
Sebastian Maneth

Lecture 14
Indexed String Search, Suffix Trees

University of Edinburgh - March 9th, 2017

Applied Databases

2

Recap: Morris-Pratt (1970)
Given Pattern P, Text T, find all occurrences of P in T.

Lopopre(P[1..j], P)

will never be used ← not true!
 after successful match,
 update to “2”

2

a a b

2

3

Morris-Pratt (1970)
Given Pattern P, Text T, find all occurrences of P in T.

Lopopre(P[1..j], P)

will never be used ← not true!
 after successful match,
 update to “2”

2

2 3 4 5

one more
successful
match!

a a b

4

Knuth-Morris-Pratt (1977)

largest

Why?

5

KMP

largest

Why?
Otherwise next check will fail!!

a b b

a b a

0 1 2

a b a

this shift
make no
sense!

6

KMP

largest

Why?
Otherwise next check will fail!!

a b b

a b a

0 1 2

a b a

this shift
make no
sense!

different
letters!
–- but P[1] = P[3]
→ the shift MUST fail!

7

KMP

largest

a b b

a b a

0 1 2

a b a

this shift
make no
sense!

different
letters!
–- but P[1] = P[3]
→ the shift MUST fail!

KMP[2] = 0? (C1) satisfied
 (C2) not satisfied: P[0 + 1] = a = P[2 + 1]

(C1)
(C2)

→ KMP[2] = –1

8

Horspool = Idea 1 of Boyer-Moore

Idea 1 Match RIGHT-TO-LEFT in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

For each letter z, let
R(z) = distance from right-most occurrence of z in P[1..m– 1], to the end of P
 (and |P| if there is no occurrence)
R(c) = 5
R(b) = 1

Horspool (ONE RULE ONLY):
If mismatch and P[m] aligned to z in T, shift pattern to the RIGHT by R(z).

R(a) = 2

9
G C A G A G A G

A C G T

1 6 2 8
= R(z)-tableP =

10
G C A G A G A G

A C G T

1 6 2 8
= R(z)-tableP =

11

Boyer-Moore

Idea 2

T =

c

z

if mismatch after cu on symbol z, then
 k = max(R(z), D(u))
 k = min(k, |P|-L(u))
else
 report occurrence of P
 k := |P|-L(u)
shift by k

u

maximum shift

restrict by lospre

→ D(u) = distance to the next occurrence of u to the left (|P| if not exists)
→ L(u) = lospre(u, P)

12

Lecture 14
 Indexed String Search

1. Suffix Trie

2. Suffix Tree

3. Suffix Tree Construction

4. Applications of Suffix Trees

13

String Search

→ search over DNA sequences
→ huge sequence over C, T, G A (ca. 3.2 billion)
→ no spaces, no tokens....

14

String Search

→ search over DNA sequences
→ huge sequence over C, T, G A (ca. 3.2 billion)
→ no spaces, no tokens....

Given
– a long string T (text) of length n
– a short string P (pattern) of length m

Problem 1: find all occurrences of P in T
Problem 2: count #occurrence of P in T

Online Search O(|T|) time with O(|P|) preprocessing
 E.g., using automaton or KMP

 → sublinear time using Horspool / Boyer-Moore
 → average time limit: O(n (log m)/m)

15

String Search

 → sublinear time using Horspool / Boyer-Moore
 → average time limit: O(n (log m)/m)

16

String Search

 → for DNA, 40% of 3.2 billion is still huge

17

Indexed String Search

Given
– a long string T (text)
– a short string P (pattern) m = |P|

Problem 1 find all occurrences of P in T
Problem 2 count #occurrence of P in T

Offline Search = Indexed Search
 = (linear time) preprocessing of T

Highlights → O(m) time for Problem 1
 → O(m + #occ) time for Problem 2

18

Indexed String Search

Given
– a long string T (text)
– a short string P (pattern) m = |P|

Problem 1 find all occurrences of P in T
Problem 2 count #occurrence of P in T

Offline Search = Indexed Search
 = (linear time) preprocessing of T

Highlights → O(m) time for Problem 1
 → O(m + #occ) time for Problem 2

 Independent of size of text T!!!

