
Sebastian Maneth

Lecture 13
KMP, Boyer-Moore, and Horspool Algorithms

University of Edinburgh - March 6th, 2017

Applied Databases

2

Outline

1. Morris-Pratt Algorithm

2. KMP

3. Boyer-Moore

4. Horspool

3

Recap: Naive Method
Given Pattern P (length m) Text T (length n) find all occurrences of P in T.

P = a b a b c

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

(1) Naive method

→ shift always by one
→ worst-case complexity
 m(n – m + 1)
 i.e., in O(mn)

4

Recap: Naive Method
Given Pattern P, Text T, find all occurrences of P in T.

Best-Case O(n)

Average-Case → show that if P and T are
randomly chosen from an alphabet with d letters,
then #character-comparisons of Naive Algorithm is:

(n – m + 1) <= 2(n – m + 1)
1 – d–m

1 – d–1

5

Recap: Automaton Method
Given Pattern P (length m) Text T (length n) find all occurrences of P in T.

P = a b a b c

T = a b a b a a b a b c a b a b a b a a b c

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

lospre(u, v) = length of longest
 proper suffix of u that is prefix of v to state

lospre(ababa, P) = |aba| = 3

6

Recap: Automaton Method
Given Pattern P (length m) Text T (length n) find all occurrences of P in T.

P = a b a b c

T = a b a b a a b a b c a b a b a b a a b c

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

Automaton method

→ O(m|S|) size & time to build
→ O(n) matching time

|S| = size of alphabet of P
→ for automata wo mismatch-transitions, |S| = size of alphabet of T [large!!]

lospre(u, v) = length of longest
 proper suffix of u that is prefix of v

7

1. Morris-Pratt Algorithm

Brief History:

→ 1970: James H. Morris built a text editor for the CDC 6400 computer

→ with Vaughan Pratt, developed “A linear pattern matching algorithm”
 [Report 40, University of California, Berkely, 1970]

→ Matching time: O(n + m)

→ rigorous analysis (Knuth) revealed: delay at a character can be O(m)

→ Knuth added one check to Morris&Pratt’s conditions, and was then
 able to prove logarithmic delay (tight bound)

→ #character comparisons is <= 2n–1

8

1. Morris-Pratt Algorithm

P = a b a a b

0 0 1 1 2

1 2 3 4 5

MP[k] = lospre(P[1..k], P)

MP[3] = length of longest proper suffix of aba, that is prefix of abaab
 = |a| = 1

MP[5] = length of longest proper suffix of abaab, that is prefix of abaab
 = |ab| = 2

Note: a suffix of a string w is proper, if it is strictly shorter than w.

9

1. Morris-Pratt Algorithm

P = a b a a b

T = a b b a b a a a b a a b a b a b a a b c

0 0 1 1 2

1 2 3 4 5

MP[k] = lospre(P[1..k], P)

MP[3] = |a| = 1
MP[5] = |ab| = 2

a b a a b

0

Start matching with
“current lospre = 0”

10

1. Morris-Pratt Algorithm

P = a b a a b

T = a b b a b a a a b a a b a b a b a a b c

0 0 1 1 2

1 2 3 4 5

MP[k] = lospre(P[1..k], P)

MP[3] = |a| = 1
MP[5] = |ab| = 2

a b a a b

0

Match!
→ increase lospre by 1

1

11

1. Morris-Pratt Algorithm

P = a b a a b

T = a b b a b a a a b a a b a b a b a a b c

0 0 1 1 2

1 2 3 4 5

MP[k] = lospre(P[1..k], P)

MP[3] = |a| = 1
MP[5] = |ab| = 2

a b a a b

20 1

Match!
→ increase lospre by 1

12

1. Morris-Pratt Algorithm

P = a b a a b

T = a b b a b a a a b a a b a b a b a a b c

0 0 1 1 2

1 2 3 4 5

MP[k] = lospre(P[1..k], P)

MP[3] = |a| = 1
MP[5] = |ab| = 2

a b a a b

20 1

Mismatch!
→ set current lospre to MP[2] = 0

→ continue matching at same position (do not advance)

13

1. Morris-Pratt Algorithm

T = a b b a b a a a b a a b a b a b a a b c

MP[3] = |a| = 1
MP[5] = |ab| = 2

a b a a b

20 1

P = a b a a b

0 0 1 1 2

1 2 3 4 5

MP[k] = lospre(P[1..k], P)

0

a b a a b

Mismatch!
Since lospre=0, advance one letter to the right
 (and leave lospre=0)

14

1. Morris-Pratt (1970)
Given Pattern P, Text T, find all occurrences of P in T.

Lopopre(P[1..j], P)

will never be used2

15

1. Morris-Pratt (1970)
Given Pattern P, Text T, find all occurrences of P in T.

Lopopre(P[1..j], P)

Question

Time Complexity
(for matching)?

will never be used2

16

Delay

T = a b b a b a a a b a a b a b a b a a b c

MP[3] = |a| = 1
MP[5] = |ab| = 2

a b a a b

20 1

P = a b a a b

0 0 1 1 2

1 2 3 4 5

MP[k] = lospre(P[1..k], P)

0

a b a a b

delay = 2 (number of checks at this position)

17

Delay

T = a b b a b a a a b a a b a b a b a a b c

MP[3] = |a| = 1
MP[5] = |ab| = 2

a b a a b

20 1

P = a b a a b

0 0 1 1 2

1 2 3 4 5

MP[k] = lospre(P[1..k], P)

0

a b a a b

delay = 2 (number of checks at this position)

→ what is the maximum delay?
→ for which pattern P?

