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1. INTRODUCTION

Document processing systems such as editors, formatters, and retrieval systems
deal with many different types of documents, such as books, articles, memoranda,
dictionaries, and letters. The Standard Generalized Markup Language (SGML)
establishes a common platform for the syntactic specification of document types
and conforming documents [ISO86, Gol90]. SGML is an ISO standard that has
been endorsed by a number of publishing houses throughout North America and
Europe, by the European Community, and by the U.S. Department of Defense.

Document types in SGML are defined, essentially, by bracketed, extended
context-free grammars [GH67, Woo87]. The right-hand sides of productions,
called model groups, are essentially regular expressions with two major differences.
First, model groups allow three new operators ?, 6, and +. Second, the model
groups must be unambiguous in the sense of Clause 11.2.4.3 of the standard. The
intent of the standard is to make it easier for a human to write regular expressions
that can be interpreted unambiguously. The notion of unambiguity for model
groups used in the ISO standard differs from, but is related to, unambiguity as
defined by Book et al. [BEGO71] for regular expressions. Eilenberg [Eil74]
defined ambiguity for finite-state automata, rather than for regular expressions; we
discuss the relationship of his notion to the one of Book et al. at the end of
Section 2. Book et al. required that each words be witnessed by at most one
sequence of positions of symbols in the regular expression that matches the word.
For example, consider the regular expression (a+b)* aa*. If we mark different
positions of the same symbol with subscripts, we get (a1+b1)* a2a3*; now, there
are three witnesses for the word aaa, namely a1a1a2 , a1a2a3 , and a2a3 a3 . Thus,
(a+b)* aa* is ambiguous; however, there is an unambiguous regular expression
that denotes the same language, namely (a+b)* a.

Unambiguity as defined in SGML is a one-symbol-lookahead version of unam-
biguity as defined by Book et al. In Clause 11.2.4.3 of the SGML standard a model
group (regular expression) is defined to be unambiguous if1 ``an element [a
symbol]... that occurs in the document instance [word] must be able to satisfy only
one primitive content token [position of the symbol in the regular expression]
without looking ahead in the document instance.'' In other words, the only valid
regular expressions are those that permit us to determine uniquely which position
of a symbol in a regular expression should match a symbol in an input word
without looking beyond that symbol in the input word. We call such regular
expressions 1-unambiguous.

Consider the regular expression (a+b)* a marked as (a1+b1)* a2 . In the word
baa, after we match symbol b with position b1 , we cannot decide whether we should
match the subsequent a in the word with position a1 or with position a2 without
looking ahead beyond the current symbol a in the word. Therefore, although
(a+b)* a is unambiguous in the sense of Book et al., it is not 1-unambiguous;
however, b*a(b*a)* is a 1-unambiguous regular expression that denotes the same
language as (a+b)* a.
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For unambiguous regular expressions in the sense of Book et al. [BEGO71], the
following results are known: Book et al. gave a construction that, for each regular
expression E, gives a nondeterministic finite-state automaton (NFA) GE that
recognizes the language of E. They show that E is unambiguous if and only if GE

is unambiguous. Berry and Sethi [BS86] showed that this NFA is the canonical
representation of the corresponding regular expression, because it has a natural
connection with the derivatives [Brz64] of the regular expression.

Regular expressions are built with the usual operators +, }, and *. SGML,
however, deals with model groups that may also contain the operators ?, 6, and +.
(E? denotes L(E+=), F 6 G denotes L(FG+GF ), and E + denotes L(EE*).)
Whereas the transformations of E+ into EE* and of F 6 G into FG+GF preserve
languages, they do not preserve 1-unambiguity. For example, (a*+b)+ is 1-unam-
biguous, but (a*+b)(a*+b)* is not. Similarly, a? 6 b is 1-unambiguous, but
a?b+ba? is not. In fact, there are languages that can be denoted by a 1-unam-
biguous model group but not by any 1-unambiguous regular expression [BK93a].
Furthermore, 1-unambiguous model groups are exponentially more succinct than
are 1-unambiguous regular expressions. For example, the smallest 1-unambiguous
regular expression equivalent to the 1-unambiguous model group a1 6 } } } 6 an has
size exponential in n.

We establish the basic results for 1-unambiguous regular expressions and
languages which are the basis for the results by Ahonen [AH97] for transforming
an ambiguous model group into an unambiguous one by generalizing the language
of the model group, the decidability results by Bru� ggemann�Klein [BK93a] for
model groups, and the results for SGML exceptions by Kilpela� inen and Wood
[KILW97]. In Section 2, after giving the basic definitions, we show that a regular
expression E is 1-unambiguous if and only if GE is a deterministic finite-state
automaton (DFA). Thus, one can decide, in time linear in the size of a regular
expression E, whether E is 1-unambiguous, and if it is, then one can also construct
the deterministic automaton GE in linear time [BK92a, BK93c].

We establish, in Section 3, that the family of 1-unambiguous languages is closed
under derivatives and, in Section 4, we establish a Kleene characterization of the
family of 1-unambiguous languages. An analogous Kleene characterization for
model groups still eludes us.

In Section 5, we present the main result of the paper��a characterization of
the 1-unambiguous languages in terms of their minimal deterministic finite-
state automata. As one application of this result we prove that the family of
1-unambiguous languages forms a proper subfamily of the regular languages,
in contrast to the result of Book et al. that each regular language is denoted
by some unambiguous regular expression. The characterization yields a decision
algorithm for 1-unambiguous languages. Moreover, if a regular language is
1-unambiguous, then we can construct an equivalent 1-unambiguous regular ex-
pression. The decision algorithm runs in time quadratic in the size of the minimal
deterministic finite-state automaton for the given language. The 1-unambiguous
regular expression that we construct from its minimal deterministic finite-state
automaton M can have size exponential in the size of M, which is worst-case
optimal.
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2. UNAMBIGUOUS REGULAR EXPRESSIONS

Let 7 be an alphabet of symbols. Regular expressions over 7 are built from =, <,
and symbols in 7 using the binary operators + and } and the unary operator *.
The language specified by a regular expression E is denoted by L(E). The symbols
that occur in a regular expression E are denoted by sym(E).

To indicate different positions of the same symbol in a regular expression, we
mark symbols with subscripts. For example, (a1+b1)* a2(a3 b2)* and (a4+b2)*
a1(a5 b1)* are both markings of the regular expression (a+b)* a(ab)*. For each
regular expression E over 7, a marking of E is denoted by E$. If H is a subexpression
of E, we assume that markings H$ and E$ are chosen in such a way that H$ is a
subexpression of E$. A marked regular expression E is a regular expression over 6,
the alphabet of subscripted symbols, where each subscripted symbol occurs at most
once in E.

The reverse of marking is the dropping of subscripts, indicated by < and defined
as follows: If E is a regular expression over 6, then E< is the regular expression
over 7 that is obtained from E by dropping all subscripts in E. Thus, a marked
regular expression H is a marking of regular expression E if and only if H<=E.
Unmarking can also be extended to words and languages: For a word w over 6,
let w< denote the word over 7 that is constructed from w by dropping all
subscripts. For a language L over 6, let L< denote [w< | w # L]. Then, for each
regular expression E over 6, L(E<)=L(E)<.

