
Sebastian Maneth

Lecture 11
TFIDF Scoring, Lucene

University of Edinburgh - February 26th, 2017

Applied Databases

2

Outline

1. Vector Space Ranking & TFIDF

2. Lucene

Next Lecture → Assignment 1 marking
 will be discussed

3

1. Vector Space Ranking

→ quick recap of last lecture's topic,
 using David Kauchak's slides

4

2. Vector Space Ranking

→ Represent the query as a weighted TFIDF vector

→ Represent each document as a weighted TFIDF vector

→ Compute the cosine similarity score between query
 vector and each document vector

→ Rank documents by their score

→ Return the top K (e.g., K = 10) documents to the user

→ slides from David Kauchak (who adapted them from Chris Manning's slides)
5

6

7

8

9

10

11

12

13

14

15

2. Vector Space Ranking

16

17

18

19

20

21

22

23

There are many variations of TF-IDF weighting

→ log(N / DF(T)) [as on previous slides]
 gives weight zero, to a term appearing in each document!
→ alternative log(1+ N / DF(T))

→ alternatives to TF: – divide by largest TF of that term (“normalization”)
 – take 1 + log(TF) (“log-frequencey weighting”)

24

There are many variations of TF-IDF weighting

→ log(N / DF(T)) [as on previous slides]
 gives weight zero, to a term appearing in each document!
→ alternative log(1+ N / DF(T))

→ alternatives to TF: – divide by largest TF of that term (“normalization”)
 – take 1 + log(TF) (“log-frequencey weighting”)

Explanations for taking log of N / DF(T) (“damping”)

→ Probability that random document contains term T:
 P(T) = DF(T) / N

→ IDF(T) = – log(P(T))

25

There are many variations of TF-IDF weighting

→ log(N / DF(T)) [as on previous slides]
 gives weight zero, to a term appearing in each document!
→ alternative log(1+ N / DF(T))

→ alternatives to TF: – divide by largest TF of that term (“normalization”)
 – take 1 + log(TF) (“log-frequencey weighting”)

Explanations for taking log of N / DF(T) (“damping”)

→ Probability that random document contains term T:
 P(T) = DF(T) / N

→ IDF(T) = – log(P(T))

→ IDF(T1 ‘and’ T2) = – log(P(T1) * P(T2)) = IDF(T1) + IDF(T2)

statistically independent

26

Recall from Information Theory:

Message probabilities p(1), p(2), p(3), …, p(N) (sum equals 1)

Information of Message m: I(m) = – log p(m)

E.g. p(1) = p(2) = 0.5

I(1) = – log p(1) = 1

→ see Robertson’s paper, linked
on course web page

27

1 bit (because we took log-base 2)

Recall from Information Theory:

Message probabilities p(1), p(2), p(3), …, p(N) (sum equals 1)

Information of Message m: I(m) = – log p(m)

28

Recall from Information Theory:

Message probabilities p(1), p(2), p(3), …, p(N) (sum equals 1)

Information of Message m: I(m) = – log p(m)

→ faint relationship to Zipf’s law

Mentioned in original article introducing IDF
[Karen Spärck Jones, 1972]

→ see Robertson’s paper, linked
on course web page

29

30

→ how does the base of the logs influence scoring / ranking?

31

→ take document length into account
 (favour shorter documents)

→ e.g. divide by square root of document length
 (done by Lucene, via the “LengthNorm”)

32

33

Lucene’s Scoring Function

34

3. Lucene

35

3. Lucene

→ choose appropriate Analyzer for
 – casefolding
 – stemming (wrt a given language)
 – stopping (wrt a given language)

→ insert documents (per “field”) into a collection and
 generate inverted files

→ retrieve top-K ranked documents

→ retrieve score of a document

36

3. Lucene

→ choose appropriate Analyzer for
 – casefolding
 – stemming (wrt a given language)
 – stopping (wrt a given language)
→ insert documents (per “field”) and
 generate inverted files
→ retrieve top-K docs and their scores

Lucene is a huge library

→ we use Version 5.4.0

→ most books use older Versions,
 e.g. Versions 4 or 3

→ the Versions are not downward compatible :-(
1999 on SourceForge

37

Lucene Indexing

public static void insertDoc(IndexWriter i, String doc_id, String line){
 Document doc = new Document();
 doc.add(new TextField("doc_id", doc_id, Field.Store.YES));
 doc.add(new TextField("line", line,Field.Store.YES));
 try { i.addDocument(doc); } catch (Exception e) { e.printStackTrace(); }
}

public static void rebuildIndexes(String indexPath) {
 try {
 . . .
 IndexWriterConfig config=new IndexWriterConfig(new SimpleAnalyzer());

