
Sebastian Maneth

Lecture 12
Online Pattern Matching on Strings

University of Edinburgh - March 2nd, 2017

Applied Databases

2

Outline

1. Naive Method

2. Automaton Method

3. Knuth-Morris-Pratt Algorithm

4. Boyer-Moore Algorithm

First → some comments wrt Assignment 1

String
Matching

3

Assignment 1

Automation works correctly and independently of VM: 1 Point
Program compiles and produces some non-empty csv-files: 4 Points
Program successfully loads some data into the database: 1 Point
Data loaded into database is correct, given the DB design: 2 Point
drop.sql: Works correctly without error: 0.5 Points
SQL-scripts have no (or only minor) syntax errors: 0.5 Points
Database does not use any NULL-Values: 2 Points
Long descriptions are correctly truncated: 1 Point
Duplicate entries are correctly removed in the csv-files: 1 Point
All Queries correct: 3.5 Points

 16.5 Points

Theoretical Part (schema design & normal forms): 3.5 Points

We are still marking these.
Marks will be finalized by tomorrow (Friday) evening.

4

Assignment 1

Marks so far (out of 16.5 Points) – #submissions = 51

5

Assignment 1

6

Marking of Assignment 1

→ relational schema design (3.5 points)

 – NULL or pseudo-NULLs (0.5 points)
 – optionals of DTD correctly implemented (0.5 points)
 – correct Primary Key for each table (0.25 = one error, 0.5 = two errors)

→ item-category: many-to-many relationship

table has_category(item_id, category)

→ primary key (item_id, category)
→ consequence: there cannot be duplicates!
→ original XML has such duplicates!

must be detected and
eliminated by your program
(not through mySQL)

7

Marking of Assignment 1

→ relational schema design (3.5 points)

 – NULL or pseudo-NULLs (0.5 points)
 – optionals of DTD correctly implemented (0.5 points)
 – correct Primary Key for each table (0.25 = one error, 0.5 = two errors)

<Item ItemID="1310018094">
 <Name>2 lanzar 10" DC subs 1000 watt subwoofers</Name>
 <Category>Consumer Electronics</Category>
 <Category>Car Audio & Electronics</Category>
 <Category>Subwoofers</Category>
 <Category>Subwoofers</Category>
 <Category>10 Inch</Category>
 <Currently>$175.00</Currently>

has exactly
four categories,
not five!

→ item-category: many-to-many relationship

table has_category(item_id, category)

→ primary key (item_id, category)
→ consequence: there cannot be duplicates!
→ original XML has such duplicates!

8

Bid Table

→ relational schema design (3.5 points)

 – NULL or pseudo-NULLs (0.5 points)
 – optionals of DTD correctly implemented (0.5 points)
 – correct Primary Key for each table (0.25 = one error, 0.5 = two errors)

→ bid table
 – item_id
 – bidder_id
 – time
 – amount

→ keys of this table?

9

Bid Table

→ relational schema design (3.5 points)

 – NULL or pseudo-NULLs (0.5 points)
 – optionals of DTD correctly implemented (0.5 points)
 – correct Primary Key for each table (0.25 = one error, 0.5 = two errors)

→ bid table
 – item_id
 – bidder_id
 – time
 – amount

 not keys:

1) (item_id, bidder_id) – bidder can bid multiple times for same item!

10

Bid Table

→ relational schema design (3.5 points)

 – NULL or pseudo-NULLs (0.5 points)
 – optionals of DTD correctly implemented (0.5 points)
 – correct Primary Key for each table (0.25 = one error, 0.5 = two errors)

→ bid table
 – item_id
 – bidder_id
 – time
 – amount

 not keys:

1) (item_id, bidder_id) – bidder can bid multiple times for same item!
2) (bidder_id, time) – bidder can make multiple bids at same time!
 (e.g., multiple times logged in,
 bidding per software, etc.)

11

Bid Table

→ relational schema design (3.5 points)

 – NULL or pseudo-NULLs (0.5 points)
 – optionals of DTD correctly implemented (0.5 points)
 – correct Primary Key for each table (0.25 = one error, 0.5 = two errors)

→ bid table
 – item_id
 – bidder_id
 – time
 – amount

→ is this a key?

(item_id, bidder_id, time)

12

Bid Table

→ relational schema design (3.5 points)

 – NULL or pseudo-NULLs (0.5 points)
 – optionals of DTD correctly implemented (0.5 points)
 – correct Primary Key for each table (0.25 = one error, 0.5 = two errors)

→ bid table
 – item_id
 – bidder_id
 – time
 – amount

→ is this a key?