Uppercase letters from E through J denote regular expressions over 7 or over 6;
the letters a, b, and c denote symbols in 7; the letters x, y, and z denote subscripted
symbols in 6; and the letters u, v, and w denote words over 7 or over 6.

We now give a concise definition of the SGML notion of unambiguity.

Definition 2.1. A regular expression E is 1-unambiguous if and only if, for all
words u, v, w over 6 and all symbols x, y in 6, the conditions uxv, uyw # L(E$) and
x{ y imply x<{ y<. A regular language is 1-unambiguous if it is denoted by some
1-unambiguous regular expression.

In other words, for each word w denoted by a 1-unambiguous regular expression
E, there is exactly one witness; that is, there is one marked word v in L(E$) such
that v<=w. Furthermore, v can be constructed incrementally by examining the next
symbol of w that matches the next position of v. It is not hard to see that this
definition is independent of the marking E$ chosen for E. We derive an alternative
definition in terms of the pairs of positions that follow each other in a word of
L(E$).

Definition 2.2. For each language L, we define the following four sets:

first(L)=[b | there is a word w such that bw # L].

last(L)=[b | there is a word w such that wb # L].

follow(L, a)=[b | there are words v and w such that vabw # L], for each
symbol a.

followlast(L)=[b | there are words v and w such that v # L, v{=, and
vbw # L].
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Furthermore, we extend these sets to regular expressions E by defining
first(E)= first(L(E )) and similarly for the other sets.

Lemma 2.1 [BE96]. For each marked regular expression E, a word x1 } } } xn over
6, n�1, belongs to L(E) if and only if the following three conditions hold:

1. x1 # first(E ).

2. xn # last(E ).

3. xi+1 # follow(E, xi), for all i, 1�i<n.

The proof is a straightforward induction on E. It is essential, though, that E is
marked; for the regular expression aa, the word aaa is not in L(aa), although
a # first(aa) & last(aa) & follow(aa, a).

Lemma 2.1 shows that, for each marked regular expression E, the conditions
u1 zv1 , u2zv2 # L(E) imply u1 zv2 # L(E ). Therefore, we can give an alternative
characterization of 1-unambiguous regular expressions.

Lemma 2.2. A regular expression E is 1-unambiguous if and only if the following
two conditions hold:

1. For all x, y in first(E), x{ y implies x<{ y<.

2. For all z # sym(E$) and x, y in follow(E$, z), x{ y implies x<{ y<.

Glushkov [Glu61] and McNaughton and Yamada [MY60] were the first
researchers to construct finite-state automata from marked regular expressions
using the functions first, last, and follow; the automata are, however, deterministic.
Motivated by the work of Glushkov, Book et al. [BEGO71] defined a nondeter-
ministic automaton GE , for each regular expression E, that we call the Glushkov
automaton of E. Berstel and Pin [BE96] observed that an NFA for a regular
expression E can be constructed from the first, last, and follow functions of E as
opposed to a marking of E, provided that the language denoted by E is local. Berry
and Sethi [BS86] showed that Glushkov automata are natural representations of
regular expressions.

Definition 2.3. We define the Glushkov automaton GE=(QE , 7, $E , qI , FE) of
a regular expression E as follows:

1. QE=sym(E$)_* [qI]; that is, the states of GE are the positions of E$
together with a new, initial state qI .

2. For a # 7, $E (qI , a)=[x | x # first(E$), x<=a].

3. For x # sym(E$) and a # 7, $E (x, a)=[ y | y # follow(E$, x), y<=a].

4. FE={last(E$) _ [qI],
last(E$),

if = # L(E ),
otherwise.

Proposition 2.3 [BEGO71]. L(GE)=L(E).

Since L(E)=L(E$)<, the proof is a direct consequence of Lemma 2.1. Some
simple observations follow directly from the definition of the Glushkov automaton.
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Lemma 2.4. Let E be a regular expression. Then,

1. The Glushkov automaton GE has no transitions that lead to the initial state;
that is, it is nonreturning [Lei81].

2. Any two transitions that lead to the same state in GE have identical labels.

Using Glushkov automata, we can give another characterization of 1-unam-
biguous regular expressions that is a direct consequence of Lemma 2.2.

Lemma 2.5. A regular expression E is 1-unambiguous if and only if GE is
deterministic; that is, if and only if GE is a DFA.

Figure 1a demonstrates that (a+b)* a+= is not a 1-unambiguous regular
expression. Nevertheless, the language denoted by (a+b)* a+= is a 1-unam-
biguous language, since it is also denoted by (b*a)*, which is a 1-unambiguous
regular expression; see Fig. 1b.

The Glushkov automaton GE can be computed in time quadratic in the size of
E, which is worst-case optimal [BK92a, BK93c, CP92, CP97]. We can also
construct the Glushkov automaton GE by induction on E. The inductive definition
goes back to Mirkin [Mir66] and Leiss [Lei81]. Recently, Champarnaud [Cha97]
showed that both methods produce the same automaton; see also Watson's thesis
[Wat95].

Book et al. [BEGO71] defined an NFA to be unambiguous if each word is
denoted by at most one accepting path from the initial state to some final state.
They also define unambiguity of regular expressions and prove that a regular
expression is unambiguous if and only if its Glushkov automaton is unambiguous.
Eilenberg [Eil74] introduced a notion of unambiguous finite-state automata
and unambiguous regular languages that is different, yet related. He dealt with

FIG. 1. The Glushkov automata corresponding to (a) (a+b)* a+= and (b) (b*a)*.
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generalized finite-state automata whose transitions have multiplicities; such a
generalized finite-state automaton induces in a canonical way multiplicities on
words that depend on the number of accepting paths in the automaton and on the
multiplicities of the transitions. Then, an NFA M is unambiguous in the sense of
Book et al. if and only if the generalized finite-state automaton M$, whose
transitions all have the multiplicity 1, denotes only words of multiplicity 1; that is,
if and only if its language is unambiguous in the sense of Eilenberg.

3. DERIVATIVES OF 1-UNAMBIGUOUS LANGUAGES

We now prove that the family of 1-unambiguous languages is closed under
derivatives [Brz64]. This result is essential for characterizing the 1-unambiguous
languages. The proof makes use of a linear-time algorithm to convert regular
expressions into star normal form [BK92a, BK93c]. We use the same technique, in
Section 4, to obtain a Kleene theorem for 1-unambiguous languages.

Derivatives of languages and regular expressions were introduced by Brzozowski
[Brz64], who used them to construct minimal DFAs for regular languages
represented by regular expressions. We show that, given a 1-unambiguous regular
expression E, its derivatives are also 1-unambiguous provided that E is in star
formal form. We also show that each 1-unambiguous language can be represented
by a 1-unambiguous regular expression in star normal form. Thus, the family of
1-unambiguous languages is closed under derivatives.

Definition 3.1. The derivative w"L of a language L with respect to a word w
is the language [v | wv # L].

Definition 3.2. The derivative a"E of a regular expression E with respect to a
symbol a in 7 is defined inductively as follows:

E=< or E== : a"E=<.

E=b : a"E={=,
<,

if a=b,
otherwise.

