Applied Databases

Lecture 15 Suffix Trees and Suffix Arrays

Sebastian Maneth

University of Edinburgh - March 13th, 2017

Horspool

Match RIGHT-TO-LEFT

R(a) = 2

R(c) = 5 R(b) = 1

Horspool If mismatch and P[m] aligned to z in T, shift pattern to the RIGHT by R(z).

UTF-8

Maps a unicode character into 1, 2, 3, or 4 bytes.

Unicode range	Byte sequence
U+000000 → U+00007F U+000080 → U+0007FF U+000800 → U+00FFFF U+010000 → U+10FFFF	0 110 10 1110 10 10 11110 10 10 10 10

Spare bits (\Box) are filled from right to left. Pad to the left with 0-bits.

E.g. U+00A9 in UTF-8 is 11000010 10101001 U+2260 in UTF-8 is 11100010 10001001 10100000

Outline

- 1. Suffix Tree
- 2. Suffix Tree Construction
- 3. Applications of Suffix Trees
- 4. Suffix Array

12345678T = abaababa

Suffixes

- 1 abaababa
- 2 baababa
- 3 aababa
- 4 ababa
- 5 baba
- 6 aba
- 7 ba
- 8 a

New Idea

 \rightarrow collapse paths of white nodes!

Suffixes 1 abaababa 2 baababa 3 aababa 4 ababa 5 baba 6 aba 7 ba

8 a

New Idea

 \rightarrow collapse paths of white nodes!

T = abaababa

→ how many nodes (at most) In the suffix tree of T?

123456789T = abaababa

- \rightarrow add end marker "\$"
- → one-to-one correspondence of leaves to suffixes

11

→ a tree with n+1 leaves (and no nodes with only one child) has <= 2n+1 nodes!</p>

Lemma Size of suffix tree for "T\$" is linear in n=|T|, i.e., in O(n).

123456789T = abaababa\$

- \rightarrow add end marker "\$"
- \rightarrow one-to-one correspondence of leaves to suffixes

12

→ a tree with n+1 leaves (and no nodes with only one child) has <= 2n+1 nodes!</p>

Lemma Size of suffix tree for "T\$" is linear in n=|T|, i.e., in O(n).

→ search time still O(|P|), as for suffix trie! → perfect data structure for our task!

Good news: Suffix tree can be constructed in linear time!

But, rather complex construction algorithms

 \rightarrow Weiner 1973 [Knuth: "Algorithm of the year 1973"]

Good news: Suffix tree can be constructed in linear time!

Complex construction algorithms

- \rightarrow Weiner 1973 [Knuth: "Algorithm of the year 1973"]
- \rightarrow McCreight 1976 Simplification of Weiner's algorithm

Good news: Suffix tree can be constructed in linear time!

Complex construction algorithms

- \rightarrow Weiner 1973 [Knuth: "Algorithm of the year 1973"]
- → McCreight 1976 Simplification of Weiner's algorithm
- \rightarrow Ukkonen 1995 \triangleleft first online algorithm!
 - \rightarrow T may come from a stream
 - \rightarrow build suffix tree for TT' from suffix tree for T
 - \rightarrow huge breakthrough!!

Good news: Suffix tree can be constructed in linear time!

Complex construction algorithms

- \rightarrow Weiner 1973
- \rightarrow McCreight 1976
- \rightarrow Ukkonen 1995

Linear time only for *constant-size alphabets*! Otherwise, O(n log n)

Good news: Suffix tree can be constructed in linear time!

Complex construction algorithms

- \rightarrow Weiner 1973
- \rightarrow McCreight 1976
- \rightarrow Ukkonen 1995

 \rightarrow Farach 1997

Linear time only for *constant-size alphabets*! Otherwise, O(n log n)

Linear time for **any integer alphabet**, drawn from a polynomial range

 \rightarrow again a big breakthrough

Good news: Suffix tree can be constructed in linear time!

Complex construction algorithms

- \rightarrow Weiner 1973
- → McCreight 1976
- \rightarrow Ukkonen 1995
- \rightarrow Farach 1997
- → Kurtz 1999

Linear time only for *constant-size alphabets*! Otherwise, O(n log n)

Practical algorithm 13–15n Bytes space requirement.

 $(\rightarrow e.g. McCreight: 28n Bytes)$

Good news: Suffix tree can be constructed in linear time!

