
Sebastian Maneth

Lecture 10
Full-Text Search

University of Edinburgh - February 16th, 2017

Applied Databases

2

Outline

1. Text Search

2. Ranking & Similarity Measures

3. Inverted Files

4. Lucene (outlook)

3

Extra Reading Material

→ Please check course web page.

Most of this lecture based on this article (PDF linked on course web page)

 Zobel, Justin and Moffat, Alistair,
 Inverted files for text search engines.
 ACM Comput. Surv. 38(2) (2006)

Good read!

4

Search Engines
Document collections

Web pages

Newspaper
articles

Historical
records

Electronic
mail

Index i1

Index i2

Index i3

Index i4

5

Search Engines
Document collections

Web pages

Newspaper
articles

Historical
records

Electronic
mail

Index i1

Index i2

Index i3

Index i4

“history search engine”

Keyword query

6

Search Engines
Document collections

Web pages

Newspaper
articles

Historical
records

Electronic
mail

Index i1

Index i2

Index i3

Index i4

“history search engine”

Keyword query

query is executed over index

engine returns a ranked lists
of matching documents

→ document 1
→ document 2
→ document 3
→ ….

7

1. Text Search

RDBMS search (e.g. SQL)

→ DB system must answer
 arbitrarily complex queries

→ a match is a tuple that meets a
 specified logical condition

→ DB systems returns
 all matching tuples

→ each tuple has a unique
 access key; may search over
 that key

Text search

→ most queries are simple lists
 of terms or phrases

→ a match is a document that is
 appropriate to the query wrt
 statistical heuristics
 (it may not even contain
 all query terms!)

→ search engine returns fixed number
 of matches ranked by their
 statistical similarity

→ there may be millions of documents
 with non-zero similarity

8

1. Text Search

Due to these “cultural” differences, the respective
research communities of

→ databases

→ information retrieval

have remained separate for many decades
(and continue to do so)

For the same reason, we use separate products
for combined search (→ Assignments 1 & 2 over ebay data):

→ MySQL
→ Apache Lucene

9

1. Text Search

→ databases

→ information retrieval

Question for you

→ what is the difference between “data” and “information”?

10

1. Text Search

Challenges

→ query term may occur in many documents
→ each document may contain many terms

New
→ representations for text indexes
→ index construction techniques
→ algorithms for evaluation of text queries

→ compression and
→ careful organization

crucial for rapid response
of major
Web Search Engines
(e.g. Google or Yahoo)

reduction of
– index sizes
– time
– disk traffic during query evaluation

11

1. Text Search

Search Engine = tool to find documents from a collection that
 are good matches to a user query

Collections are, e.g., web pages, news articles, emails, etc.

Collections vary dramatically in size

→ 10 years of research papers by a research (plain text)
 ca. 10 megabytes

→ 10 years of emails of the researcher
 ca. 100 megabytes

→ books in a small university library
 ca. 100 gigabytes

→ complete text of the web (year 2006)
 ca. 100 terabytes

(in 2014, Google has indexed 200TB, which is claimed to be only 0.4% of the Web)

12

1. Text Search

Search Engine = tool to find documents from a collection that
 are good matches to a user query

Most text querying done
→ by content
→ satisfies an information need

A document matches an information need,
if the user perceives it to be relevant.

→ relevance is inexact!
→ a document may be relevant, but contain none of the query terms
 or irrelevant, even though it contains all the query terms.

A system is effective, if a good proportion of the first k
search results are relevant.

13

1. Text Search
→ bag-of-words queries

big old house

→ docs 2 and 3 contain all query terms

→ docs 1 and 4 contain “old”

→ only doc 2 contains the phrase “big old house”

14

1. Text Search

Parsing method for extracting terms from text:

→ should HTML markup be indexed?
→ or terms that appear within markup?
→ hyphenated words, considered as one or two words?