E=F+G : a"E=a"F+a"G.

E=FG : a"E={(a"F ) G+a"G,
(a"F ) G,

if = # L(F ),
otherwise.

E=F*: a"E=(a"F ) F*.

Proposition 3.1 [Brz64]. The family of regular languages is closed under
derivatives. In particular, L(a"E )=a"L(E), for each regular expression E.

Example. Let H=((ab)*+c)* and I=(ab)*+c; then, H=I*. Hence, a"H=
(a"I ) I* and

a"I=a"(ab)*+a"c

=(a"(ab))(ab)*+<

==b(ab)*+<.
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Therefore,

a"H=((=b)(ab)*+<)((ab)*+c)*.

If we mark this regular expression as

((=b1)(a2 b3)*+<)((a4b5)*+c6)*,

we see that b3 can be followed by a2 and by a4 . Thus, a"H is not 1-unambiguous,
whereas H is 1-unambiguous.

It is the rule a"E=(a"F ) F* when E=F* that gives derivatives that are not
necessarily 1-unambiguous. In I, we have a last position labeled b that can be
followed by a first position labeled a. In a"I, an a position can still follow a last
position that is labeled b. Considering a"G=(a"I ) I*, however, the same b position
in a"I can now also be followed by a first position in I* that is labeled a; hence,
a"G is not 1-unambiguous. Expressions for which this situation cannot arise are
said to be in star normal form [BK92a, BK93c]. For each regular expression E in
star normal form, 1-unambiguity of E can be characterized solely in terms of the
languages of the subexpressions of E ; see Lemma 3.2. Using this characterization,
we can prove that derivatives of 1-unambiguous regular expressions in star normal
form are again 1-unambiguous. As has already been mentioned, because each
1-unambiguous language can be denoted by a 1-unambiguous regular expression in
star normal form, derivatives preserve 1-unambiguity of regular languages.

Definition 3.3. A regular expression E is in star normal form if, for each
starred subexpression H* of E, followlast(H$) & first(H$)=< and = � L(H ); in
particular, no first position in H can follow a last position in H.

Lemma 3.2. Let E be in star normal form.

E=<, E==, or E=a: E is 1-unambiguous.

E=F+G: E is 1-unambiguous if and only if F and G are 1-unambiguous and
first(F ) & first(G )=<.

E=FG: If L(E )=<, then E is 1-unambiguous.

If L(E ){< and = # L(F ), then E is 1-unambiguous if and only if F and G are
1-unambiguous, first(F ) & first(G )=<, and followlast(F ) & first(G )=<.

If L(E ){< and = � L(F ), then E is 1-unambiguous if and only if F and G are
1-unambiguous and followlast(F ) & first(G)=<.

E=F*: E is 1-unambiguous if and only if F is 1-unambiguous and follow
last(F ) & first(F )=<.

Proof. First note that we can prove a more general result by dropping the
lemma-wide condition that E be in star normal form. If we do so, we should add
an extra condition to the statement of the lemma ( followlast(F $) & first(F $)=<)
and change the proof of the last case slightly, as the we now have followlast(F $) &

first(F $)=< by assumption.

236 BRU� GGEMANN-KLEIN AND WOOD



File: DISTIL 268809 . By:DS . Date:23:01:98 . Time:13:02 LOP8M. V8.B. Page 01:01
Codes: 3846 Signs: 3013 . Length: 52 pic 10 pts, 222 mm

We prove the three most interesting cases. First, we assume that E=FG,
L(E ){<, and = # L(F ). Let F and G be 1-unambiguous, first(F ) & first(G)=<,
and followlast(F ) & first(G)=<. We show that E is 1-unambiguous. Let E$=F $G$
and let uxv, uyw # L(E$) such that x<= y<. If x, y # sym(F $), then there are v1

and w1 such that uxv1 , uyw1 # L(F $), because E$ is marked; hence, since F is
1-unambiguous, x= y. The case when x, y # sym(G$) is analogous. Finally, we show
that x # sym(F $) and y # sym(G$) cannot occur. If u==, then x # sym(F $) and
y # sym(G$) imply that x # first(F $) and y # first(G$); hence, x< # first(F ) and
y< # first(G), which contradicts the assumption that first(F ) & first(G)=<. If u{=,
then x # sym(F $) and y # sym(G$) imply that u # L(F $), because E$ is marked; hence,
x # followlast(F $) and y # first(G$). Therefore, x< # followlast(F ) and y< # first(G),
which contradicts the assumption that followlast(F ) & first(G)=<.

Second, let E=F*, F be 1-unambiguous, and followlast(F ) & first(F )=<. We
show that E is 1-unambiguous. Let E$=F $*. Lemma 2.1 implies that, for each word
w # L(E$), there is exactly one canonical decomposition w=w1 } } } wn , n�0, such
that, for 1�i�n,

1. wi # L(F $)"[=]; in particular, wi starts with a symbol in first(F $) and ends
with a symbol in last(F $).

2. wi contains no subword xy such that x # last(F $) and y # first(F $).

Now let uxv, uyw # L(E$) such that x<= y<. If u==, then x, y # first(F $); hence,
x= y, because F is 1-unambiguous. So let us assume that u=u0z. If z # last(F $) and
x # first(F $), then y # first(F $) (otherwise y # followlast(F $) and y< # followlast(F ) &

first(F )). Therefore, the canonical decompositions of uxv and uyw separate either
both of zx and zy or none of zx and zy. Hence, uxv and uyw can be decomposed
as uxv=u1 } } } un xv1 } } } vl and uyw=u1 } } } un yw1 } } } wk such that n�1, k, l�0, and
u1 , ..., un&1 , unxv1 , un yw1 , v2 , ..., vl , w2 , ..., wk # L(F $). Because F is 1-unambiguous,
x= y.

Third, let E=F* and a # followlast(F ) & first(F ). We show that E is not 1-unam-
biguous. Once more let E$=F $*. There are x, y, z, u, v, and w such that xu, vz, vzyw
# L(F $) and x<= y<=a. Therefore, x # first(F $) and y # followlast(F $); however,
since E is in star normal form, first(F $) & followlast(F $)=<, x{ y and E is not
1-unambiguous. K

Theorem A. Each 1-unambiguous language can be denoted by a 1-unambiguous
regular expression in star normal form.

Proof. Given a regular expression E, we can construct a regular expression Ev

in star normal form such that GEv=GE and L(E v)=L(E ) [BK92a, BK93c].
Hence, by Lemma 2.5, E v is 1-unambiguous if and only if E is 1-unambiguous. K

At this point, this paper is not quite self-contained; we have to refer to other
papers [BK92a, BK93c] for a full proof of Theorem A. However, the main idea,
why each regular expression can be transformed into star normal form without any
changes in the Glushkov automaton, is quite easy to grasp. Given a regular expres-
sion H, we can remove from its Glushkov automaton GH all the transitions that
lead from a state in last(H$) to a state in first(H$), and the resulting automaton is
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the Glushkov automaton of another regular expression, say of H b . Then,
followlast(H b $) & first(H b $)=< and GH b *=GH* . Therefore, if we replace each
subexpression H* of E with H b *, the resulting regular expression E v is in star nor-
mal form and GEv=GE . For example, if H=a*b*, then H b =a+b; hence, the star
normal form of E=(a*b*)* is Ev=(a+b)*. Figure 2 demonstrates that the
Glushkov automata of (a*b*)* and (a+b)* are identical.

