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Recap: Naive Method
Given Pattern P (length m) Text T (length n) find all occurrences of P in T.

P = a b a b c

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

(1)  Naive method

→  shift always by one
→  worst-case complexity
      m(n – m + 1)   
      i.e., in O(mn)
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Recap: Naive Method
Given Pattern P, Text T, find all occurrences of P in T.

Best-Case   O(n)

Average-Case  → show that if P and T are 
randomly chosen from an alphabet with d letters,
then #character-comparisons of Naive Algorithm is:

(n – m + 1)                 <=  2(n – m + 1)
1 – d–m

1 – d–1
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Recap: Automaton Method
Given Pattern P (length m) Text T (length n) find all occurrences of P in T.

P = a b a b c

T = a b a b a a b a b c a b a b a b a a b c

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

lospre(u, v)  =   length of longest 
             proper suffix of u that is prefix of v to state

lospre( ababa, P ) =  |aba| = 3
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Recap: Automaton Method
Given Pattern P (length m) Text T (length n) find all occurrences of P in T.

P = a b a b c

T = a b a b a a b a b c a b a b a b a a b c

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

Automaton method

→  O(m|S|) size & time to build
→  O(n) matching time

|S| = size of alphabet of P
→  for automata wo mismatch-transitions, |S| = size of alphabet of T  [large!!]

lospre(u, v)  =   length of longest 
             proper suffix of u that is prefix of v
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1. Morris-Pratt Algorithm

Brief History:

→  1970: James H. Morris built a text editor for the CDC 6400 computer

→  with Vaughan Pratt, developed “A linear pattern matching algorithm”
      [Report 40, University of California, Berkely, 1970] 

→   Matching time:  O(n + m)

→  rigorous analysis (Knuth) revealed: delay at a character can be O(m)

→  Knuth added one check to Morris&Pratt’s conditions, and was then 
     able to prove   logarithmic delay  (tight bound)

→  #character comparisons is  <=  2n–1
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1. Morris-Pratt Algorithm

P = a b a a b

0 0 1 1 2

1 2 3 4 5

MP[ k ] = lospre( P[1..k], P )

MP[ 3 ] = length of longest proper suffix of aba, that is prefix of abaab
            = |a| = 1

MP[ 5 ] = length of longest proper suffix of abaab, that is prefix of abaab
            = |ab| = 2
 

Note:    a suffix of a string w is proper, if it is  strictly shorter  than w.
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1. Morris-Pratt Algorithm

P = a b a a b

T = a b b a b a a a b a a b a b a b a a b c

0 0 1 1 2

1 2 3 4 5

MP[ k ] = lospre( P[1..k], P )

MP[ 3 ] =  |a| = 1
MP[ 5 ] =  |ab| = 2
 

a b a a b

0

Start matching with
“current lospre = 0”
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1. Morris-Pratt Algorithm

P = a b a a b

T = a b b a b a a a b a a b a b a b a a b c

0 0 1 1 2

1 2 3 4 5

MP[ k ] = lospre( P[1..k], P )

MP[ 3 ] =  |a| = 1
MP[ 5 ] =  |ab| = 2
 

a b a a b

0

Match!
→ increase lospre by 1

1
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1. Morris-Pratt Algorithm

P = a b a a b

T = a b b a b a a a b a a b a b a b a a b c

0 0 1 1 2

1 2 3 4 5

MP[ k ] = lospre( P[1..k], P )

MP[ 3 ] =  |a| = 1
MP[ 5 ] =  |ab| = 2
 

a b a a b

20 1

Match!
→ increase lospre by 1
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1. Morris-Pratt Algorithm

P = a b a a b

T = a b b a b a a a b a a b a b a b a a b c

0 0 1 1 2

1 2 3 4 5

MP[ k ] = lospre( P[1..k], P )

MP[ 3 ] =  |a| = 1
MP[ 5 ] =  |ab| = 2
 

a b a a b

20 1

Mismatch!
→ set current lospre to MP[ 2 ] = 0

→ continue matching at same position (do not advance)
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1. Morris-Pratt Algorithm

T = a b b a b a a a b a a b a b a b a a b c

MP[ 3 ] =  |a| = 1
MP[ 5 ] =  |ab| = 2
 

a b a a b

20 1

P = a b a a b

0 0 1 1 2

1 2 3 4 5

MP[ k ] = lospre( P[1..k], P )

0

a b a a b

Mismatch!
Since lospre=0, advance one letter to the right
                                         (and leave lospre=0)
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1. Morris-Pratt (1970)
Given Pattern P, Text T, find all occurrences of P in T.

Lopopre(P[1..j], P)

will never be used2
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1. Morris-Pratt (1970)
Given Pattern P, Text T, find all occurrences of P in T.