18

Maximum Delay

T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

mismatch: lospre = MP[3] = 2

T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

mismatch: lospre = MP[3] = 2

a a a a

1

mismatch: lospre = MP[2] = 1

Maximum Delay

T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

mismatch: lospre = MP[3] = 2

a a a a

1

mismatch: lospre = MP[2] = 1

a a a a mismatch: lospre = MP[1] = 0

0

Maximum Delay

T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

mismatch: lospre = MP[3] = 2

a a a a

1

mismatch: lospre = MP[2] = 1

a a a a mismatch: lospre = MP[1] = 0

0

a a a a mismatch at lospre = 0 → advance

Maximum Delay

T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

mismatch: lospre = MP[3] = 2

a a a a

1

mismatch: lospre = MP[2] = 1

a a a a mismatch: lospre = MP[1] = 0

0

a a a a mismatch at lospre = 0 → advance

→ how to decrease the delay??

Delay in MP Algorithm

23

2. Knuth-Morris-Pratt (KMP)

T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

a a a a

→ how to decrease the delay??

from this check, we know
T[3] != “a”

Thus: if next check-letter in P is “a”,
 then mismatch

T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

a a a a

→ how to decrease the delay??

from this check, we know
T[3] != “a”

Thus: if next check-letter in P is “a”,
 then mismatch

→ does next check-letter in P
 equal fail-letter in P?

 If so, then KMP-entry should be smaller!!
 (= bigger shift = smaller delay)

2. KMP

25

T = a a a b

a a a a

20 1

P = a a a a

0 1 2 3

1 2 3 4

3

2

a a a a

Mismatch at lospre = 3

fail-letter = 4
next check-letter = MP[3] + 1 = 2 + 1 = 3

P[4] = P[3]

Thus: KMP[3] should not equal “2”!

2. KMP

26

2. KMP

T = a a a b

a a a a

20 1

P = a a a a

0 1 ? 3

1 2 3 4

3

2

a a a a

Mismatch at lospre = 3

fail-letter = 4
next check-letter = MP[3] + 1 = 2 + 1 = 3

P[4] = P[3]

Thus: KMP[3] should not equal “2”!

→ find longest lospre, such that next-letter != fail-letter

→ if does not exist, then mark “–1” = ADVANCE (and match with P[1])
 = no further check (delay)

→ value for KMP[3]?

27

2. KMP

largest

28

2. KMP

largest

29

2. KMP

Matching complexity of KMP: O(m + n)

→ what is the maximum delay for KMP?

→ in O(log m) [Knuth]

→ can actually occur (e.g., for Fibonacci strings)

30

2. KMP

31

3. Boyer-Moore

Robert S. Boyer and J. Strother Moore in 1977

32

3. Boyer-Moore

Idea 1 Match RIGHT-TO-LEFT in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

first check

33

3. Boyer-Moore

Idea 1 Match RIGHT-TO-LEFT in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

For each letter z, let
R(z) = distance from right-most occurrence of z in P, to the end of P
 (and |P| if there is no occurrence)

R(a) = 2

34

3. Boyer-Moore

Idea 1 Match RIGHT-TO-LEFT in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

For each letter z, let
R(z) = distance from right-most occurrence of z in P, to the end of P
 (and |P| if there is no occurrence)

→ shift R(a) to the right at mismatch with “a”
 (for all smaller shifts, we get a mismatch)

a b a b c

35

3. Boyer-Moore

Idea 1 Match RIGHT-TO-LEFT in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

For each letter z, let
R(z) = distance from right-most occurrence of z in P, to the end of P
 (and |P| if there is no occurrence)
R(a) = 2, R(b) = 1

→ may shift R(a) to the right at mismatch with “a”
 (for all smaller shifts, we get a mismatch)

a b a b c

36

3. Boyer-Moore

Idea 1 Match RIGHT-TO-LEFT in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

37

3. Boyer-Moore

Idea 1 Match RIGHT-TO-LEFT in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

38

3. Boyer-Moore

Idea 1 Match RIGHT-TO-LEFT in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

→ after only 8 comparisons, detects the first match!

→ compare this with the previous methods!

39

3. Boyer-Moore

Idea 1 Match RIGHT-TO-LEFT in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

→ after only 8 comparisons, detects the first match!

→ compare this with the previous methods!

→ letters T[1], T[2], T[3], and T[4] are never checked!

→ allows for sub-linear matching time wrt n = |T|

40

3. Boyer-Moore

Idea 1 Match RIGHT-TO-LEFT in window

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

→ after only 8 comparisons, detects the first match!