Complex construction algorithms

- \rightarrow Weiner 1973
- → McCreight 1976
- \rightarrow Ukkonen 1995
 - \rightarrow Farach 1997

20

12345678T = abaababa

Suffix Link

Definition

If x=ay is the string corresponding to a node u in the ST then the suffix link suf[u] is the node v corresponding to y in ST.

12345678 T = abaababa 8 a b b a a b a a

Suffix Link

Definition

If x=ay is the string corresponding to a node u in the ST then the suffix link suf[u] is the node v corresponding to y in ST.

Where is the suffix link of node "2"?

22

Suffix Link

Definition

If x=ay is the string corresponding to a node u in the ST then the suffix link suf[u] is the node v corresponding to y in ST.

Where is the suffix link of node "2"?

- essential node
- non-essential node

12345678 = abaababa Т а b 8 а а b 6 а а а b 5 b а С а b а а а 3 С а 2 suf[1]

Suffix Link

Definition

If x=ay is the string corresponding to a node u in the ST then the suffix link suf[u] is the node v corresponding to y in ST.

Using suffix links, we can *on-line* build the Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

- essential node
- non-essential node

T = abaabb Online construction

v = lowest leaf in tree
b = T[current]
From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], suf²[v], ..., suf^{k-1}[v]
If there is no such u, create b-sons for all of them, up to k

T = abaabb Online construction

a a b b o b

T = abaabb Online construction

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined. Create b-sons for v, suf[v], suf²[v], ..., suf^{k-1}[v]

If there is no such u, create b-sons for all of them, up to k

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined. Create b-sons for v, suf[v], suf²[v], ..., suf^{k-1}[v]

If there is no such u, create b-sons for all of them, up to k

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined. Create b-sons for v, suf[v], suf²[v], ..., suf^{k-1}[v]

If there is no such u, create b-sons for all of them, up to k

Ukkonen's on-line construction of suffix trees works in a similar way.

It maintains collapsed edges at all times.

3. Applications of Suffix Trees

Generalized Suffix tree for a SET S of strings:

S = { S₁, S₂, S₃, ..., S_k } T = S₁ $\#_1$ S₂ $\#_2$ S₃ $\#_3$..., S_k $\#_k$

Where $\#_1, \#_2, ..., \#_k$ are fresh new symbols.

(b) Longest Common Substring of two Strings

 S_1 = superiorcalifornialives S_2 = sealiver

 $LCS(S_1, S_2) = alive$

→ Build generalized suffix tree of $\{S_1, S_2\}$ → Mark internal nodes with "1" or "2" if subtree contains (1,_) pair or (2, _) pair.

LCS(S1, S2) = maximal *string depth* of any node marked "1,2"

→ Can be determined by a simple tree traversal
(b) Longest Common Substring of two Strings

 $S_1 = fornialives$ $S_2 = sealiver$

 $LCS(S_1, S_2) = alive$

11 1 2 12345678901 5 0 fornialives#sealiver

(b) Longest Common Substring of two Strings

Theorem The *longest common substring* of two strings can be found in linear time, using a generalized suffix tree.

[Karp,Miller,Rosenberg1972] solved the problem in $O((m+n)\log(m+n))$ time where m=|S₁| and n=|S₂|.

In 1970 Donald Knuth conjectured that it is *impossible* to solve the problem in linear time!

→ Linear time solution by [Weiner,1973]

First linear time suffix tree construction algorithm

(c) Matching Statistics

ms(k) = length L of longest substring T[k...k+L] that matches a substring in P.p(k) = start position in P of a substring of length <math>ms(k) matching T[k...k+ms(k)]

T = <mark>abc</mark> xabcdex P = y <mark>abc</mark> wzqabcdw	Computation of ms and p
ms(1) = 3	Build suffix tree of P (including suffix links) At node v corresponding to ms(i),
p(1) = 2	compute <mark>ms</mark> (i+1) as follows: (1) If v is internal, follow its suffix link.
ms(5) = 4 p(4) = 8	(2) If v is leaf, walk to parent (label γ)
	Current node is prefix of T[i+1n]. Proceed downwards to longest match (as in ordinary search)

→Allows to find LCS(S_1,S_2) using only *one* suffix tree (of the shorter string).

