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Outline

1.    Vector Space Ranking & TFIDF

2.    Lucene

Next Lecture   →  Assignment 1 marking 
                                         will be discussed
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1. Vector Space Ranking

→    quick recap of last lecture's topic,
        using David Kauchak's slides
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2. Vector Space Ranking

→  Represent the query as a weighted TFIDF vector 

→  Represent each document as a weighted TFIDF vector 

→  Compute the cosine similarity score between query
      vector and each document vector 

→  Rank documents by their score 

→  Return the top K (e.g., K = 10) documents to the user 



→ slides from David Kauchak (who adapted them from Chris Manning's slides)
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2. Vector Space Ranking
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There are many variations of TF-IDF weighting

→  log( N / DF(T) )    [as on previous slides] 
      gives weight zero, to a term appearing in each document!
→  alternative  log( 1+ N / DF(T) ) 

→  alternatives to TF:   –   divide by largest TF of that term (“normalization”)
                                     –   take 1 + log( TF )  (“log-frequencey weighting”)
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There are many variations of TF-IDF weighting

→  log( N / DF(T) )    [as on previous slides] 
      gives weight zero, to a term appearing in each document!
→  alternative  log( 1+ N / DF(T) ) 

→  alternatives to TF:   –   divide by largest TF of that term (“normalization”)
                                     –   take 1 + log( TF )  (“log-frequencey weighting”)

Explanations for taking  log  of  N / DF(T)     ( “damping” )

→  Probability  that  random document  contains term T:  
      P(T)  =  DF(T) / N

→  IDF(T)  =  – log( P(T) )
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There are many variations of TF-IDF weighting

→  log( N / DF(T) )    [as on previous slides] 
      gives weight zero, to a term appearing in each document!
→  alternative  log( 1+ N / DF(T) ) 

→  alternatives to TF:   –   divide by largest TF of that term (“normalization”)
                                     –   take 1 + log( TF )  (“log-frequencey weighting”)

Explanations for taking  log  of  N / DF(T)     ( “damping” )

→  Probability  that  random document  contains term T:  
      P(T)  =  DF(T) / N

→  IDF(T)  =  – log( P(T) )

→  IDF( T1 ‘and’ T2 ) =   – log( P(T1) * P(T2) )  =  IDF(T1) + IDF(T2)

statistically independent
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Recall from Information Theory:

Message probabilities p(1), p(2), p(3), …, p(N)   (sum equals 1)

Information of Message m:  I( m ) = – log p(m)

E.g.  p(1) = p(2) = 0.5

I( 1 ) = – log p(1) = 1

→ see Robertson’s paper, linked
on course web page
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1 bit  (because we took log-base 2)



Recall from Information Theory:

Message probabilities p(1), p(2), p(3), …, p(N)   (sum equals 1)

Information of Message m:  I( m ) = – log p(m)
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Recall from Information Theory:

Message probabilities p(1), p(2), p(3), …, p(N)   (sum equals 1)

Information of Message m:  I( m ) = – log p(m)

→  faint relationship to Zipf’s law

Mentioned in original article introducing IDF
[Karen Spärck Jones, 1972]

→ see Robertson’s paper, linked
on course web page
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→ how does the base of the logs influence scoring / ranking?
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→    take document length into account
        (favour shorter documents)

→     e.g.  divide by square root of document length
        (done by Lucene, via the “LengthNorm”)
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Lucene’s Scoring Function
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3. Lucene 
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3. Lucene 

→  choose appropriate Analyzer for
       –  casefolding
       –  stemming  (wrt a given language)
       –  stopping  (wrt a given language)

→  insert documents (per “field”) into a collection and
     generate inverted files 

→  retrieve top-K ranked documents 

→  retrieve score of a document
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3. Lucene 

→  choose appropriate Analyzer for
       –  casefolding
       –  stemming  (wrt a given language)
       –  stopping  (wrt a given language)
→  insert documents (per “field”) and
     generate inverted files 
→  retrieve top-K docs and their scores

Lucene is a huge library

→  we use Version 5.4.0

→  most books use older Versions, 
      e.g. Versions 4 or 3

→  the Versions are not downward compatible :-(
1999 on SourceForge
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Lucene Indexing

public static void insertDoc(IndexWriter i, String doc_id, String line){
  Document doc = new Document();
  doc.add(new TextField("doc_id", doc_id, Field.Store.YES));
  doc.add(new TextField("line", line,Field.Store.YES));
  try { i.addDocument(doc); } catch (Exception e) { e.printStackTrace(); }
}

public static void rebuildIndexes(String indexPath) {
  try {
    . . .
    IndexWriterConfig config=new IndexWriterConfig(new SimpleAnalyzer());