IndexWriter i = new IndexWriter(directory, config);
i.deleteAll();
insertDoc(i, "1", "The old night keeper keeps the keep in the town");
insertDoc(i, "2", "In the big old house in the big old gown.");

 . . .

doc_id field line field

store original text

public static void insertDoc(IndexWriter i, String doc_id, String line){
 Document doc = new Document();
 doc.add(new TextField("doc_id", doc_id, Field.Store.YES));
 doc.add(new TextField("line", line,Field.Store.YES));
 try { i.addDocument(doc); } catch (Exception e) { e.printStackTrace(); }
}

public static void rebuildIndexes(String indexPath) {
 try {
 Path path = Paths.get(indexPath);

System.out.println("Indexing to directory " + indexPath);
Directory directory = FSDirectory.open(path);
IndexWriterConfig config = new IndexWriterConfig(new SimpleAnalyzer());
IndexWriter i = new IndexWriter(directory, config);
i.deleteAll();
insertDoc(i, "1", "The old night keeper keeps the keep in the town");
insertDoc(i, "2", "In the big old house in the big old gown.");
insertDoc(i, "3", "The house in the town had the big old keep");
insertDoc(i, "4", "Where the old night keeper never did sleep.");
insertDoc(i, "5", "The night keeper keeps the keep in the night");
insertDoc(i, "6", "And keeps in the dark and sleeps in the light.");

 i.close();
directory.close();
}

 catch (Exception e) { e.printStackTrace(); }
}

path name (from command line)
Full code for indexing some documents to
an index on disk (directory indexPath)

38

39

3. Lucene

public static void rebuildIndexes(String indexPath) {
 try {
 . . .
 IndexWriterConfig config = new IndexWriterConfig(new SimpleAnalyzer());

IndexWriter i = new IndexWriter(directory, config);

SimpleAnalyzer
→ Analyzer that filters LetterTokenizer with LowerCaseFilter

LetterTokenizer
→ divides text at non-letters.
→ tokens as maximal strings of adjacent letters,
 as defined by java.lang.Character.isLetter() predicate.

Note: this does a decent job for most European languages, but does a
terrible job for some Asian languages, where words are not separated by spaces.

LowerCaseFilter
→ Normalizes token text to lower case.

Private static TopDocs search(String searchText);
 . . .
 IndexReader indexReader = DirectoryReader.open(directory);
 IndexSearcher indexSearcher = new IndexSearcher(indexReader);
 QueryParser queryParser = new QueryParser(searchField, new SimpleAnalyzer());

 Query query = queryParser.parse(searchText);
 TopDocs topDocs = indexSearcher.search(query,10000);
 System.out.println("Number of Hits: " + topDocs.totalHits);
 for (ScoreDoc scoreDoc:topDocs.scoreDocs) {

Document doc = indexSearcher.doc(scoreDoc.doc);
System.out.println("doc_id: " + doc.get("doc_id")

 + ", score: " + scoreDoc.score
 + " [" + doc.get("line") +"]");

}

Top-K (K= 10000)
Output
→ doc_id
→ score
→ content (line)

40

Keyword Search

$ java Searcher “old”

Running search(old, line)
Number of Hits: 4
doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

41

$ java Searcher “old”

Running search(old, line)
Number of Hits: 4
doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

Explanation: 0.5225172 = weight(line:old in 1) [DefaultSimilarity], result of:
 0.5225172 = fieldWeight in 1, product of:
 1.4142135 = tf(freq=2.0), with freq of:
 2.0 = termFreq=2.0
 1.1823215 = idf(docFreq=4, maxDocs=6)
 0.3125 = fieldNorm(doc=1)

42

$ java Searcher “big old house”

Running search(big old house, line)
Number of Hits: 4
doc_id: 2, score: 1.0412337 [In the big old house in the big old gown.]
doc_id: 3, score: 0.83452004 [The house in the town had the big old keep]
doc_id: 1, score: 0.054527204 [The old night keeper keeps the keep in the town]
doc_id: 4, score: 0.054527204 [Where the old night keeper never did sleep.]