(d) Compression

 \rightarrow E.g., infinite-window Lempel-Ziv like compression

a b a abaa aba baba ab b \rightarrow a b a (1,4) (1,3) (9,4) (1,2) b

(position, length)

M. C. Escher (1948)

(d) Compression

LZ-variant with infinite window

abaabaaabababaabb

```
a b a abaa aba baba ab b
longest string that has appeared before
coded as: (position, length)
a b a (1,4) (1,3) (9,4) (1,2) b
```

- \rightarrow Build suffix tree of text T
- → Annotate internal nodes by smallest position number in their subtree
- → To find pair (x,y) at a position p in T, match T[x...] against suffix tree as long as minimal pos number is smaller than x.

Implemented in an open-source compression tool.

→ Very high compression ratios!

42 42

3. Applications of Suffix Trees

Suffix trees have *many* more applications e.g. in computational biology see [Gusfield book].

- \rightarrow Substring problem for a database of patterns
- → DNA contamination problem
- → Find complemented palindroms in DNA (e.g. AGCTCGCGAGCT)
- \rightarrow Find all maximal repeats / maximal pairs
- → ...

		43
7 Fir	st Applications of Suffix Trees	122
7.1	APL1: Exact string matching	122
7.2	APL2: Suffix trees and the exact set matching problem	123
7.3	APL3: The substring problem for a database of patterns	124
7.4	APL4: Longest common substring of two strings	125
7.5	APL5: Recognizing DNA contamination	125
7.6	APL6: Common substrings of more than two strings	127
7.7	APL7: Building a smaller directed graph for exact matching	129
7.8	APL8: A reverse role for suffix trees, and major space reduction	132
7.9	APL9: Space-efficient longest common substring algorithm	135
7.1	0 APL10: All-pairs suffix-prefix matching	135
7.1	1 Introduction to repetitive structures in molecular strings	138
7.1	2 APL11: Finding all maximal repetitive structures in linear time	143
7.1	3 APL12: Circular string linearization	148
7.1	4 APL13: Suffix arrays – more space reduction	149
7.1	5 APL14: Suffix trees in genome-scale projects	156
7.1	6 APL15: A Boyer–Moore approach to exact set matching	157
7.1	7 APL16: Ziv–Lempel data compression	164
7.1	8 APL17: Minimum length encoding of DNA	167
7.1	9 Additional applications	168
7.2	0 Exercises	168

Space Consumption of Suffix Trees

Questions

- \rightarrow is the size of this tree really in O(n)?
- \rightarrow in terms of #nodes/edges: OK
- \rightarrow how about the sizes of labels ??

- \rightarrow label size is not an issue
- \rightarrow but, size of edge-pointers?
- → imagine each edge requires a 32-bit pointer!!

Actual Space of Suffix Trees

Space for edge-pointers is problematic:

- \rightarrow actual space of suffix tree, ca. **20**
- \rightarrow on commodity hardware, texts of more than 1GB are not doable

 \rightarrow how to avoid the huge space needed for edges?

4. Suffix Array

Definition

Given text T of length n. For i=1...n, SA[k]=i if suffix T[i...n] is at position k in the lexicographic order T's suffixes.

```
1234567890
T = mississippi$
                       Order \$ < i < m < p < s
   12 $
   11 i$
                      SA(T) = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]
    8 ippi$
    5 issippi$
    2 ississippi$
    1 mississippi$
   10 pi$
    9 ppi$
    7 sippi$
    4 sissippi$
    6 ssippi$
    3 ssissippi$
```

Suffix Array Construction

4. Suffix Array

 \rightarrow read leaves from left-to-right!

SA(T) = [12, 11, 8, 5, 2, 10, 9, 7, 4, 6, 3]

4. Suffix Array

 \rightarrow read leaves from left-to-right!

SA(T) = [12, 11, 8, 5, 2, 10, 9, 7, 4, 6, 3]

Theorem The suffix array of T can be constructed in time O(|T|).

Theorem

Using binary search on SA(T), all occurrences of P in T can be located in $O(|P| * \log|T|)$ time.