→ compare this with the previous methods!

→ letters T[1], T[2], T[3], and T[4] are never checked!

→ allows for sub-linear matching time wrt n = |T|
→ for natural language, almost always sublinear time!

41

3. Boyer-Moore

Idea 1 → match RIGHT-TO-LEFT
 → shift R(z) to the right at mismatch

“Horspool algorithm”

→ How does Google Chrome search text (Ctrl^ F) on a page so quickly?

It uses a search algorithm inspired by Boyer-Moore and
Boyer-Moore-Horspool

→ V8 string search package (chromium project)

43

3. Boyer-Moore

Idea 2

T =

a b a b c

a b c b c a b a b c a b a b a b a a b c

→ how far can we shift?

44

3. Boyer-Moore

Idea 2

T =

a b a b c

a b c b c a b a b c a b a b a b a a b c

→ how far can we shift?

→ all of |P|.
 because “bc” does not occur to the left in P

→ for every suffix u of P, let D(u) be the distance to the next
 occurrence of u to the left (if none exists, then D(u)=|P|)

a b a b c

45

3. Boyer-Moore

Idea 2

T =

c b a b c

a b c b c a b a b c a b a b a b a a b c

→ D(bc) = 5

→ now not OK, to shift by 5! Why??

c b a b c

46

3. Boyer-Moore

Idea 2

T =

c b a b c

a b c b c a b a b c a b a b a b a a b c

→ D(bc) = 5

→ now not OK, to shift by 5! Why??

→ a suffix of u is a prefix of P!

c b a b c

47

3. Boyer-Moore

Idea 2

T =

c b a b c

a b c b c a b a b c a b a b a b a a b c

→ D(bc) = 5

→ now not OK, to shift by 5! Why??

→ a suffix of u is a prefix of P!

→ for every suffix u of P, let
 L(u) = lospre(u, P)

c b a b c

48

3. Boyer-Moore

Idea 2

T =

c

z

if mismatch after cu on symbol z, then
 k = max(R(z), D(u))
 k = min(k, |P|-L(u))
else
 report occurrence of P
 k := |P|-L(u)
shift by k

u

maximum shift

restrict by lospre

49

3. Boyer-Moore

if mismatch after cu on symbol z, then
 k = max(R(z), D(u))
 k = min(k, |P|-L(u))
else
 report occurrence of P
 k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

L(P) = 0, hence we
shift by |P| = 5

50

3. Boyer-Moore

if mismatch after cu on symbol z, then
 k = max(R(z), D(u))
 k = min(k, |P|-L(u))
else
 report occurrence of P
 k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

L(P) = 0, hence we
shift by |P| = 5

a b a b c

51

3. Boyer-Moore

if mismatch after cu on symbol z, then
 k = max(R(z), D(u))
 k = min(k, |P|-L(u))
else
 report occurrence of P
 k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

52

3. Boyer-Moore

if mismatch after cu on symbol z, then
 k = max(R(z), D(u))
 k = min(k, |P|-L(u))
else
 report occurrence of P
 k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

53

3. Boyer-Moore

if mismatch after cu on symbol z, then
 k = max(R(z), D(u))
 k = min(k, |P|-L(u))
else
 report occurrence of P
 k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

b a b ca

54

3. Boyer-Moore

if mismatch after cu on symbol z, then
 k = max(R(z), D(u))
 k = min(k, |P|-L(u))
else
 report occurrence of P
 k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

b a b ca

55

3. Boyer-Moore

if mismatch after cu on symbol z, then
 k = max(R(z), D(u))
 k = min(k, |P|-L(u))
else
 report occurrence of P
 k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

b a b ca

56

3. Boyer-Moore

if mismatch after cu on symbol z, then
 k = max(R(z), D(u))
 k = min(k, |P|-L(u))
else
 report occurrence of P
 k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

b a b ca

57

3. Boyer-Moore

if mismatch after cu on symbol z, then
 k = max(R(z), D(u))
 k = min(k, |P|-L(u))
else
 report occurrence of P
 k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

b a b ca

58

3. Boyer-Moore

if mismatch after cu on symbol z, then
 k = max(R(z), D(u))
 k = min(k, |P|-L(u))
else
 report occurrence of P
 k := |P|-L(P)
shift by k

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

→ finished!

→ would shift k=2, but
 end of text reached

59

4. Horspool

R(z) = distance from right-most occurrence of z in P[1..m-1], to the end of P
 (|P| if there is no occurrence)

Only Idea 1

→ match from right-to-left
→ at mismatch (with z): shift to R(z)

60

4. Horspool

T = a b a b a a b a b c a b a b a b a a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

a b a b c

For each letter z, let
R(z) = distance from right-most occurrence
 of z in P[1..,m–1], to the end of P
 (and |P| if there is no occurrence)

R(c) = 5

← correct definition of R(z)

61

62

In Practise

63

Experimental Map

alphabet sizes

64

Experimental Map

Pattern Length

Alphabet
Size

65

END
Lecture 13

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