43

$ java Searcher “the”

Running search(the, line)
Number of Hits: 6
doc_id: 1, score: 0.4578294 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.4578294 [The house in the town had the big old keep]
doc_id: 5, score: 0.4578294 [The night keeper keeps the keep in the night]
doc_id: 2, score: 0.37381613 [In the big old house in the big old gown.]
doc_id: 6, score: 0.37381613 [And keeps in the dark and sleeps in the light.]
doc_id: 4, score: 0.2643279 [Where the old night keeper never did sleep.]

44

$ java Searcher “the”

Running search(the, line)
Number of Hits: 8
doc_id: 8, score: 0.55138564 [The house.]
doc_id: 7, score: 0.5458439 [The house is the house.]
doc_id: 1, score: 0.47751394 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.47751394 [The house in the town had the big old keep]
doc_id: 5, score: 0.47751394 [The night keeper keeps the keep in the night]
doc_id: 2, score: 0.38988853 [In the big old house in the big old gown.]
doc_id: 6, score: 0.38988853 [And keeps in the dark and sleeps in the light.]
doc_id: 4, score: 0.27569282 [Where the old night keeper never did sleep.]

7 The house is the house.
8 The house.

shorter

Even shorter

45

$ java Searcher “the”
doc_id: 9, score: 0.9393754 [the-the_the__the.]
doc_id: 12, score: 0.9393754 [The.]
doc_id: 13, score: 0.83029836 [The the.]
doc_id: 10, score: 0.81352293 [the-the___the.]
doc_id: 11, score: 0.6642387 [the-thethe__the.]
doc_id: 8, score: 0.5871096 [The house.]
doc_id: 16, score: 0.5871096 [The a.]
doc_id: 7, score: 0.5812088 [The house is the house.]
doc_id: 1, score: 0.5084518 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.5084518 [The house in the town had the big old keep]
doc_id: 5, score: 0.5084518 [The night keeper keeps the keep in the night]
doc_id: 14, score: 0.4696877 [The a b c.]
doc_id: 15, score: 0.4696877 [The a b.]
doc_id: 2, score: 0.41514918 [In the big old house in the big old gown.]
doc_id: 6, score: 0.41514918 [And keeps in the dark and sleeps in the light.]
doc_id: 4, score: 0.2935548 [Where the old night keeper never did sleep.]

7 The house is the house.
8 The house.
9 the-the_the__the.
10 the-the___the.
11 the-thethe__the.

12 The.
13 The.
14 The a b c.
15 The a b.
16 The a.

46

SimpleAnalyzer
→ filters LetterTokenizer with LowerCaseFilter

StandardAnalyzer
→ filters StandardTokenizer with StandardFilter, LowerCaseFilter
 and StopFilter, using a list of English stop words.

StandardTokenizer
→ grammar-based tokenizer (done in JFlex), implements the Word Break rules
 from the Unicode Text Segmentation algorithm, as specified in
 Unicode Standard Annex #29.

Standard Filter
→ normalizes tokens extracted with StandardTokenizer.

StopFilter
→ removes stop words from a token stream.

47

$ java Searcher “the”

Running search(the, line)
Number of Hits: 0

48

StandardAnalyzer – Search

$ java Searcher “the”

Running search(the, line)
Number of Hits: 0

$ java Searcher “and”

Running search(and, line)
Number of Hits: 0

49

StandardAnalyzer – Search

$ java Searcher “the”

Running search(the, line)
Number of Hits: 0

$ java Searcher “and”

Running search(and, line)
Number of Hits: 0

$ java Searcher “in”

Running search(in, line)
Number of Hits: 0

50

StandardAnalyzer – Search

$ java Searcher “keeper”

Running search(keeper, line)
Number of Hits: 3
doc_id: 5, score: 0.614891 [The night keeper keeps the keep in the night]
doc_id: 1, score: 0.5270494 [The old night keeper keeps the keep in the town]
doc_id: 4, score: 0.5270494 [Where the old night keeper never did sleep.]

51

StandardAnalyzer – Search

$ java Searcher “keeping”

Running search(keeping, line)
Number of Hits: 0

52

StandardAnalyzer – Search

→ stemming?

$ java Searcher “keeping”

Running search(keeping, line)
Number of Hits: 3
doc_id: 5, score: 0.614891 [The night keeper keeps the keep in the night]
doc_id: 1, score: 0.5270494 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.5270494 [The house in the town had the big old keep]

53

EnglishAnalyzer

Stemming

→ EnglishAnalyzer (in the Query part)

54

55

END
Lecture 11

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