(item_id, bidder_id, time)

NO! → It is not minimal

13

Bid Table

→ relational schema design (3.5 points)

 – NULL or pseudo-NULLs (0.5 points)
 – optionals of DTD correctly implemented (0.5 points)
 – correct Primary Key for each table (0.25 = one error, 0.5 = two errors)

→ bid table
 – item_id
 – bidder_id
 – time
 – amount

→ is this a key?

(item_id, bidder_id, time)

NO! → It is not minimal

Correct keys:

→ (item_id, time)

14

Bid Table

→ relational schema design (3.5 points)

 – NULL or pseudo-NULLs (0.5 points)
 – optionals of DTD correctly implemented (0.5 points)
 – correct Primary Key for each table (0.25 = one error, 0.5 = two errors)

→ bid table
 – item_id
 – bidder_id
 – time
 – amount

→ is this a key?

(item_id, bidder_id, time)

NO! → It is not minimal

Correct keys:

→ (item_id, time)

Any other keys?

15

Bid Table

→ relational schema design (3.5 points)

 – NULL or pseudo-NULLs (0.5 points)
 – optionals of DTD correctly implemented (0.5 points)
 – correct Primary Key for each table (0.25 = one error, 0.5 = two errors)

→ bid table
 – item_id
 – bidder_id
 – time
 – amount

→ is this a key?

(item_id, bidder_id, time)

NO! → It is not minimal

Correct keys:

→ (item_id, time)

→ (item_id, amount)

16

Marking of Assignment 1

→ relational schema design (3.5 points)

 – NULL or pseudo-NULLs (0.5 points)
 – optionals of DTD correctly implemented (0.5 points)
 – correct Primary Key for each table (0.25 = one error, 0.5 = two errors)
 – correct Functional Dependencies (0.5 points)
 – 4NF (0.5 points)
 [either you claim 4NF/BCNF but it isn’t, or vice versa]

<= 2.5 penality points

If you wrote something for this part,
you obtain 1 Point by default! :-)

17

Marking of Assignment 1

Queries

E.g., Number 3:

SELECT COUNT(y.item_id) FROM
 (SELECT item_id, COUNT(item_id) as count
 FROM has_category GROUP BY item_id) y
WHERE y.count=4;

→ assumes duplicate-free
 has_category table

→ if has_category has
 duplicates, how to
 write the query?

18

Answers to Queries

Queries

1) Find the number of users in the database.
13422
2) Find the number of items in "New York",
103
3) Find the number of auctions belonging to exactly four categories.
8365
4) Find the ID(s) of current (unsold) auction(s) with the highest bid.
1046740686
5) Find the number of sellers whose rating is higher than 1000.
3130
6) Find the number of users who are both sellers and bidders.
6717
7) Find the number of categories that include at least one item with
a bid of more than $100.
150

21

Full-Text Search

→ tokenize natural language documents
→ build inverted files

→ execute keyword-queries over inverted files
→ rank results according to TF - IDF-based scoring

22

Full-Text Search

→ tokenize natural language documents
→ build inverted files

→ execute keyword-queries over inverted files
→ rank results according to TF - IDF-based scoring

Limits of this approach: → search over DNA sequences
 → huge sequences over C, T, G A (ca. 3.2 billion)
 → no spaces, no tokens....

23

Pattern Matching on Strings

→ search over DNA sequences
→ huge sequence over C, T, G A (ca. 3.2 billion)
→ no spaces, no tokens....

Given
– a long string T (text) [often: over a fixed alphabet]
– a short string P (pattern)

Problem 1: find all occurrences of P in T
Problem 2: count #occurrence of P in T

24

Pattern Matching on Strings

→ search over DNA sequences
→ huge sequence over C, T, G A (ca. 3.2 billion)
→ no spaces, no tokens....