More fundamentally:

→ stemming? (= remove variant endings of a word)
→ casefolding? (= convert to lowercase)
→ stopping? (= remove common / functions words, e.g. “the”)

15

1. Text Search
→ stemming? (= remove variant endings of a word)
→ casefolding? (= concert to lowercase)
→ stopping? (= remove common or functions words, e.g. “the”)

with casefolding (sorted vocabulary)

with stemming

with stopping

term parser

16

2. Ranking and Similarity Measures

big old house

Search Engine

Ranked List of Documents

2
3
1
4

→ which document is closest to query?

→ define similarity measure S(Q, D)

query Q

= query Q

document D

17

2. Similarity Measures

→ how to define a good similarity measure?

(1) give higher score if many query terms appear in the document (many times)

18

2. Similarity Measures

→ how to define a good similarity measure?

(1) give higher score if many query terms appear in the document (many times)

(2) give less weight to terms that appear in many documents

(3) give more weight to terms that appear many times in a document

(4) give less weight to documents that contain many terms.

Term Frequency (TF)
f(D,T) = how many times does term T appear in document D?

Document Frequence (DF)
f(T) = in how many documents of the collection does term T appear?

19

2. Similarity Measures

Term Frequency (TF)
f(D,T) = how many times does term T appear in document D?

Document Frequence (DF)
f(T) = in how many documents of the collection does term T appear?

Inverse Document Frequence (IDF)
1 / f(T)

TF * IDF = f(D,T) / f(T)

→ e.g. “old” appears in 4 documents (out of 6)
 f(1,”old”) = 1, thus TF*IDF = 1 / 4
 f(2,”old”) = 2, thus TF*IDF = 2 / 4
 f(3,”old”) = 1, thus TF*IDF = 1 / 4
 f(4,”old”) = 1, thus TF*IDF = 1 / 4

20

2. Similarity Measures

Term Frequency (TF)
f(D,T) = how many times does term T appear in document D?

Document Frequence (DF)
f(T) = in how many documents of the collection does term T appear?

Inverse Document Frequence (IDF)
1 / f(T)

TF * IDF = f(D,T) / f(T)

→ e.g. “old” appears in 4 documents (out of 6)
 f(1,”old”) = 1, thus TF*IDF = 1 / 4
 f(2,”old”) = 2, thus TF*IDF = 2 / 4
 f(3,”old”) = 1, thus TF*IDF = 1 / 4
 f(4,”old”) = 1, thus TF*IDF = 1 / 4

could be 300 appearances!

21

2. Similarity Measures

Term Frequency (TF)
f(D,T) = how many times does term T appear in document D?

Document Frequence (DF)
f(T) = in how many documents of the collection does term T appear?

Inverse Document Frequence (IDF)
1 / f(T)

TF * IDF = f(D,T) / f(T)

→ e.g. “old” appears in 4 documents (out of 6)
 f(1,”old”) = 1, thus TF*IDF = 1 / 4
 f(2,”old”) = 2, thus TF*IDF = 2 / 4
 f(3,”old”) = 1, thus TF*IDF = 1 / 4
 f(4,”old”) = 1, thus TF*IDF = 1 / 4

ignored (so far):
N = number of documents
 in the collection

22

2. Similarity Measures

Term Frequency (TF) (non-scaled) scaled: 1 + ln(f(D,T))
f(D,T) = how many times does term T appear in document D?

Document Frequence (DF)
f(T) = in how many documents of the collection does term T appear?

Inverse Document Frequence (IDF) (non-scaled)
1 / f(T)

TF * IDF = f(D,T) / f(T)

→ e.g. “old” appears in 4 documents (out of 6)
 f(1,”old”) = 1, thus TF*IDF = 1 / 4
 f(2,”old”) = 2, thus TF*IDF = 2 / 4

IDF = ln (1 + N / DF) – “scaled”

Thus, TF*IDF for “old” and doc1: (1+ln(1))*ln(1+ 6/4) = 0.916
 “old” and doc2: (1+ln(2))*ln(1+ 6/4) = 1.551

ignored (so far):
N = number of documents
 in the collection

23

Term TF(doc1) TF(doc2) TF(doc3) DF IDF

method 4,250 3,400 5,100 850 0.27
the 50,000 43,000 55,000 1,000 0.00
water 7,600 4,000 2,000 400 0.54
bioreactor 600 0 25 25 1.6