IndexWriter i = new IndexWriter(directory, config);
i.deleteAll();
insertDoc(i, "1", "The old night keeper keeps the keep in the town");
insertDoc(i, "2", "In the big old house in the big old gown.");

    . . .

doc_id field line field

store original text



public static void insertDoc(IndexWriter i, String doc_id, String line){
  Document doc = new Document();
  doc.add(new TextField("doc_id", doc_id, Field.Store.YES));
  doc.add(new TextField("line", line,Field.Store.YES));
  try { i.addDocument(doc); } catch (Exception e) { e.printStackTrace(); }
}

public static void rebuildIndexes(String indexPath) {
  try {
    Path path = Paths.get(indexPath);

System.out.println("Indexing to directory " + indexPath);
Directory directory = FSDirectory.open(path);
IndexWriterConfig config = new IndexWriterConfig(new SimpleAnalyzer());
IndexWriter i = new IndexWriter(directory, config);
i.deleteAll();
insertDoc(i, "1", "The old night keeper keeps the keep in the town");
insertDoc(i, "2", "In the big old house in the big old gown.");
insertDoc(i, "3", "The house in the town had the big old keep");
insertDoc(i, "4", "Where the old night keeper never did sleep.");
insertDoc(i, "5", "The night keeper keeps the keep in the night");
insertDoc(i, "6", "And keeps in the dark and sleeps in the light.");

    i.close();
directory.close();
} 

  catch (Exception e) { e.printStackTrace(); }
}

path name (from command line)
Full code for indexing some documents to 
an index on disk (directory indexPath)
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3. Lucene 

public static void rebuildIndexes(String indexPath) {
  try {
    . . .
    IndexWriterConfig config = new IndexWriterConfig(new SimpleAnalyzer());

IndexWriter i = new IndexWriter(directory, config);

SimpleAnalyzer
→  Analyzer that filters LetterTokenizer with LowerCaseFilter

LetterTokenizer 
→  divides text at non-letters. 
→  tokens as maximal strings of adjacent letters, 
      as defined by java.lang.Character.isLetter() predicate.

Note: this does a decent job for most European languages, but does a 
terrible job for some Asian languages, where words are not separated by spaces. 

LowerCaseFilter
→ Normalizes token text to lower case.



Private static TopDocs search(String searchText);
  . . .
  IndexReader indexReader =  DirectoryReader.open(directory);
  IndexSearcher indexSearcher = new IndexSearcher(indexReader);
  QueryParser queryParser = new QueryParser(searchField, new SimpleAnalyzer());

  Query query = queryParser.parse(searchText);
  TopDocs topDocs = indexSearcher.search(query,10000);
  System.out.println("Number of Hits: " + topDocs.totalHits);
  for (ScoreDoc scoreDoc:topDocs.scoreDocs) {           

Document doc = indexSearcher.doc(scoreDoc.doc);
System.out.println("doc_id: " + doc.get("doc_id") 

    + ", score: " + scoreDoc.score 
                     + " [" + doc.get("line") +"]");

}

Top-K (K= 10000)
Output 
→   doc_id
→   score
→   content (line)
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Keyword Search



$ java Searcher “old”

Running search(old, line)
Number of Hits: 4
doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]
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$ java Searcher “old”

Running search(old, line)
Number of Hits: 4
doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

Explanation: 0.5225172 = weight(line:old in 1) [DefaultSimilarity], result of:
  0.5225172 = fieldWeight in 1, product of:
    1.4142135 = tf(freq=2.0), with freq of:
      2.0 = termFreq=2.0
    1.1823215 = idf(docFreq=4, maxDocs=6)
    0.3125 = fieldNorm(doc=1)
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$ java Searcher “big old house”

Running search(big old house, line)
Number of Hits: 4
doc_id: 2, score: 1.0412337 [In the big old house in the big old gown.]
doc_id: 3, score: 0.83452004 [The house in the town had the big old keep]
doc_id: 1, score: 0.054527204 [The old night keeper keeps the keep in the town]
doc_id: 4, score: 0.054527204 [Where the old night keeper never did sleep.]
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$ java Searcher “the”