The importance of star normal form for derivatives is captured in the following
result.

Theorem B. If E is a 1-unambiguous regular expression in star normal form, then
a"E is 1-unambiguous and in star normal form, for each a in 7.

Proof. A straightforward induction on E to show that a"E is in star normal
form. Using Lemma 3.2, we show by induction on E that a"E is 1-unambiguous.

E=<, E==, or E=b: a"E is 1-unambiguous.

E=F+G: By the induction hypothesis, a"F and a"G are both 1-unambiguous.
Furthermore, because first(F ) & first(G)=<, we have L(a"F )=< or L(a"G)=<;
hence, first(a"F ) & first(a"G)=<. Thus, a"E is 1-unambiguous.

E=FG: Without loss of generality, L(a"F ){< and L(E){<. Since E is
1-unambiguous, L(a"F ){< implies L(a"G)=<. Therefore, we have only to show
that (a"F ) G is 1-unambiguous. By the induction hypothesis, a"F is 1-unambiguous.
Furthermore, followlast(a"F ) & first(G) is a subset of followlast(F ) & first(G);
hence, it is empty. Finally, if = # L(a"F ), then first(a"F ) & first(G) is a subset of
followlast(F ) & first(G); hence, it is empty. Therefore, (a"F ) G is 1-unambiguous.

E=F*: Since E is 1-unambiguous and is in star normal form, followlast(F ) &

first(F )=<; thus, followlast(a"F ) & first(F*)=<. Furthermore, if = # L(a"F ),
then first(a"F ) & first(F*)=<, because it is a subset of followlast(F ) & first(F ).
Hence, by the induction hypothesis, a"E is 1-unambiguous. K

Because the derivative of a language L with respect to a word is the repeated
derivative of L with respect to the word's symbols, we need prove only that the
derivative of L with respect to a symbol is 1-unambiguous. Therefore, Theorems A
and B immediately indicate the following result.

Theorem C. If L is a 1-unambiguous language, then so is w"L, for all w in 7*.

FIG. 2. The Glushkov automaton corresponding to (a*b*)* and its star normal form (a+b)*.

238 BRU� GGEMANN-KLEIN AND WOOD



File: DISTIL 268811 . By:DS . Date:23:01:98 . Time:13:02 LOP8M. V8.B. Page 01:01
Codes: 2965 Signs: 1981 . Length: 52 pic 10 pts, 222 mm

4. A KLEENE THEOREM FOR 1-UNAMBIGUOUS LANGUAGES

We characterize the family of 1-unambiguous languages in terms of closure
properties. So far, we have seen one operation under which this family is closed:
namely, derivatives. The family of 1-unambiguous languages is not closed under
any of the operations that constitute the Kleene characterization of the regular
languages, namely union, concatenation, and star. We can, however, define restrictions
under which these operations preserve 1-unambiguous languages; the restricted
operations are still powerful enough to generate each 1-unambiguous language
from the usual primitives. The restrictions involve the first and last symbols of the
words in a language.

It is convenient, for a language L, to denote L"[=] by L&.

Theorem D. The family of 1-unambiguous languages is the smallest family D of
languages that satisfies the following conditions:

1. <, =, and [a] are in D, for each symbol a.

2. If A, B # D and first(A) & first(B)=<, then A _ B # D.

3. If A, B # D, = � A, and followlast(A) & first(B)=<, then AB # D.

4. If A # D, then A& # D.

5. If A # D and followlast(A) & first(A)=<, then A* # D.

We prove Theorem D by first showing that L is 1-unambiguous if and only if L&

is 1-unambiguous. To this end, for each regular expression E, we construct a
regular expression E& that denotes L(E )&. We then show that E is 1-unambiguous
if and only if E & is 1-unambiguous, provided that E is in star normal form.

Definition 4.1. For each regular expression E, define E & inductively as
follows:

E== or E=<: E &=<.

E=a: E&=a.

E=F+G: E&=F& +G&.

E=FG: E&={F&G+G&,
FG,

if = # L(E),
otherwise.

E=F*: E&=F&F*.

Lemma 4.1.

1. L(E&)=L(E )&.

2. If E is in star normal form, then so is E &.

The proof is a straightforward induction on E.

Lemma 4.2. A regular expression E in star normal form is 1-unambiguous if and
only if E& is 1-unambiguous.

Proof. The proof is by induction on E. Each subexpression of E and E& is in
star normal form. Thus, we can apply Lemma 3.2. We show only the case when
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E=FG and = # L(E ). In this case, E &=F&G+G&. If L(F&)=<, then
L(F )�[=]; hence, both F and F& are 1-unambiguous in this case. Now, E is
1-unambiguous if and only if F and G are 1-unambiguous, first(F ) & first(G)=<,
and followlast(F ) & first(G)=<. On the other hand, by the induction hypothesis,
E& is 1-unambiguous if and only if F& and G& are 1-unambiguous, first(F&G) &

first(G)=<, and followlast(F&) & first(G)=<. This property holds even if
L(F&)=< and Lemma 3.2 cannot be applied to F&G. Again by the induction
hypothesis, the two conditions are equivalent. K

Proof of Theorem D. First, let D be a family of languages that satisfies condi-
tions 1 through 5. We show that D contains all 1-unambiguous languages. For this
purpose, we prove, by induction on E, that L(E ) # D if E is in star normal form.
It is a straightforward application of Lemma 3.2. We show only the case when
E=FG, L(E){<, and = # L(F ). By Lemma 3.2, F and G are 1-unambiguous, first
(F ) & first(G)=<, and followlast(F ) & first(G)=<. Furthermore, L(E )=L(F )&

L(G) _ L(G). By the induction hypothesis, L(F )& # D and L(G) # D. Finally,
= � L(F )&, followlast(L(F )&) & first(G)= followlast(F ) & first(G)=<, and first
(L(F )& L(G)) & first(L(G))= first(F ) & first(G)=<; hence, L(E ) # D.

To complete the proof we prove that the family of 1-unambiguous languages
fulfills conditions 1 through 5. We show only that it fulfills condition 5. Let A be
a 1-unambiguous language such that followlast(A) & first(A)=<. Without loss of
generality, we assume that = � A. Let E be a 1-unambiguous regular expression in
star normal form that denotes A. We show first that E* is also in star normal form;
that is, that followlast(E$) & first(E$)=<. It suffices to show that ( followlast(E$) &

first(E$))<=<. This equation holds because ( followlast(E$) & fist(E$))< is a
subset of followlast(E ) & first(E ), or, equivalently, of followlast(A) & first(A). By
Lemma 3.2, E* is 1-unambiguous. Thus, A*, which is denoted by E*, is a 1-unam-
biguous language. K

5. THE RECOGNITION OF 1-UNAMBIGUOUS LANGUAGES

It is well known that, for each regular language L, the minimum-state deter-
ministic automaton MS(L) of L is uniquely determined up to a renaming of states.
We examine the structural properties of MS(L) that characterize a 1-unambiguous
language L.