Lopopre(P[1..j], P)

Question

Time Complexity 
(for matching)?

will never be used2
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Delay

T = a b b a b a a a b a a b a b a b a a b c

MP[ 3 ] =  |a| = 1
MP[ 5 ] =  |ab| = 2
 

a b a a b

20 1

P = a b a a b

0 0 1 1 2

1 2 3 4 5

MP[ k ] = lospre( P[1..k], P )

0

a b a a b

delay = 2   (number of checks at this position)
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Delay

T = a b b a b a a a b a a b a b a b a a b c

MP[ 3 ] =  |a| = 1
MP[ 5 ] =  |ab| = 2
 

a b a a b

20 1

P = a b a a b

0 0 1 1 2

1 2 3 4 5

MP[ k ] = lospre( P[1..k], P )

0

a b a a b

delay = 2   (number of checks at this position)

→  what is the maximum delay?
→  for which pattern P?
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Maximum Delay

T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

mismatch:  lospre = MP[3] = 2



T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

mismatch:  lospre = MP[3] = 2

a a a a

1

mismatch:  lospre = MP[2] = 1

Maximum Delay



T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

mismatch:  lospre = MP[3] = 2

a a a a

1

mismatch:  lospre = MP[2] = 1

a a a a mismatch:  lospre = MP[1] = 0

0

Maximum Delay



T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

mismatch:  lospre = MP[3] = 2

a a a a

1

mismatch:  lospre = MP[2] = 1

a a a a mismatch:  lospre = MP[1] = 0

0

a a a a mismatch at lospre = 0  →  advance

Maximum Delay



T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

mismatch:  lospre = MP[3] = 2

a a a a

1

mismatch:  lospre = MP[2] = 1

a a a a mismatch:  lospre = MP[1] = 0

0

a a a a mismatch at lospre = 0  →  advance

→  how to decrease the delay??

Delay in MP Algorithm
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2. Knuth-Morris-Pratt  (KMP)

T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

a a a a

→  how to decrease the delay??

from this check, we know 
T[3]  != “a”

Thus:  if next check-letter in P is “a”, 
           then  mismatch
           



T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

a a a a

→  how to decrease the delay??

from this check, we know 
T[3]  != “a”

Thus:  if next check-letter in P is “a”, 
           then  mismatch
           

→  does next check-letter in P 
      equal fail-letter in P?

      If so, then KMP-entry should be smaller!!
                         (= bigger shift = smaller delay)  
     

2. KMP
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T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

a a a a

Mismatch at lospre = 3

fail-letter = 4
next check-letter = MP[3] + 1 = 2 + 1 = 3

P[4] = P[3]

Thus:  KMP[3] should not equal “2”!

2. KMP
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2. KMP

T = a a a b

a a a a

20 1

P = a a a a

0 1 ? 3

1 2 3 4

3

2

a a a a

Mismatch at lospre = 3

fail-letter = 4
next check-letter = MP[3] + 1 = 2 + 1 = 3

P[4] = P[3]

Thus:  KMP[3] should not equal “2”!

→  find longest lospre, such that   next-letter  != fail-letter

→  if does not exist, then mark “–1”  =   ADVANCE  (and match with P[1])
                                                          =  no further check (delay) 

→  value for KMP[3]?
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2. KMP

largest
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2. KMP

largest
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2. KMP

Matching complexity of KMP:  O(m + n)  

→  what is the maximum delay for KMP?

→  in O(log m)   [Knuth]

→  can actually occur (e.g., for Fibonacci strings)
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2. KMP
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3. Boyer-Moore

Robert S. Boyer and J. Strother Moore in 1977
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3. Boyer-Moore

Idea 1    Match  RIGHT-TO-LEFT  in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

first check
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3. Boyer-Moore

Idea 1    Match  RIGHT-TO-LEFT  in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

For each letter z, let 
R(z) = distance from right-most occurrence of z in P, to the end of P
                                                           (and |P| if there is no occurrence)

R(a) = 2
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3. Boyer-Moore

Idea 1    Match  RIGHT-TO-LEFT  in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

For each letter z, let 
R(z) = distance from right-most occurrence of z in P, to the end of P
                                                           (and |P| if there is no occurrence)

→  shift R(a) to the right at mismatch with “a”
     (for all smaller shifts, we get a mismatch)

a b a b c
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3. Boyer-Moore

Idea 1    Match  RIGHT-TO-LEFT  in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

For each letter z, let 
R(z) = distance from right-most occurrence of z in P, to the end of P
                                                           (and |P| if there is no occurrence)
R(a) = 2,  R(b) = 1

→ may shift R(a) to the right at mismatch with “a”
    (for all smaller shifts, we get a mismatch)

a b a b c
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3. Boyer-Moore

Idea 1    Match  RIGHT-TO-LEFT  in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c
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3. Boyer-Moore

Idea 1    Match  RIGHT-TO-LEFT  in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c
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3. Boyer-Moore

Idea 1    Match  RIGHT-TO-LEFT  in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

→  after only 8 comparisons, detects the first match!

→  compare this with the previous methods!
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3. Boyer-Moore

Idea 1    Match  RIGHT-TO-LEFT  in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

→  after only 8 comparisons, detects the first match!

→  compare this with the previous methods!

→  letters T[1], T[2], T[3], and T[4] are never checked!

→  allows for sub-linear matching time wrt n = |T|
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3. Boyer-Moore

Idea 1    Match  RIGHT-TO-LEFT  in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

→  after only 8 comparisons, detects the first match!