19

Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1. List all substrings of T, together with their occurrence lists
 (string1, [3,7,21]), (string2, [3,21]), …

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

 (a, [3,4,6,7,10,...])
 (ab, [7,10, ..])
 (ad, ..
 (b, …
 .
 .
 (c

a

c

20

Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1. List all substrings of T, together with their occurrence lists
 (string1, [3,7,21]), (string2, [3,21]), …

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

 (a, [3,4,6,7,10,...])
 (ab, [7,10, ..])
 (ad, ..
 (b, …
 .
 .
 (c

Search occurrences of P:

→ jump to substrings starting with letter P[1]
→ from there, jump to substrings with
 next letter P[2]
Etc.
after m jumps, reach (or not) matching substring
 with its occurrence list

a

c

21

Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1. List all substrings of T, together with their occurrence lists
 (string1, [3,7,21]), (string2, [3,21]), …

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

 (a, [3,4,6,7,10,...])
 (ab, [7,10, ..])
 (ad, ..
 (b, …
 .
 .
 (c

Search occurrences of P:

→ jump to substrings starting with letter P[1]
→ from there, jump to substrings with
 next letter P[2]
Etc.
after m jumps, reach (or not) matching substring
 with its occurrence list

Search Time
→ O(m) [good!]

Indexing Time
→ ????

a

c

22

Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1. List all substrings of T, together with their occurrence lists
 (string1, [3,7,21]), (string2, [3,21]), …

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

 (a, [3,4,6,7,10,...])
 (ab, [7,10, ..])
 (ad, ..
 (b, …
 .
 .
 (c

Search occurrences of P:

→ jump to substrings starting with letter P[1]
→ from there, jump to substrings with
 next letter P[2]
Etc.
after m jumps, reach (or not) matching substring
 with its occurrence list

Search Time
→ O(m) [good!]

Indexing Time

→ exceeds O(n2)

(sort n2 substrings)

a

c

23

1. Suffix Trie

→ Idea: consider all suffixes of text T
 i.e., suffix starting at position 1 (= T)
 suffix starting at position 2
 suffix starting at position 3
 etc.

→ arrange suffixes in a “prefix tree” (trie),
 with longest common prefixes shared

24

1. Suffix Trie

→ Idea: consider all suffixes of text T
 i.e., suffix starting at position 1 (= T)
 suffix starting at position 2
 suffix starting at position 3
 etc.

→ arrange suffixes in a “prefix tree” (trie),
 with longest common prefixes shared

→ trie datastructure: 1959 by de la Briandais

→ “trie” (Fredkin, 1961), pronounced / tri / (as "tree")ˈ ː

RETRIEVAL → to distinguish from “tree” many authors
 say / tra / (as "try")ˈ ɪ

→ aka “digital tree” or “radix tree” or “prefix tree”

25

1. Suffix Trie

26

1. Suffix Trie

→ black nodes represent suffixes

→ are labeled by the corresponding
 number of the suffix

27

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

28

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

→ starting at the root node follow
 letter-by-letter wrt P the
 unique edges in the trie!

29

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

→ starting at the root node follow
 letter-by-letter wrt P the
 unique edges in the trie!

P = aba

30

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

→ starting at the root node follow
 letter-by-letter wrt P the
 unique edges in the trie!

P = aba

31

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

→ starting at the root node follow
 letter-by-letter wrt P the
 unique edges in the trie!

P = aba

32

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

→ starting at the root node follow
 letter-by-letter wrt P the
 unique edges in the trie!

P = aba

33

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

→ starting at the root node follow
 letter-by-letter wrt P the
 unique edges in the trie!

P = aba
3 matches of P = “aba”

34

1. Suffix Trie

3 matches of P = “aba”

→ O(m) count time

If we can count #black nodes of a
subtree in constant time.

→ O(m + #occ) retrieval time

If we can iterate through the leaves of
a subtree with constant delay

35

1. Suffix Trie

3 matches of P = “aba”

→ Indexing time?

36

1. Suffix Trie

3 matches of P = “aba”

→ Indexing time?

No sorting, but

→ still quadratic in n, i.e., O(n2) :-(

→ the size (#nodes) of trie is O(n2)

37

END
Lecture 14

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