Running search(the, line)
Number of Hits: 6
doc_id: 1, score: 0.4578294 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.4578294 [The house in the town had the big old keep]
doc_id: 5, score: 0.4578294 [The night keeper keeps the keep in the night]
doc_id: 2, score: 0.37381613 [In the big old house in the big old gown.]
doc_id: 6, score: 0.37381613 [And keeps in the dark and sleeps in the light.]
doc_id: 4, score: 0.2643279 [Where the old night keeper never did sleep.]
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$ java Searcher “the”

Running search(the, line)
Number of Hits: 8
doc_id: 8, score: 0.55138564 [The house.]
doc_id: 7, score: 0.5458439 [The house is the house.]
doc_id: 1, score: 0.47751394 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.47751394 [The house in the town had the big old keep]
doc_id: 5, score: 0.47751394 [The night keeper keeps the keep in the night]
doc_id: 2, score: 0.38988853 [In the big old house in the big old gown.]
doc_id: 6, score: 0.38988853 [And keeps in the dark and sleeps in the light.]
doc_id: 4, score: 0.27569282 [Where the old night keeper never did sleep.]

7    The house is the house.
8    The house.

shorter

Even shorter
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$ java Searcher “the”
doc_id: 9, score: 0.9393754 [the-the_the__the.]
doc_id: 12, score: 0.9393754 [The.]
doc_id: 13, score: 0.83029836 [The the.]
doc_id: 10, score: 0.81352293 [the-the___the.]
doc_id: 11, score: 0.6642387 [the-thethe__the.]
doc_id: 8, score: 0.5871096 [The house.]
doc_id: 16, score: 0.5871096 [The a.]
doc_id: 7, score: 0.5812088 [The house is the house.]
doc_id: 1, score: 0.5084518 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.5084518 [The house in the town had the big old keep]
doc_id: 5, score: 0.5084518 [The night keeper keeps the keep in the night]
doc_id: 14, score: 0.4696877 [The a b c.]
doc_id: 15, score: 0.4696877 [The a b.]
doc_id: 2, score: 0.41514918 [In the big old house in the big old gown.]
doc_id: 6, score: 0.41514918 [And keeps in the dark and sleeps in the light.]
doc_id: 4, score: 0.2935548 [Where the old night keeper never did sleep.]

7    The house is the house.
8    The house. 
9    the-the_the__the.
10   the-the___the.
11   the-thethe__the.

12   The.
13   The.
14   The a b c.
15   The a b.
16   The a.
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SimpleAnalyzer
→  filters LetterTokenizer with LowerCaseFilter

StandardAnalyzer
→  filters StandardTokenizer with StandardFilter, LowerCaseFilter 
      and StopFilter, using a list of English stop words.

StandardTokenizer
→  grammar-based tokenizer (done in JFlex), implements the Word Break rules 
      from the Unicode Text Segmentation algorithm, as specified in 
      Unicode Standard Annex #29. 

Standard Filter
→  normalizes tokens extracted with StandardTokenizer.

StopFilter
→  removes stop words from a token stream.
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$ java Searcher “the”

Running search(the, line)
Number of Hits: 0

48

StandardAnalyzer – Search



$ java Searcher “the”

Running search(the, line)
Number of Hits: 0

$ java Searcher “and”

Running search(and, line)
Number of Hits: 0
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StandardAnalyzer – Search



$ java Searcher “the”

Running search(the, line)
Number of Hits: 0

$ java Searcher “and”

Running search(and, line)
Number of Hits: 0

$ java Searcher “in”

Running search(in, line)
Number of Hits: 0

50

StandardAnalyzer – Search



$ java Searcher “keeper”

Running search(keeper, line)
Number of Hits: 3
doc_id: 5, score: 0.614891 [The night keeper keeps the keep in the night]
doc_id: 1, score: 0.5270494 [The old night keeper keeps the keep in the town]
doc_id: 4, score: 0.5270494 [Where the old night keeper never did sleep.]

51

StandardAnalyzer – Search



$ java Searcher “keeping”

Running search(keeping, line)
Number of Hits: 0

52

StandardAnalyzer – Search

→   stemming?



$ java Searcher “keeping”

Running search(keeping, line)
Number of Hits: 3
doc_id: 5, score: 0.614891 [The night keeper keeps the keep in the night]
doc_id: 1, score: 0.5270494 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.5270494 [The house in the town had the big old keep]
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EnglishAnalyzer

Stemming

→   EnglishAnalyzer  (in the Query part)
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END
Lecture 11
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