→  compare this with the previous methods!

→  letters T[1], T[2], T[3], and T[4] are never checked!

→  allows for sub-linear matching time wrt n = |T|
→  for natural language, almost always sublinear time!
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3. Boyer-Moore

Idea 1    →  match  RIGHT-TO-LEFT  
              →  shift R(z) to the right at mismatch

“Horspool algorithm”

→  How does Google Chrome search text (Ctrl^ F) on a page so quickly?

It uses a search algorithm inspired by Boyer-Moore and 
Boyer-Moore-Horspool 

→   V8 string search package (chromium project)
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3. Boyer-Moore

Idea 2

T = 

a b a b c

a b c b c a b a b c a b a b a b a a b c

→  how far can we shift?
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3. Boyer-Moore

Idea 2

T = 

a b a b c

a b c b c a b a b c a b a b a b a a b c

→  how far can we shift?

→   all of |P|.  
       because “bc” does not occur to the left in P

→   for every suffix u of P, let D(u) be the distance to the next
       occurrence of u to the left   (if none exists, then D(u)=|P|)

a b a b c
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3. Boyer-Moore

Idea 2

T = 

c b a b c

a b c b c a b a b c a b a b a b a a b c

→   D(bc) = 5

→   now not OK, to shift by 5!    Why??

c b a b c
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3. Boyer-Moore

Idea 2

T = 

c b a b c

a b c b c a b a b c a b a b a b a a b c

→   D(bc) = 5

→   now not OK, to shift by 5!    Why??

→   a suffix of u is a prefix of P!

c b a b c
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3. Boyer-Moore

Idea 2

T = 

c b a b c

a b c b c a b a b c a b a b a b a a b c

→   D(bc) = 5

→   now not OK, to shift by 5!    Why??

→   a suffix of u is a prefix of P!

→   for every suffix u of P, let
       L(u) = lospre(u, P)

c b a b c
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3. Boyer-Moore

Idea 2

T = 

c

z

if mismatch after cu on symbol z, then
  k = max( R(z), D(u) )
  k = min( k, |P|-L(u) )
else 
    report occurrence of P
    k := |P|-L(u)
shift by k

u

maximum shift

restrict by lospre
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3. Boyer-Moore

if mismatch after cu on symbol z, then
  k = max( R(z), D(u) )
  k = min( k, |P|-L(u) )
else 
    report occurrence of P
    k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

L(P) = 0, hence we 
shift by |P| = 5
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3. Boyer-Moore

if mismatch after cu on symbol z, then
  k = max( R(z), D(u) )
  k = min( k, |P|-L(u) )
else 
    report occurrence of P
    k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

L(P) = 0, hence we 
shift by |P| = 5

a b a b c
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3. Boyer-Moore

if mismatch after cu on symbol z, then
  k = max( R(z), D(u) )
  k = min( k, |P|-L(u) )
else 
    report occurrence of P
    k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c



52

3. Boyer-Moore

if mismatch after cu on symbol z, then
  k = max( R(z), D(u) )
  k = min( k, |P|-L(u) )
else 
    report occurrence of P
    k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c
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3. Boyer-Moore

if mismatch after cu on symbol z, then
  k = max( R(z), D(u) )
  k = min( k, |P|-L(u) )
else 
    report occurrence of P
    k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

b a b ca



54

3. Boyer-Moore

if mismatch after cu on symbol z, then
  k = max( R(z), D(u) )
  k = min( k, |P|-L(u) )
else 
    report occurrence of P
    k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

b a b ca



55

3. Boyer-Moore

if mismatch after cu on symbol z, then
  k = max( R(z), D(u) )
  k = min( k, |P|-L(u) )
else 
    report occurrence of P
    k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

b a b ca
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3. Boyer-Moore

if mismatch after cu on symbol z, then
  k = max( R(z), D(u) )
  k = min( k, |P|-L(u) )
else 
    report occurrence of P
    k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

b a b ca
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3. Boyer-Moore

if mismatch after cu on symbol z, then
  k = max( R(z), D(u) )
  k = min( k, |P|-L(u) )
else 
    report occurrence of P
    k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

b a b ca
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3. Boyer-Moore

if mismatch after cu on symbol z, then
  k = max( R(z), D(u) )
  k = min( k, |P|-L(u) )
else 
    report occurrence of P
    k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

→  finished!

→  would shift k=2, but
      end of text reached
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4. Horspool

R(z) = distance from right-most occurrence of z in P[1..m-1], to the end of P
          (|P| if there is no occurrence)

Only Idea 1

→   match from right-to-left
→   at mismatch (with z): shift to R(z)
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4. Horspool

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

For each letter z, let 
R(z)  =   distance from right-most occurrence 
              of z in P[1..,m–1], to the end of P
              (and |P| if there is no occurrence)

R(c) = 5

← correct definition of R(z)
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In Practise
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Experimental Map

alphabet sizes



64

Experimental Map

Pattern Length

Alphabet 
Size
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END
Lecture 13
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