Example (patents)

term TF-IDF(doc1) TF-IDF(doc2) TF-IDF(doc3)

method 1148 918 1377
the 0 0 0
water 4104 2160 1080
bioreactor 960 0 40

inverse document frequency influences the TF-IDF value:
→ "method" occurs nearly as often as "water" in doc2
 but TF-IDF value of "water" is more than double that of “method”
→ a query "method bioreactor" would assign doc1 a score of 0.15
 and doc3 a score of 0.04.

Here: IDF = log(N/DF)

Here: TF is not scaled

24

2. Similarity Measures

Given a query (T1, T2, .., Tk), compute
for each document D the vector

<TFIDF(T1, D), …, TFIDF(Tk, D)>

25

2. Similarity Measures

Given a query (T1, T2, .., Tk), compute
for each document D the vector

<TFIDF(T1, D), …, TFIDF(Tk, D) >

for query q compute vector
< TFIDF(T1, q), …, TFIDF(Tk, q)>

26

2. Similarity Measures

→ the closer angle is to zero,
 the more similar
 the documents

→ if angle is >=90 degrees, then
 documents have no words in
 common

→ angle between DOC-k and Q determines similarity
 (length of vector not important)

→ “relative closeness” of term weights

→ DOC1 and Q are very similar!

27

2. Similarity Measures

Given a query (T1, T2, .., Tk), compute
for each document D the vector

<TFIDF(T1, D), …, TFIDF(Tk, D) >

consider cosine similarity between such
vector A and vector B for the query

cosine similarity:

cos(angle between A and B)

→ equals “1” if angle is zero
 (vectors have same direction)

→ equals “0” if orthogonal (90 degree)
 (means: no words in common)

28

2. Similarity Measures

cosine similarity:

cos(angle between A and B)

→ equals “1” if angle is zero
 (vectors have same direction)

→ equals “0” if orthogonal (90 degr)
 (means: no words in common)

Similarity(A,B) =

Given a query (T1, T2, .., Tk), compute
for each document D the vector

<TFIDF(T1, D), …, TFIDF(Tk, D) >

consider cosine similarity between such
vector A and vector B for the query

29

3. Inverted Indexes / Files

Fast query evaluation makes use of an Index.

30

3. Inverted Indexes / Files

Fast query evaluation makes use of an Index.

Index = datastructure that maps terms to documents containing them

31

3. Inverted Indexes / Files

Fast query evaluation makes use of an Index.

E.g. consider pages of a book as “documents”
 Book index: maps words to pages

A concordance is an alphabetical list of the principal words used
in a book or body of work, listing every instance of each word with
its immediate context. Because of the time, difficulty, and expense
involved in creating a concordance in the pre-computer era, only
works of special importance, such as the Vedas [1] Bible,
Qur'an or the works of Shakespeare or classical Latin
had concordances prepared for them.

The first Bible concordance, for the Vulgate Bible, was compiled
by Hugh of St Cher (d.1262), who employed 500 monks to assist
him. In 1448 Rabbi Mordecai Nathan completed a concordance
to the Hebrew Bible. It took him ten years.

Index = datastructure that maps terms to documents containing them

32

3. Inverted Indexes / Files

Inverted File = for each distinct word T, contains
 → f(T) (#documents that contain T)
 → pointer to the corresponding inverted list

Inverted List of T = pairs < D, f(D,T) >
 Listing each document D that contains T,
 with number f(D,T) of occurrences of T in D

Thumb rule for effective retrieval:

→ index all terms, even stop words, numbers, etc.

vocabulary

+ casefolding

doc-6 contains “and” 2 times

only 1 document contains “and”

+ casefolding

→ how do doc-2 and doc-4 differ?

