-LEFT

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

R(c) = 5
R(b) = 1

Horspool
If mismatch and P[m] aligned to z in T, shift pattern to the RIGHT by R(z).

R(a) = 2

Question → can you do Horspool on Unicode (e.g. UTF-8)??

variable length encoding

→ try to solve it yourself
→ possibly consult Patent US8819045

Question → can you do Horspool on Unicode (e.g. UTF-8)??

variable length encoding

4

Outline

1. Suffix Tree

2. Suffix Tree Construction

3. Applications of Suffix Trees

4. Suffix Array

5

1. Suffix Tree

New Idea

→ collapse paths of white nodes!

6

1. Suffix Tree

New Idea

→ collapse paths of white nodes!

7

1. Suffix Tree

4,8]

 12345678
T = abaababa

8

1. Suffix Tree

4,8]
[7,8

 12345678
T = abaababa

9

Suffix Tree

4,8]
7,8]

[7,8

 12345678
T = abaababa

[4,8]

10

Suffix Tree

→ how many nodes (at most)
 In the suffix tree of T?4,8]

7,8]

[7,8

 12345678
T = abaababa

[4,8]

11

Suffix Tree

 123456789
T = abaababa$

→ add end marker “$”

→ one-to-one correspondence of
 leaves to suffixes

→ a tree with n+1 leaves (and no
 nodes with only one child)
 has <= 2n+1 nodes!

Lemma
Size of suffix tree for “T$” is
linear in n=|T|, i.e., in O(n).

12

Suffix Tree

 123456789
T = abaababa$

→ search time still O(|P|), as for suffix trie!
→ perfect data structure for our task!

→ add end marker “$”

→ one-to-one correspondence of
 leaves to suffixes

→ a tree with n+1 leaves (and no
 nodes with only one child)
 has <= 2n+1 nodes!

Lemma
Size of suffix tree for “T$” is
linear in n=|T|, i.e., in O(n).

13

2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

But, rather complex construction algorithms

→ Weiner 1973 [Knuth: “Algorithm of the year 1973”]

14

2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→ Weiner 1973 [Knuth: “Algorithm of the year 1973”]

→ McCreight 1976 Simplification of Weiner’s algorithm

15

2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→ Weiner 1973 [Knuth: “Algorithm of the year 1973”]

→ McCreight 1976 Simplification of Weiner’s algorithm

→ Ukkonen 1995 first online algorithm!
→ T may come from a stream
→ build suffix tree for TT’ from suffix tree for T
→ huge breakthrough!!

16

2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→ Weiner 1973

→ McCreight 1976

→ Ukkonen 1995

Linear time only for constant-size alphabets!
Otherwise, O(n log n)

17

2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→ Weiner 1973

→ McCreight 1976

→ Ukkonen 1995

→ Farach 1997

Linear time for any integer alphabet,
 drawn from a polynomial range

→ again a big breakthrough

Linear time only for constant-size alphabets!
Otherwise, O(n log n)

18

2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→ Weiner 1973

→ McCreight 1976

→ Ukkonen 1995

→ Farach 1997

→ Kurtz 1999

Linear time only for constant-size alphabets!
Otherwise, O(n log n)

Practical algorithm
13–15n Bytes space requirement.

(→ e.g. McCreight: 28n Bytes)

19

2. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→ Weiner 1973

→ McCreight 1976

→ Ukkonen 1995

→ Farach 1997

20

Suffix Link

21

Suffix Link

22

Suffix Link

23

Suffix Link

34

35

3. Applications of Suffix Trees

36

37

 11 1 2
12345678901 5 0
fornialives#sealiver

[6,10] = alive

[20,e][11,e]

(1,6) (2,15)

38

g

39

Proceed downwards to longest match
(as in ordinary search)

40

(d) Compression

→ E.g., infinite-window Lempel-Ziv like compression

a b a abaa aba baba ab b → a b a (1,4) (1,3) (9,4) (1,2) b

M. C. Escher (1948)

(position, length)

41

4242

3. Applications of Suffix Trees

43

44

Space Consumption of Suffix Trees

Questions

→ is the size of this tree really in O(n)?
→ in terms of #nodes/edges: OK

→ how about the sizes of labels ??

Questions

→ is the size of this tree really in O(n)?
→ in terms of #nodes/edges: OK

→ how about the sizes of labels ??
each requires log(n) bits!?

Yes, but:

→ log(n) is small, e.g., 64 bits

→ can be considered constant! each requires log(n) bits!?

Lesson to learn:

→ log(n) in terms of a run-time factor,
 can be fatal

→ in terms of a space-factor, it is fine!
 how long will a text be?
 2^64???

4 / 8 Bytes each is enough!

“For any text with fewer characters than
 #atoms in the universe, the label size for
 the suffix tree is a constant of x bits.. “ x Bits each is enough!

→ label size is not an issue

→ but, size of edge-pointers?

→ imagine each edge requires a 32-bit pointer!!

5*4 Bytes = 20 Bytes
for edge pointers

51

Actual Space of Suffix Trees

Space for edge-pointers is problematic:

→ actual space of suffix tree, ca. 20|T|

→ on commodity hardware, texts of more than 1GB are not doable

→ how to avoid the huge space needed for edges?

53

4. Suffix Array

54

Suffix Array Construction

p

55

4. Suffix Array

→ read leaves from left-to-right!

SA(T) = [12,11,8,5,2,10,9,7,4,6,3]

56

4. Suffix Array

→ read leaves from left-to-right!

SA(T) = [12,11,8,5,2,10,9,7,4,6,3]

Theorem
The suffix array of T can be constructed in time O(|T|).

57

Search

58

Search

59

Search

60

Search

61

Search

62

Search

63

Search

64

Search

65

Search

66

Search

67

Search

68

Search

69

Search

→ O(|P| + log|T|) in practise, using a simple trick

→ O(|P| + log|T|) guaranteed, using LCP-array

 LCP(k,j) = longest common prefix of T[SA[k]...]
 and T[SA[j]...]

70

Suffix Arrays

→ much more space efficient than Suffix Tree
→ used in pratise (suffix tree more used in theory)

→ Suffix Array Construction, without Suffix Trees?

[Linear Work Suffix Array Construction,
 J. Kärkkäinen, Sanders, Burkhardt,
 Journal of the ACM, 2006]

→ See also (linked from course web page)

[A taxonomy of suffix array construction algorithms,
 S. J. Puglisi, W. F. Smyth, A. Turpin,
 ACM Computing Surveys 39, 2007]

PST

71

Suffix Arrays

From
p.7 of

PST

72

END
Lecture 15

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

