Applied Databases

Lecture 11
TFIDF Scoring, Lucene

Sebastian Maneth

University of Edinburgh - February 26th, 2017

Outline

1. Vector Space Ranking & TFIDF

2. Lucene

Next Lecture — Assignment 1 marking
will be discussed

1. Vector Space Ranking

— quick recap of last lecture's topic,
using David Kauchak's slides

2. Vector Space Ranking

Represent the query as a weighted TFIDF vector
Represent each document as a weighted TFIDF vector

Compute the cosine similarity score between query
vector and each document vector

Rank documents by their score

Return the top K (e.g., K= 10) documents to the user

— slides from David Kauchak (who adapted them from Chris Manning's slides)

Term-document count matrices

s Consider the number of occurrences of a term in a

document:
= Each document is a count vector

In NVY: a column below

Antony and Cleopatra | Julius Caesar | The Tempest Hamlet Othello Macbeth

Antony 157 73 0
Brutus 4 157 0
Caesar 232 227 0
Calpurnia 0 10 0
Cleopatra 57 0
mercy 2 3
worser 2 0 1

0 0 0
1 0 0
2 1 1
0 0 0
0 0 0
5) 1
1 1 0

What information is lost with this representation?

Bag of words representation

= Represent a document by the occurrence counts
of each word

= Ordering of words is lost

= John is quicker than Mary and Mary is quicker
than John have the same vectors

_—

Bag of words

query

document

What is the notion of “intersection” for
the bag or words model?

Bag of words

query

document

Want to take into account term frequency

Some things to be careful of...

query query

document document

Say | take the document and simply append
it to itself. What happens to the overlap?

Some things to be careful of...

query query

document document

What is the issue?

Need some notion of the length of a document

Some things to be careful of...

query query

the the the
the the ...

document

What about a document that contains only
frequent words, e.qg. the?

Some things to be careful of...

query query

the the the

document the the ...

Need some notion of the importance of words

Documents as vectors

We have a |V|-dimensional
vector space

Terms are axes of the space

Documents are points or
vectors in this space

Very high-dimensional:
hundreds of millions of
dimensions when you apply
this to a web search engine

This is a very sparse vector -
most entries are zero

information

13

retrieval

Use angle instead of distance

Thought experiment: take a document d and
append it to itself. Call this document d’

“‘Semantically” d and d' have the same content

The Euclidean distance between the two
documents can be quite large

The angle between the two documents is O,
corresponding to maximal similarity

Any other ideas?
Rank documents according to angle with query

14

From angles to cosines
R —

= Cosine is a monotonically decreasing function for the
interval [0°, 180°]

= The following two notions are equivalent.

= Rank documents in decreasing order of the angle between
query and document

= Rank documents in increasing order of
cosine(query,document)

15

16

cosine(query,document)

Dot product Unit vectors
J
- 7 \é.g é C_l; ’Ii’ qldl
cos(q,d)=—=r =515 = - =] -
U R R

cos(g,d) is the cosine similarity of gand d ... or,
equivalently, the cosine of the angle between g and d.

Inverse document frequency
-

= df,is the document frequency of t: the number of
documents that contain ¢

s df is a measure of the informativeness of ¢

= We define the idf (inverse document frequency)
of t by

idf = log N/df

= We use log N/df, instead of N/df, to “dampen” the
effect of idf

17

idf example, suppose N= 1 million

calpurnia 1
animal 100
sunday 1,000
fly 10,000
under 100,000
the 1,000,000

There is one idf value for each term tin a collection.

18

N W B~ O

idf example, suppose N= 1 million

19

calpurnia 1
animal 100
sunday 1,000
fly 10,000
under 100,000
the 1,000,000

What if we didn’t use the log to dampen the weighting?

idf example, suppose N= 1 million

20

calpurnia
animal
sunday
fly

under

the

1

100

1,000
10,000
100,000
1,000,000

1,000,000
10,000
1,000

100

10

1

What if we didn’t use the log to dampen the weighting?