12 \$
11 i\$
8 ippi\$
5 issippi\$
2 ississippi\$
1 mississippi\$
10 pi\$
9 ppi\$
7 sippi\$
4 sissippi\$
6 ssippi\$
3 ssissippi\$

- 12 \$
- 11 i\$
 - 8 ippi\$
 - 5 issippi\$
 - 2 ississippi\$
 - 1 missisippi\$
- 10 pi\$
 - 9 ppi\$
 - 7 sippi\$
 - 4 sissippi\$
 - 6 ssippi\$
 - 3 ssissippi\$

- 12 \$
 11 i\$
 8 ippi\$
 5 issippi\$
 2 ississippi\$
 1 mississippi\$
 10 pi\$
 9 ppi\$
 7 sippi\$
 4 sissippi\$
 6 ssippi\$
 - 3 ssissippi\$

12 \$
11 i\$
8 ippi\$
5 issippi\$
2 ississippi\$
1 mississippi\$
10 pi\$
9 ppi\$
7 sippi\$
4 sissippi\$
6 ssippi\$
3 ssissippi\$

Theorem

Using binary search on SA(T), all occurrences of P in T can be located in $O(|P| * \log|T|)$ time.

Note

This is a pessimistic bound! We *almost never* need O(|P|) time for one lexicographic comparison!

On random strings, this should run in $O(|P| + \log|T|)$ time.

Theorem

Using binary search on SA(T), all occurrences of P in T can be located in $O(|P| * \log|T|)$ time.

Note

This is a pessimistic bound! We *almost never* need O(|P|) time for one lexicographic comparison!

On random strings, this should run in $O(|P| + \log|T|)$ time.

- \rightarrow O(|P| + log|T|) in practise, using a simple trick
- \rightarrow O(|P| + log|T|) guaranteed, using LCP-array

LCP(k,j) = longest common prefix of T[SA[k]...] and T[SA[j]...]

Suffix Arrays

- \rightarrow much more space efficient than Suffix Tree
- \rightarrow used in pratise (suffix tree more used in theory)

- \rightarrow Suffix Array Construction, without Suffix Trees?
- [Linear Work Suffix Array Construction, J. Kärkkäinen, Sanders, Burkhardt, Journal of the ACM, 2006]
- \rightarrow See also (linked from course web page)
- [A taxonomy of suffix array construction algorithms, S. J. Puglisi, W. F. Smyth, A. Turpin, ACM Computing Surveys 39, 2007]

Algorithm	Worst Case	Time	Memory
Prefix-Doubling			
MM [Manber and Myers 1993]	$O(n \log n)$	30	8n
LS [Larsson and Sadakane 1999]	$O(n \log n)$	3	8n
Recursive			
KA [Ko and Aluru 2003]	O(n)	2.5	7 - 10n
KS [Kärkkäinen and Sanders 2003]	O(n)	4.7	10 - 13n
KSPP [Kim et al. 2003]	O(n)	_	_
HSS [Hon et al. 2003]	O(n)	—	
KJP [Kim et al. 2004]	$O(n \log \log n)$	3.5	13 - 16n
N [Na 2005]	O(n)	—	
Induced Copying	2		
IT [Itoh and Tanaka 1999]	$O(n^2 \log n)$	6.5	5n
S [Seward 2000]	$O(n^2 \log n)$	3.5	5n
BK [Burkhardt and Kärkkäinen 2003]	$O(n \log n)$	3.5	5-6n
MF [Manzini and Ferragina 2004]	$O(n^2 \log n)$	1.7	5n
SS [Schürmann and Stoye 2005]	$O(n^2)$	1.8	9 - 10n
BB [Baron and Bresler 2005]	$O(n\sqrt{\log n})$	2.1	18n
M [Maniscalco and Puglisi 2007]	$O(n^2 \log n)$	1.3	5-6n
MP [Maniscalco and Puglisi 2006]	$O(n^2 \log n)$	1	5-6n
Hybrid			
IT+KA	$O(n^2 \log n)$	4.8	5n
BK+IT+KA	$O(n \log n)$	2.3	5-6n
BK+S	$O(n \log n)$	2.8	5-6n
Suffix Tree			
K [Kurtz 1999]	$O(n \log \sigma)$	6.3	13 - 15n

Table I. Performance Summary of the Construction Algorithms

From

p.7 of

PS[†]

Time is relative to MP, the fastest in our experiments. Memory is given in bytes including space required for the suffix array and input string and is the average space required in our experiments. Algorithms HSS and N are included, even though to our knowledge they have not been implemented. The time for algorithm MM is estimated from experiments in Larsson and Sadakane [1999].

END Lecture 15