
Sebastian Maneth

Lecture 8
SQL and Beyond

University of Edinburgh - February 4th, 2016

Applied Databases

2

Outline

1. More on Aggregates

2. Joins

3. Limits of SQL

3

1. More on Aggregates

> SELECT * FROM T;
+------+------+------+
| a1 | a2 | a3 |
+------+------+------+
| a | 1 | 5 |
| a | 1 | 2 |
| a | 2 | 2 |
| a | 2 | 3 |
+------+------+------+
> SELECT a1, AVG(a3) FROM T GROUP BY a1;

??

4

1. More on Aggregates

> SELECT * FROM T;
+------+------+------+
| a1 | a2 | a3 |
+------+------+------+
| a | 1 | 5 |
| a | 1 | 2 |
| a | 2 | 2 |
| a | 2 | 3 |
+------+------+------+
> SELECT a1, AVG(a3) FROM T GROUP BY a1;

(1) take all a3-values and compute average: (5 + 2 + 2 + 3) / 4 = 3

(2) only (a1,a3) are relevant, so, we project onto (a1,a3) to get

+------+------+
| a1 | a3 |
+------+------+
a	5
a	2
a	3
+------+------+

average now: (5 + 2 + 3) / 3 = 10 / 3

5

1. More on Aggregates

> SELECT * FROM T;
+------+------+------+
| a1 | a2 | a3 |
+------+------+------+
| a | 1 | 5 |
| a | 1 | 2 |
| a | 2 | 2 |
| a | 2 | 3 |
+------+------+------+
> SELECT a1, AVG(a3) FROM T GROUP BY a1;
+------+---------+
| a1 | AVG(a3) |
+------+---------+
| a | 3.0000 |
+------+---------+

→ SQL keeps duplicates

→ thus, solution (1)

6

1. More on Aggregates
> SELECT * FROM T;
+------+------+------+
| a1 | a2 | a3 |
+------+------+------+
| a | 1 | 5 |
| a | 1 | 2 |
| a | 2 | 2 |
| a | 2 | 3 |
+------+------+------+
> SELECT COUNT(a3) FROM T;
+-----------+
| COUNT(a3) |
+-----------+
| 4 |
+-----------+
> SELECT COUNT(DISTINCT a3) FROM T;
+--------------------+
| COUNT(DISTINCT a3) |
+--------------------+
| 3 |
+--------------------+
> SELECT SUM(a3) FROM T;
+---------+
| SUM(a3) |
+---------+
| 12 |
+---------+

> SELECT SUM(DISTINCT a3) FROM T;
+------------------+
| SUM(DISTINCT a3) |
+------------------+
| 10 |
+------------------+

> SELECT MIN(a3) FROM T;

> SELECT MIN(DISTINCT a3) FROM T;

7

Selection Based on Aggregates

SELECT list, of, attributes
FROM list of tables
WHERE conditions
GROUP BY list of attributes
ORDER BY attribute ASC | DESC

cannot contain
Aggregates!

8

Selection Based on Aggregates

SELECT list, of, attributes
FROM list of tables
WHERE conditions
GROUP BY list of attributes
ORDER BY attribute ASC | DESC
HAVING AGGREGATE(attribute) operator value

→ find directors and average length of their movies, provided they made
 at least one movie that is longer than 2 hours

SELECT director, AVG(length) FROM Movies
GROUP BY director
HAVING MAX(length) > 120;

9

Selection Based on Aggregates

SELECT list, of, attributes
FROM list of tables
WHERE conditions
GROUP BY list of attributes
ORDER BY attribute ASC | DESC
HAVING AGGREGATE(attribute) operator value

→ find directors and average length of their movies, provided they made
 at least one movie that is longer than 2 hours

SELECT director, AVG(length) FROM Movies
GROUP BY director
HAVING MAX(length) > 120;

could be a nested query
(e.g., selecting another aggregate!)

10

Selection Based on Aggregates

11

Selection Based on Aggregates

12

Selection Based on Aggregates

13

2. Joins

14

2. Joins

What is special about databases?

→ transaction processing (data is safe, multi-user support)
→ SQL

What is special about SQL?

→ mature standard
→ widely adopted / used in industry
→ expressiveness and efficiency
 (*) all queries terminate
 (*) data complexity is polynomial time

What is the most important (and expensive) SQL
operation?

→ the JOIN.

15

2. Joins

→ for each author, find the number of papers he/she wrote

1;Sanjeev Saxena
2;Hans-Ulrich Simon
3;Nathan Goodman
4;Oded Shmueli
5;Norbert Blum
6;Arnold Schonhage
7;Juha Honkala
8;Chua-Huang Huang
9;Christian Lengauer
10;Alain Finkel
11;Annie Choquet
12;Joachim Biskup
13;Symeon Bozapalidis
.