21

Putting it all together

= We have a notion of term frequency overlap
= We have a notion of term importance
= We have a similarity measure (cosine similarity)

= Can we put all of these together?
» Define a weighting for each term

= The tf-idf weight of a term is the product of its tf weight
and its idf weight

w =tf, , xlogN/df,

l,

22

tf-idf weighting

w =tf , xlogN/df,

l,

= Best known weighting scheme in information
retrieval

s Increases with the number of occurrences within
a document

= Increases with the rarity of the term in the
collection

= Works surprisingly well!
= Works in many other application domains

23

Binary — count — weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.91 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights € RV

We then calculate the similarity using cosine
similarity with these vectors

There are many variations of TF-IDF weighting

— log(N/ DF(T)) [as on previous slides]
gives weight zero, to a term appearing in each document!
— alternative log(1+ N/ DF(T))

— alternatives to TF: — divide by largest TF of that term (“normalization”)
— take 1 +log(TF) (“log-frequencey weighting”)

24

There are many variations of TF-IDF weighting

— log(N/ DF(T)) [as on previous slides]
gives weight zero, to a term appearing in each document!
— alternative log(1+ N/ DF(T))

— alternatives to TF: — divide by largest TF of that term (“normalization”)
— take 1 +log(TF) (“log-frequencey weighting”)

25

Explanations for taking log of N/DF(T) (“damping”)

— Probability that random document contains term T.:
P(T) = DF(T)/N

— IDF(T) = —log(P(T))

There are many variations of TF-IDF weighting

— log(N/ DF(T)) [as on previous slides]
gives weight zero, to a term appearing in each document!
— alternative log(1+ N/ DF(T))

— alternatives to TF: — divide by largest TF of that term (“normalization”)
— take 1 +log(TF) (“log-frequencey weighting”)

26

Explanations for taking log of N/DF(T) (“damping”)

— Probability that random document contains term T.:
P(T) = DF(T)/N

— IDF(T) = —log(P(T))

— IDF(T1‘and’ T2)= —log(P(T1)* P(T2)) = IDF(T1) + IDF(T2)

N/

statistically independent

27
Recall from Information Theory:

Message probabilities p(1), p(2), p(3), ..., p(N) (sum equals 1)

Information of Message m: I(m) = —log p(m) — see Robertson’s paper, linked
on course web page

E.g. p(1)=p(2)=0.5

I(1)=-logp(1)=1 «——— 1 bit (because we took log-base 2)

The mathematical theory of information is based on probability theory and statistics, and
measures information with several quantities of information. The choice of logarithmic base
in the following formulae determines the unit of information entropy that is used. The most
common unit of information is the bit,)based on the binary logarithm. Other units include the

nat, based on the natural logarithm, and the hartley, based on the base 10 or common
logarithm.

rmation ... X K+ -

28

Recall from Information Theory:
Message probabilities p(1), p(2), p(3), ..., p(N) (sum equals 1)

Information of Message m: I(m) = —log p(m)

//enwikipedia.org/wiki/Quantities_of_information E1 ¢ Q, Search f{ B ® 3 &4 O~ @ —

DF
on

o

lit links

Self-information |edit]

Shannon derived a measure of information content called the self-<information or "surprisal” of a message m:

I(m) = log(ﬁ) — ~ log(p(m))

where p(m) = Pr(M = m) is the probability that message m is chosen from all possible choices in the message space M. The

base of the logarithm only affects a scaling factor and, consequently, the units in which the measured information content is
expressed. If the logarithm is base 2, the measure of information is expressed in units of bits.

Information is transferred from a source to a recipient only if the recipient of the information did not already have the information to
begin with. Messages that convey information that is certain to happen and already known by the recipient contain no real
information. Infrequently occurring messages contain more information than more frequently occurring messages. This fact is
reflected in the above equation - a certain message, i.e. of probability 1, has an information measure of zero. In addition, a compound
message of two (or more) unrelated (or mutually independent) messages would have a quantity of information that is the sum of the
measures of information of each message individually. That fact is also reflected in the above equation, supporting the validity of its
derivation.

An example: The weather forecast broadcast is: "Tonight's forecast: Dark. Continued darkness until widely scattered light in the
morning." This message contains almost no information. However, a forecast of a snowstorm would certainly contain information
since such does not happen every evening. There would be an even greater amount of information in an accurate forecast of snow
for a warm location, such as Miami. The amount of information in a forecast of snow for a location where it never snows (impossible

P B T N P (R SRR N - . S

Recall from Information Theory:
Message probabilities p(1), p(2), p(3), ..., p(N) (sum equals 1)

Information of Message m: I(m) = —log p(m) — see Robertson’s paper, linked
on course web page

29

— faint relationship to Zipf's law

Mentioned in original article introducing IDF
[Karen Sparck Jones, 1972]