Starting from a regular expression E that denotes L, we can construct the minimal
DFA MS(L) by applying the subset construction to the Glushkov automaton GE

and then minimizing the resulting DFA using the equivalence-class construction
[ASU86]. If E is a 1-unambiguous regular expression, however, then its Glushkov
automaton is already a DFA and we do not need the subset construction. Thus, we
look for structural properties of Glushkov automata that are preserved under
minimization, but are not necessarily preserved under the subset construction.

Automata that contain no useless states2 are called trim [Eil74, Per90]. In this
paper, we also consider G< , the Glushkov automaton of the empty set, to be trim,
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although its single state is useless. In this section, we denote regular languages by
trim regular expressions; that is, regular expressions that are either syntactically
identical to < or do not contain < as a syntactic constituent. On the one hand,
it is not hard to see that the Glushkov automaton of a trim regular expression is
also trim. On the other hand, < in a regular expression E can introduce useless
states into GE ; consider, for example, a(<b+c). As usual, we can transform a
regular expression E into a trim regular expression E t such that L(E)=L(E t) by
applying the following rules:

E+<, <+E � E; E<, <E � <; <* � =.

In the context of 1-unambiguous languages, this transformation is justified by the
following lemma.

Lemma 5.1. Each 1-unambiguous language can be denoted by a trim, 1-unam-
biguous regular expression. In particular, a regular expression E is 1-unambiguous if
and only if E t is 1-unambiguous.

Proof. It is not hard to see that E$t is a marking of E t. Since L(E$)=L(E$t), the
regular expression E is 1-unambiguous if and only if E t is 1-unambiguous. K

Now we consider the cyclic structure of Glushkov automata that we describe in
terms of orbits and gates. It turns out that the structure of orbits and gates is
preserved under minimization; hence, orbits and gates are exactly the right tools for
characterizing 1-unambiguous languages.

Definition 5.1. For a state q of an NFA M, the orbit of q, denoted by O(q),
is the strongly connected component of q; that is, it is the set of states of M that
can be reached from q and from which q can be reached. We consider the orbit of
q to be trivial if it consists of only the state q and there are no transitions from q
to itself in M.

Definition 5.2. A state q of an NFA M is a gate of its orbit O(q) if q is a final
state or q has a transition to a state outside O(q). The NFA M has the orbit
property if all the gates of each orbit have identical connections to the outside
world. More precisely, if any pair q1 and q2 of gates in the same orbit satisfies the
following two conditions:

1. q1 is final if and only if q2 is final.

2. For all states q outside the orbit of q1 and q2 , there is a transition (q1 , a, q)
in M if and only if there is a transition (q2 , a, q) in M.

The two automata in Fig. 3 have three orbits, namely [1], [2, 3], and [4]. The
singleton orbits are trivial, and each state is a gate of its orbit. The orbit property
holds for the automaton in Fig. 3a, whereas it does not hold for the one in Fig. 3b.

Definition 5.3. For a state q of an NFA M, let the orbit automaton Mq of q
be the automaton obtained by restricting the state set of M to O(q) with initial state
q and with the gates of O(q) as the final states of Mq . The language of Mq is called
the orbit language of q. The languages L(Mq) are also called the orbit languages
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FIG. 3. Two NFAs: (a) fulfills the orbit property, (b) does not.

of M. We also consider a larger subautomaton of M related to q: The NFA Mq is
M with its state set restricted to the states reachable from q, with q as its initial
state, and its transitions are similarly restricted.

We now establish the following characterization of 1-unambiguous languages.

Theorem E. Let M be a minimal DFA. Then, L(M) is 1-unambiguous if and
only if M has the orbit property and all orbit languages of M are 1-unambiguous. If
L(M) is 1-unambiguous, then a 1-unambiguous regular expression denoting L(M) can
be constructed from 1-unambiguous regular expressions for the orbit languages.

We begin the proof of Theorem E by demonstrating that it holds in the left-to-
right direction. First, we show that the Glushkov automaton of a 1-unambiguous
regular expression has the orbit property and that all its orbit languages are
1-unambiguous. Second, we show that these two properties are preserved under
minimization. Thus, we first investigate the orbit structure of a Glushkov
automaton. Then, we demonstrate how the orbit structure of a DFA is related to
the orbit structure of the DFA's equivalent minimal automaton.

Let us recall that, for each regular expression E, the state set of the Glushkov
automaton GE consists of sym(E$), the true states of GE , plus the initial state. Let
H be a subexpression of E. Then, sym(H$) is a subset of sym(E$). Given x, y in
sym(H$) such that y # follow(H$, x), we also have y # follow(E$, x), provided that E
is trim. Therefore, all transitions between true states of GH are also transitions in
GE . In this sense, GH is embedded in GE . It is essential, though, that E is trim,
because otherwise H can be blocked by the empty set in E; for example, when
E=aa< and H=aa, GH has two a transitions, but GE has none.

Lemma 5.2. Let E be a trim regular expression and x # sym(E$). Then, the orbits
and gates in GE can be described as follows:
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1. If there is no starred subexpression H* of E such that x # sym(H$), then
O(x)=[x] and O(x) is trivial. On the other hand, if H* is the maximal starred
subexpression of E such that x # sym(H$), then O(x)=sym(H$) and O(x) is not
trivial. Finally, the orbit of the initial state is trivial.

2. If H* is a maximal starred subexpression of E such that sym(H$){<, then
the last positions of H$ are the gates of the orbit given by sym(H$). Furthermore, each
transition of GE between two states of sym(H$) is already present in GH* .

The proof is by a straightforward induction on E.

Lemma 5.3. For each trim regular expression E, the Glushkov automaton GE

satisfies the orbit property.

Proof. First, we observe that, for each subexpression H of E, last(H$)�last(E$)
or last(H$) & last(E$)=<. Then, the claim follows from the previous lemma by
induction on E. We show only the case when E=FG and we consider only
nontrivial orbits that are contained in sym(F $). Thus, let H* be a maximal starred
subexpression of F such that sym(H*){<. By the induction hypothesis, the orbit
sym(H$) of GF satisfies the orbit property. If last(H$) & last(E$)=<, then no gate
of sym(H$) is final in GE and the transitions of GE that leave the orbit sym(H$) are
the same as the transitions of GF that leave sym(H$). On the other hand, if
last(H$)�last(E$), then all the gates of sym(H$) in GE are final states and, for each
x in first(G$), an x< transition to x is added to each gate of sym(H$) in GE in
addition to the transitions that are already present in GF . Therefore, in both cases,
the orbit given by sym(H$) in GE satisfies the orbit property. K

Lemma 5.4. Let E be a trim, 1-unambiguous regular expression. Then, each orbit
language of GE is 1-unambiguous. In particular, if the orbit of state x in GE is
nontrivial, then there is a maximal starred subexpression H* of E such that the orbit
language of x is a derivative of L(H*).

