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Recap: Morris-Pratt (1970)
Given Pattern P, Text T, find all occurrences of P in T.

Lopopre(P[1..j], P)

will never be used      ← not true!
                                       after successful match,
                                       update to “2”

2

a a b

2



3

Morris-Pratt (1970)
Given Pattern P, Text T, find all occurrences of P in T.

Lopopre(P[1..j], P)

will never be used      ← not true!
                                       after successful match,
                                       update to “2”

2

2   3   4   5

one more 
successful
match!

a a b
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Knuth-Morris-Pratt (1977)

largest

Why?
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KMP

largest

Why?
Otherwise next check will fail!!

a b b

a b a

0   1   2

a b a

this shift
make no 
sense!
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KMP

largest

Why?
Otherwise next check will fail!!

a b b

a b a

0   1   2

a b a

this shift
make no 
sense!

different 
letters!
–-  but P[1] = P[3]
→  the shift MUST fail!
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KMP

largest

a b b

a b a

0   1   2

a b a

this shift
make no 
sense!

different 
letters!
–-  but P[1] = P[3]
→  the shift MUST fail!

KMP[ 2 ] =  0?  (C1) satisfied
                         (C2) not satisfied:  P[0 + 1] = a = P[2 + 1]

(C1)
(C2)

→  KMP[ 2 ] =  –1
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Horspool = Idea 1 of Boyer-Moore

Idea 1    Match  RIGHT-TO-LEFT  in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

For each letter z, let 
R(z) = distance from right-most occurrence of z in P[1..m– 1], to the end of P
                                                           (and |P| if there is no occurrence)
R(c) = 5
R(b) = 1

Horspool (ONE RULE ONLY):
If mismatch and P[m] aligned to z in T, shift pattern to the RIGHT by R(z).

R(a) = 2
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G C A G A G A G

A C G T

1 6 2 8
= R(z)-tableP = 
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G C A G A G A G

A C G T

1 6 2 8
= R(z)-tableP = 
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Boyer-Moore

Idea 2

T = 

c

z

if mismatch after cu on symbol z, then
  k = max( R(z), D(u) )
  k = min( k, |P|-L(u) )
else 
    report occurrence of P
    k := |P|-L(u)
shift by k

u

maximum shift

restrict by lospre

→    D(u) = distance to the next occurrence of u to the left   (|P| if not exists)
→    L(u)  = lospre(u, P)
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Lecture 14
 Indexed String Search

1.   Suffix Trie

2.   Suffix Tree

3.   Suffix Tree Construction

4.   Applications of Suffix Trees



13

String Search

→  search over DNA sequences
→  huge sequence over C, T, G A (ca. 3.2 billion)
→  no spaces, no tokens....
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String Search

→  search over DNA sequences
→  huge sequence over C, T, G A (ca. 3.2 billion)
→  no spaces, no tokens....

Given 
– a long string T (text) of length n  
– a short string P (pattern) of length m

Problem 1:    find all occurrences of P in T
Problem 2:    count #occurrence of P in T

Online Search    O(|T|) time with O(|P|) preprocessing
                            E.g., using  automaton  or  KMP

                           →  sublinear time using  Horspool  /  Boyer-Moore
                           →  average time limit: O(n (log m)/m)
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String Search

                           →  sublinear time using  Horspool  /  Boyer-Moore
                           →  average time limit:   O(n (log m)/m)
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String Search

         →  for DNA, 40% of 3.2 billion is still huge 
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Indexed String Search

Given 
– a long string T (text)  
– a short string P (pattern)     m = |P|

Problem 1    find all occurrences of P in T
Problem 2    count #occurrence of P in T

Offline Search  =  Indexed Search
                          =  (linear time) preprocessing of T

Highlights     →   O(m) time              for Problem 1
                       →   O(m + #occ) time  for Problem 2
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Indexed String Search

Given 
– a long string T (text)  
– a short string P (pattern)     m = |P|

Problem 1    find all occurrences of P in T
Problem 2    count #occurrence of P in T

Offline Search  =  Indexed Search
                          =  (linear time) preprocessing of T

Highlights     →   O(m) time              for Problem 1
                       →   O(m + #occ) time  for Problem 2

                  Independent of size of text T!!!  
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Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1.  List all substrings of T, together with their occurrence lists
     (string1, [3,7,21]), (string2, [3,21]), … 

2.  Lexicographically sort the substrings

3.  Record the beginnings of each distinct “next letter”  (tree structure)

         (a, [3,4,6,7,10,... ])
         (ab, [7,10, ..])
         (ad, ..
         (b, …
         .
         .
         (c

a

c
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Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1.  List all substrings of T, together with their occurrence lists
     (string1, [3,7,21]), (string2, [3,21]), … 