30

Log-frequency weighting

= Want to reduce the effect of multiple occurrences
of a term

s A document about “Clinton” will have “Clinton”
occuring many times

= Rather than use the frequency, us the log of the
frequency

1 + logtf , iftf, > O
W 50 | .
’ 0, otherwise

» 0-0,1-1,2—-513,10 - 2, 1000 — 4, etc.

tf-1df weighting has many variants

31

Term frequency Document frequency Normalization
n (natural) tfe d n (no) 1 n (none))
| (logarithm) 1 + log(tf; 4) t (idf) log N ¢ (cosine)
L " / > df, - / 1
ll‘ . L_r } Wi
a (augmented) 0.5+ ﬁ_o - "“,tf"“* p (prob idf) max]{0,log N_dier |y (pivoted 1/u
maxe(tle,q) | e unique) |

b (boolean)

{1 if tfrg >0

0 otherwise

L (|Og ave) 1+log(aveicq(tis o))

1

b (byte size) 1/CharLength™,

o < 1

— how does the base of the logs influence scoring / ranking?

—

—

take document length into account
(favour shorter documents)

e.g. divide by square root of document length
(done by Lucene, via the “LengthNorm?)

32

33

Lucene’s Scoring Function

score(q,d) = Z[tf(td) X 1df(t) x boost (t.fieldy) x lengthNorm(t.field;)] x coord(q,d) x gqNorm(q)

where g is the query, d a document, ¢ a term, and:

1. tf is a function of the term frequency within the document (default: \/freq);

numDocs) 1

2. idf: Inverse document frequency of ¢ within the whole collection (default: log(757z T

1);

3. boost is the boosting factor, if required in the query with the
field (if not specified, set to the default field);

4. lengthNorm: field normalization according to the number of terms. Defaul- m

overlap
maxQOverlap

1

operator on a given

5. coord: overlapping rate of terms of the query in the given document. Default:

6. gNorm: query normalization according to its length; it corresponds to the sum of square
values of terms’ weight, the global value is multiplied by each term’s weight.

3. Lucene

34

3. Lucene

— choose appropriate Analyzer for
— casefolding
— stemming (wrt a given language)
— stopping (wrt a given language)

— insert documents (per “field”) into a collection and
generate inverted files

35

— retrieve top-K ranked documents

— retrieve score of a document

3. Lucene

— choose appropriate Analyzer for
— casefolding
— stemming (wrt a given language)
— stopping (wrt a given language)
— insert documents (per “field”) and
generate inverted files
— retrieve top-K docs and their scores

Lucene is a huge library
— we use Version 5.4.0

— most books use older Versions,
e.g. Versions 4 or 3

— the Versions are not downward compatible :-(

36

A quide to the Java search engine

(PNne;
CTION

Otis Gospodnetic
Erik Hatcher

rorewarn b Doug Cutting

| | T

\

1999 on SourceForge

37
Lucene Indexing

store original text
public static void insertDoc(IndexWriter i, String gééiid, String 1line){
Document doc = new Document();

doc.add(new TextField("doc_id", doc_id,(Field.Store. YES))
doc. add(new TextField("1ine", 11ne F1e1d Store.

try { 1i.addDocument(doc); } catch (Except1on e) { e. pr1ntStackTrace(), }
}

public static void rebuildIndexes(String indexPath) {
try {

IndexWriterConfig config=new IndexWriterConfig(new SimpleAnalyzer())

IndexWriter i = new IndexWriter(directory, config);
i.deleteAlT1();

insertDoc(i, "1", "The old night keeper keeps the keep in the town");
insertDoc(i, "2", "In the big old house in the big old gown.");

doc_1id field Tine field

38
Full code for indexing some documents to

an index on disk (directory indexPath) path name (from command line)

public static void insertDoc(IndexWriter 1, String doc_id, String line){
Document doc = new Document();
doc.add(new TextField("doc_id", doc_id, Field.Store.YES));
doc.add(new TextField("1ine", 1line,Field.Store.YES));

try { i.addDocument(doc); } catch (Exception /e) { e.printStackTrace(); }

public static void rebuildIndexes(String indexPath) {
try {

Path path = Paths.get(indexPath);
System.out.println("Indexing to directory " + indexPath);
Directory directory = FSDirectory.open(path);
IndexWriterConfig config = new IndexWriterConfig(new SimpleAnalyzer());
IndexWriter i = new IndexWriter(directory, config);
i.deleteAl11();
insertDoc(i, "1", "The old night keeper keeps the keep in the town");
insertDoc(i, "2", "In the big old house in the big old gown.");
insertDoc(i, "3", "The house 1n the town had the big old keep");
insertDoc(i, "4", "Where the old night keeper never did sleep.");

insertDoc(i, "5", "The night keeper keeps the keep in the night");
insertDoc(i, "6", "And keeps in the dark and sleeps in the 1light.");
i.close();

directory.close();