Proof. We consider only nontrivial orbits. Thus, let H* be a maximal starred
subexpression of E and x # sym(H$). Since L(H*) is 1-unambiguous and the
derivatives of 1-unambiguous languages are 1-unambiguous, it suffices to show that
the orbit language L((GE)x) of x in GE is a derivative of L(H*). All transitions of
GE among the states of sym(H$) are already transitions in GH* . Furthermore, if we
remove the initial state and its transitions from GH* and make x the new initial
state, the resulting automaton is (GE)x . Now let w be a word that takes the initial
state to x in GH* . Because GH* is nonreturning and deterministic, L((GE)x) is the
derivative of L(GH*) with respect to w. K

Now we consider the relationship between the orbit structure of a DFA and its
minimization.

Definition 5.4. Let M be a DFA and M� be its equivalent minimal DFA. For
a state q of M let [q] denote the set of states of M that are equivalent to q. In
particular, [[q] | q state of M] is the set of states of M� . Then, an orbit C of M is
a lift of an orbit K of M� (or C lifts K) if K=[[q] | q # C].
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Lemma 5.5. Let M be a DFA and let M� be its equivalent minimal DFA. Then,
for each orbit K of M� there is an orbit C of M such that

1. C is a lift of K and

2. for each q in C, the orbit languages of q in M and [q] in M� are identical.

Proof. First we show that, given an orbit K of M� and a state p of M such that
[ p] # K, there is an orbit C$ of M that is reachable from p and lifts K. Indeed, there
are states q0 , q1 , ..., qn of M, p=q0 , and symbols a0 , ..., an such that

[q0] w�
a0 [q1] � } } } � [qn] w�

an [q0]

and

K=[[qi] | 0�i�n].

Unfortunately, the states of M reachable from q0 with a0 } } } ai , 0�i�n, do not
necessarily belong to a single orbit of M. By repeatedly applying the same sequence
a0 } } } an to q0 in M, however, we finally get into a cycle whose states all belong to
a single orbit C$ of M. By construction, K�[[q] | q # C$]. Furthermore, if q and
r belong to one orbit of M, then [q] and [r] belong to one orbit in M� . Thus, C$
lifts K.

The orbits of M are partially ordered with respect to reachability; therefore, we
can choose C as a maximal (with respect to reachability) orbit C$ that lifts K. It
suffices to prove the following two properties:

1. For each q in C, q is a gate of C if and only if [q] is a gate of K.

2. For all q, r in C and a in 7, if [q] w�a [r], then there is an s in C
equivalent to r such that q w�a s.

The first claim follows from the second. So let q, r # C, [q] w�a [r]. Then, there is
a state s of M equivalent to r such that q w�a s. We have to show that s # C. Since
[s]=[r] # K, we can reach an orbit C$ of M from s that lifts K. The maximality
of C implies C=C$; hence, s # C. K

Lemma 5.6. Let M be a DFA and M� be its equivalent minimal DFA.

1. If M satisfies the orbit property, then so does M� .

2. If all orbit languages of M are 1-unambiguous, then so are all orbit
languages of M� .

Proof. Let K be an orbit of M� and C be a lift of K according to Lemma 5.5.
Furthermore, we assume that M has an a transition from q in C to r outside C. We
show that [r] � K.

Because M is deterministic, Mq has no a transition from q; hence, a"L(Mq)=<.
Since the orbit languages of q and [q] are identical, a"L(M� [q])=<; hence, M� [q]

has no a transition from [q]. Yet, M� has an a transition from [q] to [r]; thus,
[r] � K.

The proof of the lemma is completed by applying Lemma 5.5. K
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Proof of Theorem E. Lemmas 5.3, 5.4, and 5.6 establish the left-to-right direction.
We show the implication from right to left by induction on the number of orbits
of M. We assume that M has more than one orbit and consider the orbit O(qI) of
the initial state qI . Let a1 , ..., an be the distinct symbols of the transitions that leave
O(qI). Since M satisfies the orbit property, there are states q1 , ..., qn outside O(qI)
such that all gates of O(qI) have an ai transition to qi , and there are no other
outgoing transitions from O(qI) to the outside. Since M is deterministic, MqI

has no
ai transition from a final state.

We consider Mqi, the subautomaton of M whose states are the states of M that
are reachable from qi as the initial state. Because Mqi is a minimal DFA that has
fewer orbits than M, the language of Mqi is 1-unambiguous by the induction
hypothesis. Furthermore, either

L(M)=L(MqI
)(a1L(Mq1) _ } } } _ anL(Mqn))

or

L(M)=L(MqI
)(a1L(Mq1) _ } } } _ anL(Mqn) _ [=]).

By Lemma 3.2, a 1-unambiguous regular expression for M can be constructed from
1-unambiguous regular expressions for MqI

and Mq1, ..., Mqn, which completes the
proof. K

Theorem E suggests an inductive algorithm to determine, given a minimal DFA
M, whether L(M) is 1-unambiguous; in fact, if M satisfies the orbit property, then
all orbit automata of M are also minimal. Yet we still have to cover the case when
M consists of a single, nontrivial orbit. In this case, Lemmas 5.4 and 5.5 indicate
that there is a 1-unambiguous regular expression H* such that L(M) is a derivative
of L(H*). The question is, how can we construct GH from M? Obviously, we have
to cut from M the ``feedback'' transitions that distinguish GH* from GH . It turns out
that, if we cut from M the maximum number of ``feedback'' transitions, then we
arrive at an automaton N that consists of several disconnected subautomata. Each
of these subautomata recognizes a 1-unambiguous language, and a 1-unambiguous
regular expression for L(M) can be constructed from the 1-unambiguous regular
expressions for the languages of the subautomata. Then, Theorem E can be applied
to the subautomata of N recursively.

Definition 5.5. For a DFA M, a symbol a in 7 is M consistent if there is a
state f (a) in M such that all final states of M have an a transition to f (a). A set
S of symbols is M consistent if each symbol in S is M consistent.

Definition 5.6. Let M be an NFA and S be a set of symbols. The S cut MS

of M is constructed from M by removing, for each a # S, all a transitions that leave
a final state of M.

Figure 4a gives a DFA for which [a, b] is consistent and Fig. 4b gives its [a, b]
cut.

The following theorem is a generalization of Theorem E. It also deals with minimal
automata that consist of a single, nontrivial orbit.
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FIG. 4. DFAs and cuts: (a) A DFA for which [a, b] is consistent. (b) Its [a, b] cut.

Theorem F. Let M be a minimal DFA and S be an M-consistent set of symbols.
Then, L(M) is 1-unambiguous if and only if

1. MS satisfies the orbit property and

2. all orbit languages of MS are 1-unambiguous.

Furthermore, if M consists of a single, nontrivial orbit and L(M) is 1-unambiguous,
M has at least one M-consistent symbol.

We illustrate Theorem F with two examples. The language recognized by
the automaton in Fig. 4a is 1-unambiguous, because its [a, b] cut has only
trivial orbits; a 1-unambiguous regular expression for the whole language is
c(a+b(=+cc))*.

Figure 5 shows the minimal DFA that recognizes (0+1)* 0(0+1). It consists of
a single orbit with two gates, 00 and 01, but neither 0 nor 1 is consistent. Thus,
(0+1)* 0(0+1) does not denote a 1-unambiguous language. Similarly, the regular
expressions (0+1)* 0(0+1)n, for each n�1, do not denote 1-unambiguous
languages.