2.  Lexicographically sort the substrings

3.  Record the beginnings of each distinct “next letter”  (tree structure)

         (a, [3,4,6,7,10,... ])
         (ab, [7,10, ..])
         (ad, ..
         (b, …
         .
         .
         (c

Search occurrences of P:

→  jump to substrings starting with letter P[1]
→  from there, jump to substrings with 
                                                next letter P[2]
Etc.  
after m jumps, reach (or not) matching substring
                                           with its occurrence list

a

c
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Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1.  List all substrings of T, together with their occurrence lists
     (string1, [3,7,21]), (string2, [3,21]), … 

2.  Lexicographically sort the substrings

3.  Record the beginnings of each distinct “next letter”  (tree structure)

         (a, [3,4,6,7,10,... ])
         (ab, [7,10, ..])
         (ad, ..
         (b, …
         .
         .
         (c

Search occurrences of P:

→  jump to substrings starting with letter P[1]
→  from there, jump to substrings with 
                                                next letter P[2]
Etc.  
after m jumps, reach (or not) matching substring
                                           with its occurrence list

Search Time
→  O(m)    [good!]

Indexing Time
→  ????

a

c
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Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1.  List all substrings of T, together with their occurrence lists
     (string1, [3,7,21]), (string2, [3,21]), … 

2.  Lexicographically sort the substrings

3.  Record the beginnings of each distinct “next letter”  (tree structure)

         (a, [3,4,6,7,10,... ])
         (ab, [7,10, ..])
         (ad, ..
         (b, …
         .
         .
         (c

Search occurrences of P:

→  jump to substrings starting with letter P[1]
→  from there, jump to substrings with 
                                                next letter P[2]
Etc.  
after m jumps, reach (or not) matching substring
                                           with its occurrence list

Search Time
→  O(m)    [good!]

Indexing Time

→ exceeds O(n2)

(sort n2  substrings)

a

c
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1. Suffix Trie

→  Idea:  consider all suffixes of text T
                i.e., suffix starting at position 1  (= T)
                       suffix starting at position 2
                       suffix starting at position 3
                       etc.

→   arrange suffixes in a “prefix tree” (trie), 
       with longest common prefixes shared
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1. Suffix Trie

→  Idea:  consider all suffixes of text T
                i.e., suffix starting at position 1  (= T)
                       suffix starting at position 2
                       suffix starting at position 3
                       etc.

→   arrange suffixes in a “prefix tree” (trie), 
       with longest common prefixes shared

→   trie datastructure:   1959 by de la Briandais

→  “trie” (Fredkin, 1961), pronounced  / tri / (as "tree")ˈ ː

RETRIEVAL →  to distinguish from “tree” many authors
      say  / tra / (as "try")ˈ ɪ

→  aka  “digital tree”  or  “radix tree”  or  “prefix tree”
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1. Suffix Trie
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1. Suffix Trie

→  black nodes represent suffixes

→  are labeled by the corresponding
      number of the suffix
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1. Suffix Trie

→  how to search for all occurrences
      of a pattern P? 
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1. Suffix Trie

→  how to search for all occurrences
      of a pattern P?

→   starting at the root node follow 
       letter-by-letter wrt P the
       unique edges in the trie! 
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1. Suffix Trie

→  how to search for all occurrences
      of a pattern P?

→   starting at the root node follow 
       letter-by-letter wrt P the
       unique edges in the trie! 

P = aba 
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1. Suffix Trie

→  how to search for all occurrences
      of a pattern P?

→   starting at the root node follow 
       letter-by-letter wrt P the
       unique edges in the trie! 

P = aba 
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1. Suffix Trie

→  how to search for all occurrences
      of a pattern P?

→   starting at the root node follow 
       letter-by-letter wrt P the
       unique edges in the trie! 
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1. Suffix Trie

→  how to search for all occurrences
      of a pattern P?

→   starting at the root node follow 
       letter-by-letter wrt P the
       unique edges in the trie! 

P = aba 
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1. Suffix Trie

→  how to search for all occurrences
      of a pattern P?

→   starting at the root node follow 
       letter-by-letter wrt P the
       unique edges in the trie! 

P = aba 
3 matches of P = “aba”
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1. Suffix Trie

3 matches of P = “aba”

→  O(m)  count time

If we can count #black nodes of a 
subtree in constant time.

→  O(m + #occ)  retrieval time

If we can iterate through the leaves of 
a subtree with constant delay
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1. Suffix Trie

3 matches of P = “aba”

→  Indexing time?
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1. Suffix Trie

3 matches of P = “aba”

→  Indexing time?

No sorting, but

→  still quadratic in n, i.e., O(n2)  :-(

→  the size (#nodes) of trie is O(n2)
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END
Lecture 14
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