}

catch (Exception e) { e.printStackTrace(); }
}

3. Lucene

public static void rebuildIndexes(String indexPath) {
try {

IndexWriterConfig config = new IndexWriterConfig(new SimpleAnalyzer());
IndexWriter i = new IndexWriter(directory, config);

SimpleAnalyzer
— Analyzer that filters LetterTokenizer with LowerCaseFilter

LetterTokenizer
— divides text at non-letters.
— tokens as maximal strings of adjacent letters,
as defined by java.lang.Character.isLetter() predicate.

Note: this does a decent job for most European languages, but does a
terrible job for some Asian languages, where words are not separated by spaces.

LowerCaseFilter
— Normalizes token text to lower case.

39

40

Keyword Search

Private static TopDocs search(String searchText);

IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
QueryParser queryParser = new QueryParser(searchField, new SimpleAnalyzer());

Query query = queryParser.parse(searchText);
TopDocs topDocs = 1'ndexSearcher.search(quer
System.out.println("Number of Hits: " + topDocs.totglHits);
for (ScoreDoc scoreDoc:topDocs.scoreDocs) {
Document doc = indexSearcher.doc(scoreDoc.doc);
System.out.println("doc_id: " + doc.get("doc_id")

+ ", score: + scoreDoc.score
+ " [+ doc.get("1Tine"™) +"]1");

Top-K (K= 10000)
Output
— doc _id
— score
— content (line)

O Ul W N =

Fig. 1.

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

The Keeper database. It consists of six one-line documents.

$ java Searcher “old”

Running search(old, 1ine)
Number of Hits: 4

doc_id: 2, score:
doc_id: 1, score:
doc_id: 3, score:
doc_id: 4, score:

0.5225172 [In the big old house in the big old gown.]
0.36947548 [The old night keeper keeps the keep in the town]
0.36947548 [The house in the town had the big old keep]
0.36947548 [Where the old night keeper never did sleep.]

41

42

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

O Ul W N =

Fig. 1. TheKeeper database. It consists of six one-line documents.

$ java Searcher “old”

Running search(old, 1ine)

Number of Hits: 4

doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep 1n the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

Explanation: 0.5225172 = weight(line:old in 1) [DefaultSimilarity], result of:
0.5225172 = fieldwWeight in 1, product of:
1.4142135 = tf(fregq=2.0), with freq of:
2.0 = termFreg=2.0
1.1823215 = idf(docFreg=4, maxDocs=6)
0.3125 = fieldNorm(doc=1)

O Ul W N =

Fig. 1.

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

The Keeper database. It consists of six one-line documents.

$ java Searcher “big old house”

Running search(big old house, line)
Number of Hits: 4

doc_id: 2, score:
doc_id: 3, score:
doc_id: 1, score:
doc_id: 4, score:

1.0412337 [In the big old house in the big old gown.]
0.83452004 [The house in the town had the big old keep]
0.054527204 [The old night keeper keeps the keep in the town]
0.054527204 [Where the old night keeper never did sleep.]

43

44

O Ul W N =

Fig. 1.

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

The Keeper database. It consists of six one-line documents.

$ java Searcher “the”

Running search(the, 1ine)
Number of Hits:

doc_id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:

6
score:
score.:
score:
score.
score.:
score.

.4578294 [The old night keeper keeps the keep in the town]
.4578294 [The house in the town had the big old keep]
.4578294 [The night keeper keeps the keep in the night]
.37381613 [In the big old house in the big old gown.]
.37381613 [And keeps in the dark and sleeps in the light.]
.2643279 [Where the old night keeper never did sleep.]

oloNoNoNoNo)

45

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

Sy UL W N

7 The house 1is the house.
8 The house.
Even shorter

$ java Searcher “the”

shorter

Running search(the, T1ine)
Number of Hits: 8

doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_id:
doc_1id:
doc_1id:
doc_1id:

score: 0.55138564 [The house.]
score: 0.5458439 [The house is the house.]

score: 0.47751394 [The old night keeper keeps the keep in the town]
score: 0.47751394 [The house in the town had the big old keep]
score: 0.47751394 [The night keeper keeps the keep in the night]
score: 0.38988853 [In the big old house in the big old gown.]
score: 0.38988853 [And keeps in the dark and sleeps in the 1light.]
score: 0.27569282 [Where the old night keeper never did sleep.]