Given
– a long string T (text) [often: over a fixed alphabet]
– a short string P (pattern)

Problem 1: find all occurrences of P in T
Problem 2: count #occurrence of P in T

Two versions:

 → offline = we may index T, before running the search
 → online = directly run search (e.g., T not stored, comes in a stream)
 [we may “index” P, this is called “preprocessing”]

25

Pattern Matching on Strings

Highlights
Online Search: O(|T|) time with O(|P|) preprocessing
Offline Search: O(|P| + #occ) time with O(|T|) preprocessing

Given
– a long string T (text)
– a short string P (pattern)

Problem 1: find all occurrences of P in T
Problem 2: count #occurrence of P in T

Two versions:

 → offline = we may index T, before running the search
 → online = directly run search (e.g., T not stored, comes in a stream)
 [we may “index” P, this is called “preprocessing”]

26

Online Pattern Matching on Strings

Given
– short string P (pattern)
– long string T (text)

Problem 1: find all occurrences of P in T
Problem 2: count #occurrence of P in T

1) Automaton Method
 → build “match automaton A” for P and run A over T

2) Knuth-Morris-Pratt Algorithm
 → build jump-table for P and use it when traversing T

3) Boyer-Moore Algorithm
 → similar to KMP, but match backwards in P

→ may preprocess P!

27

1. Naive Method
Given Pattern P, Text T, find all occurrences of P in T.

28

1. Naive Method
Given Pattern P, Text T, find all occurrences of P in T.

29

1. Naive Method
Given Pattern P, Text T, find all occurrences of P in T.

30

1. Naive Method
Given Pattern P, Text T, find all occurrences of P in T.

31

1. Naive Method
Given Pattern P, Text T, find all occurrences of P in T.

32

1. Naive Method
Given Pattern P, Text T, find all occurrences of P in T.

33

1. Naive Method
Given Pattern P, Text T, find all occurrences of P in T.

34

1. Naive Method
Given Pattern P, Text T, find all occurrences of P in T.

35

Some Definitions

Word v is a suffix of word w, if w = uv for some u. (or: postfix)
(“proper suffix”, if u is non-empty)

Word u is a prefix of w, if w = uv for some v.
(“proper prefix”, if v is non-empty)

Word u is a factor of w, if there are v and v’ such that w = vuv’

prefix

suffix = postfix

factor

36

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch

→ “mismatch” means “not a”
→ if character set C is known,
 then for every c in C – {a}, we have one transition d(0, c) = 0

37

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

means “not a and not b”

38

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

39

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a

40

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a

a-transition
→ where should it go???

41

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a a

→ why?
→ because aba is the longest suffix of ababa, that is
 a prefix of ababa

42

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

43

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

→ Deterministic Finite Automaton
→ O(|P||S|) size, where S = alphabet

44

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

a

mismatch

a
a

a

→ Deterministic Finite Automaton
→ O(|P||S|) size, where S = alphabet
→ simply run it in O(|T|) time to determine all occurrences of P in T

mismatch

45

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

46

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

47

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

48

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

49

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

50

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

51

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

52

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

53

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

54

2. Automaton Method
Given Pattern P, Text T, find all occurrences of P in T.

0 11 2 3 54
a b a b c

mismatch a

mismatch

a
a

a

→ Match!

55

2. Automaton Method
Given Pattern P, how to build the automaton?

1 2 3 4 5

→ for state k and symbol x, how to build transition d(k,x)?

→ length of the longest proper suffix of P[1] … P[x]x that is prefix of P

E.g. d(4, a) = ?

56

2. Automaton Method
Given Pattern P, how to build the automaton?

1 2 3 4 5

→ for state k and symbol x, how to build transition d(k,x)?

→ length of the longest proper suffix of P[1] … P[x]x that is prefix of P

E.g. d(4, a) = ?

 P[1]...P[4]a =

 ababa

proper suffix

57

2. Automaton Method
Given Pattern P, how to build the automaton?

1 2 3 4 5

→ for state k and symbol x, how to build transition d(k,x)?

→ length of the longest proper suffix of P[1] … P[x]x that is prefix of P

E.g. d(4, a) = ?

 P[1]...P[4]a =

 ababa

proper suffix
is also prefix!

58

2. Automaton Method
Given Pattern P, how to build the automaton?

1 2 3 4 5

→ for state k and symbol x, how to build transition d(k,x)?

→ length of the longest proper suffix of P[1] … P[x]x that is prefix of P

E.g. d(4, a) = 3 = length(aba)

 P[1]...P[4]a =

 ababa

proper suffix
is also prefix!

Lopopre(u, v) =
longest proper suffix of u
that is prefix of v

59

Drawback of Automaton Method

→ matching time: O(n) n = |T|
 nice! m = |P|

→ preprocessing time: O(m * |S|)
 can be O(m * m)

→ Ideally would like to have

 – O(n) matching time or O(n + m)
 – O(m) preprocessing time

not so nice... (for large patterns)

60

END
Lecture 12

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