→ doc-4 is more “specific”

w(d,t) = 1 + ln f(D,T)

W
d
 =

+ casefolding

w(d,t) = 1 + ln f(D,T)

W
d
 =

4*(1+ ln 2)^2 + 2 = 13.4666

+ casefolding

w(d,t) = 1 + ln f(D,T)

W_d =

4*(1+ ln 2)^2 + 2 = 13.4666

8*(1+ ln 1)^2 = 8

+ casefolding

query score S(q,d) for document d on query q,
from [Zobel, Moffat 2006]

(incorporates cosine-simularity and TF*IDFT)

+ casefolding

oldq =

→ compute score of S(q,d)
 of query q on documents 3 and 4:

inverted file entry for
“old”

+ casefolding

oldq =

→ compute score of S(q,d)
 of query q on documents 3 and 4:

S(q,doc-3) = w(doc-3, “old”) * w(q, “old”) / 11.4 = (1 + ln(1)) * ln(1 + 6/4) / 11.4
 = 0.0804

inverted file entry for
“old”

+ casefolding

oldq =

→ compute score of S(q,d)
 of query q on documents 3 and 4:

S(q,doc-3) = w(doc-3, “old”) * w(q, “old”) / 11.4 = (1 + ln(1)) * ln(1 + 6/4) / 11.4
 = 0.0804
S(q,doc-4) = w(doc-4, “old”) * w(q, “old”) / 8 = (1 + ln(1)) * ln(1 + 6/4) / 8
 = 0.1145

+ casefolding

oldq =

→ compute score of S(q,d)
 of query q on documents 3 and 4:

S(q,doc-3) = w(doc-3, “old”) * w(q, “old”) / 11.4 = (1 + ln(1)) * ln(1 + 6/4) / 11.4
 = 0.0804
S(q,doc-4) = w(doc-4, “old”) * w(q, “old”) / 8 = (1 + ln(1)) * ln(1 + 6/4) / 8
 = 0.1145

→ doc-4 has higher score because of lower W_d value! (it is more 'specific')

+ casefolding

big old houseq =

→ want to compute score of S(q,d)
 of query q on document 2

→ need to compute:

 (w(doc-2,”big”) * w(q,”big”)
 + w(doc-2,”old”) * w(q,”old”)
 + w(doc-2,”house”) * w(q,”house”)) / 13.5

+ casefolding

big old houseq =

→ want to compute score of S(q,d)
 of query q on document 2

→ need to compute:

 (w(doc-2,”big”) * w(q,”big”)
 + w(doc-2,”old”) * w(q,”old”)
 + w(doc-2,”house”) * w(q,”house”)) / 13.5

All we need are the
inverted file entries for
“big”, “old”, and “house”!

+ casefolding

big old houseq =

w(q,”big”) = ln(1 + 6 / 2) = ln(4)

w(doc-2, “big”) = 1 + ln(f(doc-2, “big”)) = 1+ ln(2)

+ casefolding

big old houseq =

w(q,”big”) = ln(1 + 6 / 2) = ln(4)

w(doc-2, “big”) = 1 + ln(f(doc-2, “big”)) = 1+ ln(2)

S(q,doc-2) = w(doc-2, “big”) * w(q, “big”) / W(doc-2) + .. = (1 + ln(2)) * ln(4) / 13.5
 = 2.3472 / 13.5 + ..

+ casefolding

big old houseq =

w(q,”old”) = ln(1 + 6 / 4) = ln(2.5)

w(doc-2, “old”) = 1 + ln(f(doc-2, “old”)) = 1+ ln(2)