$ java

doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_id:

46

1 The old night keeper keeps the keep in the town
2 In the big old house in the big old gown.

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep.

5) The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light.
7 The house is the house. 12 The.

8 The house. 13 The.

9 the-the_the__the. 14 The a b c.
10 the-the___the. 15 The a b.
11 the-thethe__the. 16 The a.

Searcher “the”

9,
12,
13,
10,
11,
8,
16,
7,
1,
3,
3,
14,
15,

score.:

score.
score.:
score.:
score.

score.

score.:

score.
score.
score.
score.:

score.
score.:

0.9393754 [the-the_the__the.]

0.9393754 [The.]

0.83029836 [The the.]

0.81352293 [the-the___the.]

0.6642387 [the-thethe__the.]

0.5871096 [The house.]

0.5871096 [The a.]

0.5812088 [The house 1is the house.]

0.5084518 [The old night keeper keeps the keep in the town]
0.5084518 [The house in the town had the big old keep]
0.5084518 [The night keeper keeps the keep in the night]
0.4696877 [The a b c.]

0.4696877 [The a b.]

2, score: 0.41514918 [In the big old house in the big old gown.]
6, score: 0.41514918 [And keeps in the dark and sleeps in the 1light.]
4, score: 0.2935548 [Where the old night keeper never did sleep.]

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

Sy Ul W N =

SimpleAnalyzer
— filters LetterTokenizer with LowerCaseFilter

47

StandardAnalyzer
— filters StandardTokenizer with StandardFilter, LowerCaseFilter
and StopFilter, using a list of English stop words.

StandardTokenizer

— grammar-based tokenizer (done in JFlex), implements the Word Break rules
from the Unicode Text Segmentation algorithm, as specified in
Unicode Standard Annex #29.

Standard Filter
— normalizes tokens extracted with StandardTokenizer.

StopFilter
— removes stop words from a token stream.

StandardAnalyzer — Search

Sy UL W N =

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house
Where the
The night
And keeps

in the town had the big old keep
old night keeper never did sleep.
keeper keeps the keep in the night
in the dark and sleeps in the light.

$ java Searcher “the”

Running search(the, 1line)

Number of Hits:

0

48

StandardAnalyzer — Search

Sy UL W N =

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

$ java Searcher “the”

Running search(the, 1line)

Number of Hits:

0

$ java Searcher “and”

Running search(and, 1ine)

Number of Hits:

0

49

StandardAnalyzer — Search

The house
Where the
The night
And keeps

Sy UL W N =

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

in the town had the big old keep
old night keeper never did sleep.
keeper keeps the keep in the night
in the dark and sleeps in the light.

$ java Searcher “the”

Running search(the, 1line)
Number of Hits: O

$ java Searcher “and”

Running search(and, 1ine)
Number of Hits: O

$ java Searcher “in

Running search(in, 1line)
Number of Hits: O

50

51

StandardAnalyzer — Search

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

Sy UL W N =

$ java Searcher “keeper’”

Running search(keeper, 1ine)

Number of Hits: 3

doc_id: 5, score: 0.614891 [The night keeper keeps the keep in the night]
doc_id: 1, score: 0.5270494 [The old night keeper keeps the keep in the town]
doc_id: 4, score: 0.5270494 [Where the old night keeper never did sleep.]

StandardAnalyzer — Search

The house
Where the
The night
And keeps

Sy UL W N =

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

in the town had the big old keep
old night keeper never did sleep.
keeper keeps the keep in the night
in the dark and sleeps in the light.

$ java Searcher “keeping”

Running search(keeping, 1ine)

Number of Hits: O

— stemming?

52

53

EnglishAnalyzer

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

Sy UL W N =

$ java Searcher “keeping”

Running search(keeping, 1ine)

Number of Hits: 3

doc_id: 5, score: 0.614891 [The night keeper keeps the keep in the night]
doc_id: 1, score: 0.5270494 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.5270494 [The house in the town had the big old keep]

Stemming

— EnglishAnalyzer (in the Query part)

A reconstruction of York Castle in the 14th century,
showing the castle's stone keep (top) overlooking the
castle bailey (below)

95

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