FIG. 5. The minimal DFA for (0+1)* 0(0+1).
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We need some preparation before we can prove Theorem F. The relationship
between a DFA and its cuts is captured in the following result.

Lemma 5.7. Let M be a trim DFA and S be an M-consistent set of symbols.
Then, L(M) is 1-unambiguous if and only if, for each state q, the language L(M q

S)
is 1-unambiguous. If L(M) is 1-unambiguous, a 1-unambiguous regular expression
denoting L(M) can be constructed from 1-unambiguous regular expressions for the
languages L(M q

S).

Proof. First, we show that

L(M)=L(MS) \ .
a # S

aL(M f (a)
S )+*

.

Let w=a1 } } } an # L(M), n�1, let

s=[i | 1�i�n, ai # S, a1 } } } ai&1 # L(M)] _ [n+1],

and let i1 , ..., ik be the elements of s in increasing order. Then,

1. a1 } } } ai1&1 # L(MS) and

2. aij
} } } aij+1&1 # aij

L(M f (aij
)

S ),

for 1� j<k, because M is deterministic. Thus,

w # L(MS) \ .
a # S

aL(M (a)
S )+*

.

On the other hand, if w # L(MS), ai # S, wi # L(M f (ai)
S ), for 1�i�n, n�0, then w

takes the initial state to a final state in M, ai takes the final state to f (ai) in M, and
wi takes f (ai) to a final state in M, for 1�i�n. Thus, wa1w1 } } } anwn # L(M).

Next, followlast(L(MS))�7"S and followlast(aL(M f (a)
S )�7"S. Furthermore, if

= # L(MS), then = # L(M); hence, first(L(Ms))�7"S. By Lemma 3.2, if L(M q
S) is

1-unambiguous, for each state q of M, then L(M) is 1-unambiguous.
Finally, we assume that L(M) is 1-unambiguous; that is, there is a trim, 1-unam-

biguous regular expression E in star normal form that denotes L(M). Since M is
trim, there is, for each state q, a word w that takes the initial state to q in M. Let
p be the state to which w takes the initial state in GE . Since M and GE are both
deterministic, L(M q

S)=L(GE p
S
). By Lemma 5.8, which we prove later, L(M q

S) is
1-unambiguous. K

In the proof of Lemma 5.7, we have used the fact that L(GE q
S
) is 1-unambiguous,

for each trim, 1-unambiguous regular expression E in star normal form. To prove
this fact, we define a regular expression E q

S that denotes L(GE q
S
) and show that E q

S

is 1-unambiguous and in star normal form if E is. For I=[i1 , ..., in], n�0, we use
�i # I Ei as shorthand for the regular expression Ei1

+ } } } +Ein
.

Definition 5.7. Let E be a trim regular expression, S be a set of symbols, and
q be a state of GE ; that is, q=qI or q # sym(E$). We define a regular expression E q

S

that denotes L(GE q
S
) by induction on E as follows:
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E=< or E== : E q
S=E.

E=a : E q
S={a,

=,
if q=qI ,
if q # sym(E$).

E=F+G : E q
S={

=+ �
a � S

(aa"F qI
S )+ �

a � S

(aa"G qI
S ), if q=qI , = # L(E ),

F q
S+G q

S , if q=qI , = � L(E ),

F q
S , if q # sym(F $),

G q
S , if q # sym(G$).

E=FG : E q
S={

F q
S \�

a � S

(aa"G qI
S )+ , if q=qI or q # sym(F $), = # L(G).

F q
<G qI

S , if q=qI or q # sym(F $), = � L(G),

G q
S , if q # sym(G$).

E=F*: E q
S=F q

S \�
a � S

(aa"F qI
S )+*

.

It is a straightforward, though laborious, induction to show that L(GE q
S
)=L(E q

S),
for each trim regular expression E.

Lemma 5.8. Let E be a trim regular expression, S be a set of symbols, and q be
a state of GE . If E is 1-unambiguous and in star normal form, then so is E q

S .

Proof. The proof is by induction on E. We apply the inductive definition of
1-unambiguity given in Lemma 3.2. Furthermore, we make use of the fact that
first(aa"H )� first(H ), because, if a � first(H ), then L(a"H )=< and, thus,
first(aa"H )=<.

We establish the three most interesting cases. First, let E=F+G, q=qI , and
= # L(E). By the induction hypothesis, F qI

S and G qI
S are 1-unambiguous and in star

normal form; hence, by Theorem B, so are a"F qI
S and a"G qI

S . Furthermore,
first(aa"F qI

S ) & first(aa"G qI
S ) is a subset of first(F qI

S ) & first(G qI
S ) and, thus, of first(F ) &

first(G), which is empty. Therefore, E q
S is also 1-unambiguous and in star normal.

Second, let E=FG, q=qI or q # sym(F $), and = � L(G). Then, followlast(F q
<)�

followlast(F); hence, followlast(F q
<) & first(G qI

S )� followlast(F ) & first(G)=<.
Furthermore, if = # L(F q

<) and q=qI , then = # L(F ) and first(F q
<)= first(F ); hence,

first(F q
<) & first(G qI

S )�first(F) & first(G)=<. On the other hand, if = # L(F q
<) and

q # sym(F $), then q # last(F $), because F is trim; hence, first(F q
<) & first(G qI

S )�
followlast(F) & first(G)=<. Finally, by the induction hypothesis, F q

< and G qI
S are

1-unambiguous and in star normal form. Thus, E q
S is also 1-unambiguous and in

star normal form.
Third, let E=F*. Then, followlast(F q

S) & first(aa"F qI
S )�followlast(F ) & first

(F )=<, since E is in star normal form. Next, if = # L(F q
S), then q{qI , because E

is in star normal form implies that = � L(F ); hence, as in the previous case, first
(F q

S) & first(aa"F qI
S )�followlast(F ) & first(F )=<. Finally, followlast(aa"F qI

S )�
followlast(F); hence, for H=�a � S (aa"F qI

S ), followlast(H ) & first(H)� followlast
(F ) & first(F)=<. Therefore, followlast(H$) & first(H$)=<. By the induction
hypothesis and Theorem B, E q

S is 1-unambiguous and in star normal form. K
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To prove Theorem F, we need to apply Lemma 5.7 and Theorem E. We now
prove that the preconditions of Theorem E are satisfied.

Lemma 5.9. Let M be a minimal DFA and S be an M-consistent set of symbols.
Then, M q

S is minimal, for each state q of M.