S(q,doc-2) = (2.3472 + ln(2.5) * (1 + ln(2))) / 13.5 = (2.3472 + 1.5514) / 13.5

+ casefolding

big old houseq =

w(q,”house”) = ln(1 + 6 / 2) = ln(4)

w(doc-2, “house”) = 1 + ln(f(doc-2, “house”)) = 1+ ln(1) = 1

S(q,doc-2) = (3.8986 + ln(4) * 1) / 13.5 = (3.8986 + 1.3863) / 13.5 = 0.3915

+ casefolding

big old houseq =

w(q,”big”) = ln(1 + 6 / 2) = ln(4)

w(doc-3, “big”) = 1 + ln(f(doc-3, “big”)) = 1+ ln(1) = 1

S(q,doc-3) = w(doc-3, “big”) * w(q, “big”) / W(doc-3) + .. = ln(4) / 11.4 =

 1.3863 / 11.4

+ casefolding

big old houseq =

w(q,”old”) = ln(1 + 6 / 4) = ln(2.5)

w(doc-3, “old”) = 1 + ln(f(doc-3, “old”)) = 1+ ln(1) = 1

S(q,doc-3) = (1.3862 + ln(2.5) + ..) / 11.4 = (1.3863 + 0.9163) / 11.4

+ casefolding

big old houseq =

w(q,”old”) = ln(1 + 6 / 2) = ln(4)

w(doc-3, “old”) = 1 + ln(f(doc-3, “old”)) = 1+ ln(1) = 1

S(q,doc-3) = (1.3863 + 0.9163 + ln(4)) / 11.4 = 0.3236

+ casefolding

big old houseq =

S(q,doc-2) = (3.8986 + 1.3863) / 13.5 = 0.3915

S(q,doc-3) = (1.3863 + 0.9163 + ln(4)) / 11.4 = 0.3236

→ doc-2 is ranked higher
 (more relevant)
 than doc-3 for query q

52

3. Inverted Indexes / Files

→ inverted lists are stored contiguously

→ vocabulary stored in simple extensible structure (e.g., B-tree)
 (may be preprocessed by stemming and stopping)

→ inverted lists consist of doc numbers with #occurrences
 (possibly augmented by word positions)

→ ranking involves a set of accumulators and
 term-by-term processing of inverted lists

53

4. Lucene (outlook)

Lucene allows you to take care of everything mentioned today:

54

4. Lucene (outlook)

Lucene allows you to take care of everything mentioned today:

→ you can choose different Analyzers to do
 – casefolding
 – stemming (wrt a given language)
 – stopping (wrt a given language)

→ you can insert documents into a collection and let Lucene
 generate inverted files for you (= “indexing” – very efficient!)

55

4. Lucene (outlook)

Lucene allows you to take care of everything mentioned today:

→ you can choose different Analyzers to do
 – casefolding
 – stemming (wrt a given language)
 – stopping (wrt a given language)

→ you can insert documents into a collection and let Lucene
 generate inverted files for you (= “indexing” – very efficient!)

→ you can then (very efficiently) retrieve the k top-most relevant
 documents in your collection!

→ ranking function is a bit more sophisticated

56

Questions

1) sizes of inverted files?

57

Questions

1) sizes of inverted files?

Size of Inverted Index for NewsWire (1 GB): 435 MB

– 12MB for 400,000 words, pointers, and counts
– 1.6MB for 400,000 W(D)-values
– 280MB for 70,000,000 document identifiers (four bytes each)
– 140MB for 70,000,000 document frequencies (two bytes each)

58

Questions

1) sizes of inverted files?

2) limits of inverted files

 → imagine substring search (e.g. in DNA strands)

 → number of substrings is quadratic, cannot possibly generate/store them!

59

Questions

1) sizes of inverted files?

2) limits of inverted files

 → imagine substring search (e.g. in DNA strands)

 → number of substrings is quadratic, cannot possibly generate/store them!

SOLUTION:

3) in-memory indexes (for substring search, like DNA)

 → occupy a fraction of 435MB (40% of NewsWire)
 → run much faster :-)

 Google's speed = (in-memory + MANY machines)

60

Questions

1) sizes of inverted files?

2) limits of inverted files

 → imagine substring search (e.g. in DNA strands)

 → number of substrings is quadratic, cannot possibly generate/store them!

3) in-memory indexes for substring search

4) online substring search (without indexes)

61

END
Lecture 10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