Proof. We show that no two states of MS are equivalent in MS . Let p and q be
two distinct states of M and w be a word of minimal length that distinguishes
between p and q; that is, that takes one, but not both, of p and q to a final state
in M. If w=uav and a # S, then the minimality of w implies that u takes neither p
nor q to a final state in M, or u takes both p and q to a final state in M. However,
if u takes p and q to a final state in M, then ua takes p and q to the same state f (a),
because a is M consistent; thus, in this case, w cannot distinguish between p and
q. Therefore, u takes neither p nor q to a final state in M; hence, w distinguishes
between p and q in MS . K

Proof of Theorem F. Let M be a minimal DFA and S be an M-consistent set
of symbols. By Lemma 5.9, M q

S is minimal, for each state q of M. By Lemma 5.7
and Theorem E, L(M) is 1-unambiguous if and only if each state q of M satisfies
the following two conditions:

1. M q
S satisfies the orbit property and is trim.

2. Each orbit language of M q
S is 1-unambiguous.

However, the orbit automaton of q in M q
S is identical to the orbit automaton of q

in MS and the transitions that leave the orbit of q in M q
S are the same as the transi-

tions that leave the orbit of q in MS . Therefore, L(M) is 1-unambiguous if and only
if the two conditions in the theorem hold.

Now let M consist of a single, nontrivial orbit and L(M) be 1-unambiguous.
Lemmas 5.4 and 5.5 imply that there is a 1-unambiguous regular expression E*
such that L(M) is a derivative of L(E*); that is, L(M)=L(Gq

E*), for some state q.
Furthermore, first(E ) is Gq

E* consistent. Since M is the minimization of Gq
E* ,

first(E) is also M consistent. Because M is a nontrivial orbit, first(E){<, which
concludes the proof. K

Theorem F gives rise to the following decidability result for 1-unambiguous
regular languages, which we prove after establishing one preliminary result.

Theorem G. It is decidable whether the language of a DFA M is 1-unambiguous
and the decision algorithm runs in time quadratic in the size of M. If the language of
the DFA M is 1-unambiguous, then an equivalent 1-unambiguous regular expression
can be constructed in time exponential in the size of M.

Starting from a minimal DFA M and a set S of M-consistent symbols, we apply
Theorem F recursively to the orbit automata of MS . For this reason we first ensure
that the orbit automata are also minimal.
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Lemma 5.10. Let M be a minimal DFA that satisfies the orbit property. Then,
Mq is minimal, for each state q of M.

Proof. Let w be a word in 7* that distinguishes between two states p and q in
M that belong to the same orbit of M. Then, w takes one, but not both of p and
q to a final state in M.

Let u be the longest subword of w such that both computations with u starting
from p and from q stay within Mq . If u=w, then w distinguishes between p and q
in Mq . Otherwise, consider the symbol a in 7 such that ua is a subword of w. We
assume without loss of generality that the computation of ua starting from p does
not stay within Mq . There can be two reasons for this occurrence. The first
possibility is that u takes p to a final state in Mq and there is an a transition from
the final state out of the orbit of q. Then, u does not take q to a final state in Mq ,
because otherwise ua would take p and q to the same state in M (by the orbit
property). Hence, w cannot distinguish between p and q in M. Therefore, u
distinguishes between p and q in Mq . The second possibility is that u takes p to a
state in Mq that has no a transition in M. Then, w takes q to a final state in M.
Thus, there is a subword v of w that is at least as long as u and takes q to a final
state in Mq . This word v distinguishes p from q in Mq . K

Proof of Theorem G. Since the minimal DFA for each DFA M can be
computed in time quadratic in the size of M [HU79], we can assume without loss
of generality that M is minimal. Figure 6 defines a function 1-unambiguous(M) that
returns true if and only if L(M) is 1-unambiguous.

After statement 5 of Fig. 6, each orbit automaton of MS is smaller than M and
is minimal, since MS has the orbit property. Therefore, the algorithm halts.

If x and y belong to the same orbit of MS , then L((MS)x) is a derivative of
L((MS)y) and vice versa; hence, L((MS)x) is 1-unambiguous if and only if L((MS)y)
is 1-unambiguous. Therefore, by Theorem F, the algorithm is correct.

Because the strongly connected components of a directed graph can be computed
in linear time [AHU74], Steps 1 through 5 of the algorithm take time linear in the

FIG. 6. The decision algorithm for 1-unambiguity of languages denoted by minimal DFAs.
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size of M. If we sum the sizes of all automata (MS)x that are considered in Step 6,
we get at most the size of M. Thus, the total run time of the algorithm is quadratic
in the size of M.

Finally, let k be the size of the alphabet 7 and L(M) be 1-unambiguous. If
S{<, then L(MS) and L(M f (a)

S ), a # 7, are 1-unambiguous and the cuts of M are
smaller than M. Hence, if E and Ea are 1-unambiguous regular expressions denoting
L(MS) and L(M f (a)

S ), a # 7, then, by the proof of Lemma 5.7, the 1-unambiguous
regular expression E(�a # S aEa)* denotes L(M). On the other hand, if S=<, then
M has more than one orbit. If a1 , ..., an are the distinct symbols of the transitions
that leave the orbit of the initial state qI of M and q1 , ..., qn are the states they lead
to, then MqI

and Mqi, 1�i�n, are minimal automata that are smaller than M. If
E and Ei are 1-unambiguous regular expressions that denote L(MqI

) and L(Mqi),
1�i�n, then, by the proof of Theorem E, the 1-unambiguous regular expression
E �1�i�n ai Ei denotes L(M). Hence, a 1-unambiguous regular expression for
L(M) can be built from at most k+1 regular expressions for smaller automata, in
run time that is exponential in the size of M. K

It is well known that, for each word w, the minimal DFA for the language 7*w
has size linear in the length of w [KMP77]. Using the algorithm in Fig. 6, it is not
hard to see that the language 7*w is 1-unambiguous. However, we can show that
the smallest 1-unambiguous regular expression that denotes this language has size
exponential in the length of w. Therefore, DFAs are exponentially more succinct
for 1-unambiguous languages than are 1-unambiguous regular expressions and
the exponential run time for constructing a 1-unambiguous regular expression
from a minimal DFA is worst-case optimal. Furthermore, regular expressions are
exponentially more succinct for 1-unambiguous languages than are 1-unambiguous
regular expressions. In particular, the finite language (0+1) �n 1(0+1)n can be
denoted by a regular expression that has size linear in n, but the smallest DFA and,
hence, the smallest 1-unambiguous regular expression for it, has size exponential in
n [KW80].

6. CONCLUSIONS

The definition of 1-unambiguity in the SGML standard gives rise to at least two
questions, both of theoretical interest and of relevance for systems that support
SGML.

1. Is it decidable, given a model group E, whether E is unambiguous? And,
if it is, then what is its time complexity?

2. Is it decidable, given a regular language L (represented, for example, by a
finite-state automaton), whether L can be represented by an unambiguous model
group? And, if it is, then what is its time complexity?

We have demonstrated in Section 2 the decidability of the first question for
standard regular expressions; the implicit algorithm has a time complexity that is
quadratic in the size of the regular expression. Bru� ggemann�Klein [BK92a,
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BK93c] designed a linear-time algorithm for standard regular expressions and
Ponty et al. [PZD97] showed how to represent the Glushkov automaton in linear
space. For model groups, Bru� ggemann-Klein [BK93a, BK93b] demonstrated
decidability.

We have presented a solution for the second question for standard regular
expressions. We leave as an open problem, the characterization of the family of
languages that can be denoted by 1-unambiguous model groups. A further research
topic is to investigate k-unambiguous regular languages and regular expressions,
when the lookahead is a constant k�1.

Received December 31, 1993; final manuscript received September 24, 1997
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