1;1
2;2
3;3
3;4
4;5
5;6
6;7
7;8
7;9
8;10
8;11
9;12
10;13
10;14
10;15

paper_id author_id (aid)
→ naively, takes quadratic time:

for each author,
go through WrittenBy table,
and count
his/her number of occurrences.

Author table
WrittenBy table

16

2. Joins

→ the simplest join is just the Cartesian product.
→ its size is quadratic!

SELECT * FROM Numbers;
+------+
| a |
+------+
| 1 |
| 2 |
| 3 |
| 4 |
+------+

SELECT * FROM Numbers N1 JOIN Numbers N2;
+------+------+
| a | a |
+------+------+
1	1
2	1
3	1
4	1
1	2
2	2
3	2
4	2
1	3
2	3
3	3
4	3
1	4
2	4
3	4
4	4
+------+------+

17

Co-Author Graph

1;Sanjeev Saxena
2;Hans-Ulrich Simon
3;Nathan Goodman
4;Oded Shmueli
5;Norbert Blum
6;Arnold Schonhage
7;Juha Honkala
8;Chua-Huang Huang
9;Christian Lengauer
10;Alain Finkel
11;Annie Choquet
12;Joachim Biskup
13;Symeon Bozapalidis
.
.
.

1;1
2;2
3;3
3;4
4;5
5;6
6;7
7;8
7;9
8;10
8;11
9;12
10;13
10;14
10;15

coauthors

3 4

aid cid
.
.
 3 4
 4 3
.
.

How can we produce this table?

CA table =
Co-Author relationship

18

Co-Author Graph
1;1
2;2
3;3
3;4
4;5
5;6
6;7
7;8
7;9
8;10
8;11
9;12
10;13
10;14
10;15

join using (pid)

1;1
2;2
3;3
3;4
4;5
5;6
6;7
7;8
7;9
8;10
8;11
9;12
10;13
10;14
10;15

3 4

aid cid
.
.
 3 4
 4 3
.
.

SELECT * FROM
WrittenBy W1 JOIN WrittenBy w2
USING (pid);
+------+------+------+
| pid | aid | aid |
+------+------+------+
1	1	1
2	2	2
3	3	3
3	4	3
3	3	4
3	4	4
4	5	5

CA table =
Co-Author relationship

19

Co-Author Graph

SELECT * FROM
WrittenBy W1 JOIN WrittenBy W2
USING (pid);
+------+------+------+
| pid | aid | aid |
+------+------+------+
1	1	1
2	2	2
3	3	3
3	4	3
3	3	4
3	4	4
4	5	5

→ exclude self-relations

SELECT W1.aid,W2.aid FROM
WrittenBy W1 JOIN WrittenBy W2
USING (pid)
WHERE W1.aid <> W2.aid;
+------+------+
| aid | aid |
+------+------+
4	3
3	4
9	8
8	9
11	10
10	11

Correctly produces the Co-Author Graph!

20

2. Joins
Table1 JOIN Table2 USING (c1, c2, …, cN)

→ joins all tuples of Table1 and Table2 which agree on
 their c1,..,cN values

→ result table has columns c1,..,cN,
 followed by the columns of Table1 that are not in { c1,..,cN }
 followed by the columns of Table2 that are not in { c1,..,cN }

SELECT * FROM T1;
+------+------+------+------+
| a | b | c | d |
+------+------+------+------+
| 1 | 2 | 3 | 1 |
| 4 | 5 | 6 | 2 |
+------+------+------+------+
SELECT * FROM T2;
+------+------+
| d | e |
+------+------+
1	1
1	2
2	4
2	7
+------+------+

SELECT * FROM T1 JOIN T2 USING (d);
+------+------+------+------+------+
| d | a | b | c | e |
+------+------+------+------+------+
1	1	2	3	1
1	1	2	3	2
2	4	5	6	4
2	4	5	6	7
+------+------+------+------+------+

Careful!
→ order depends on
implementation.
(mysql)

21

2. Joins
T1 JOIN T2 ON (T1.c1=T2.d1 AND T1.c2<=T2.d2 OR NOT(…))

→ joins all tuples of Table1 and Table2 which satisfy join condition

→ result table has all columns of Table1
 followed by all columns of Table2

SELECT * FROM T1 JOIN T2 ON (T1.d=T2.d);
+------+------+------+------+------+------+
| a | b | c | d | d | e |
+------+------+------+------+------+------+
1	2	3	1	1	1
1	2	3	1	1	2
4	5	6	2	2	4
4	5	6	2	2	7
+------+------+------+------+------+------+

duplicate d-column

22

2. Joins
→ joins are quite powerful!

→ E.g. simulate “GROUP BY” through a join:

SELECT * FROM T;
+------+
| a |
+------+
| 1 |
| 1 |
| 2 |
| 2 |
| 2 |
| 3 |
+------+

SELECT a,COUNT(a) FROM T GROUP BY a;
+------+----------+
| a | COUNT(a) |
+------+----------+
1	2
2	3
3	1
+------+----------+

SELECT DISTINCT T1.a, (SELECT COUNT(T2.a)
 FROM T T2 WHERE T2.a=T1.a) AS Count
FROM T T1;
+------+-------+
| a | Count |
+------+-------+
1	2
2	3
3	1
+------+-------+

23

2. Joins

SELECT * FROM T;
+------+
| a |
+------+
| 1 |
| 1 |
| 2 |
| 2 |
| 2 |
| 3 |
+------+

SELECT DISTINCT T1.a, (SELECT COUNT(T2.a)
 FROM T T2 WHERE T2.a=T1.a) AS Count
FROM T T1;
+------+-------+
| a | Count |
+------+-------+
1	2
2	3
3	1
+------+-------+

→ why is it a join?
→ can you rewrite the query
 to use JOIN keyword?

→ joins are quite powerful!

→ E.g. simulate “GROUP BY” through a join:

24

2. Joins

SELECT * FROM T;
+------+
| a |
+------+
| 1 |
| 1 |
| 2 |
| 2 |
| 2 |
| 3 |
+------+

SELECT DISTINCT T1.a, (SELECT COUNT(T2.a)
 FROM T T2 WHERE T2.a=T1.a) AS Count
FROM T T1;
+------+-------+
| a | Count |
+------+-------+
1	2
2	3
3	1
+------+-------+

→ similarly, you can avoid HAVING
 by the use of a JOIN

→ do you see how ?

→ joins are quite powerful!

→ E.g. simulate “GROUP BY” through a join:

25

Outer Joins

SELECT * FROM Author;
+-----+------+
| aid | name |
+-----+------+
1	ab
2	cd
3	ef
+-----+------+	
SELECT * FROM Book;	
+-----+------+	
bid	aid
+-----+------+	
1	1
2	1
3	3
+-----+------+

SELECT * FROM Book JOIN Author USING (aid);
+------+-----+------+
| aid | bid | name |
+------+-----+------+
1	1	ab
1	2	ab
3	3	ef
+------+-----+------+

Author “2” not listed,
because he/she not in the Book-table.

26

Outer Joins

SELECT * FROM Author;
+-----+------+
| aid | name |
+-----+------+
1	ab
2	cd
3	ef
+-----+------+	
SELECT * FROM Book;	
+-----+------+	
bid	aid
+-----+------+	
1	1
2	1
3	3
+-----+------+

SELECT * FROM Book RIGHT OUTER JOIN
 Author USING (aid);
+-----+------+------+
| aid | name | bid |
+-----+------+------+
1	ab	1
1	ab	2
2	cd	NULL
3	ef	3
+-----+------+------+

SELECT * FROM Book JOIN Author USING (aid);
+------+-----+------+
| aid | bid | name |
+------+-----+------+
1	1	ab
1	2	ab
3	3	ef
+------+-----+------+

27

Outer Joins

SELECT * FROM Author;
+-----+------+
| aid | name |
+-----+------+
1	ab
2	cd
3	ef
+-----+------+	
SELECT * FROM Book;	
+-----+------+	
bid	aid
+-----+------+	
1	1
2	1
3	3
+-----+------+

SELECT * FROM Book RIGHT OUTER JOIN
 Author USING (aid);
+-----+------+------+
| aid | name | bid |
+-----+------+------+
1	ab	1
1	ab	2
2	cd	NULL
3	ef	3
+-----+------+------+

SELECT aid,count(bid) AS n_books
FROM Book RIGHT OUTER JOIN
 Author USING (aid)
GROUP BY aid;
+-----+---------+
| aid | n_books |
+-----+---------+
1	2
2	0
3	1
+-----+---------+

28

Outer Joins
Table1 RIGHT OUTER JOIN Table2 USING / ON ...

→ joins all tuples of Table1 and Table1 satisfying join condition,
 plus all remaining tuples from Table2 (the RIGHT)

→ result tuples of the second type above have NULL-values
 in the columns coming from Table1.

29

Outer Joins
Table1 RIGHT OUTER JOIN Table2 USING / ON ...

→ joins all tuples of Table1 and Table1 satisfying join condition,
 plus all remaining tuples from Table2 (the RIGHT)

→ result tuples of the second type above have NULL-values
 in the columns coming from Table1.

Table1 LEFT OUTER JOIN Table2 USING / ON ...

→ joins all tuples of Table1 and Table2 satisfying join condition,
 plus all remaining tuples from Table1 (the LEFT)

→ result tuples of the second type above have NULL-values
 in the columns coming from Table2.

30

Outer Joins

SELECT * FROM Part;
+---------+---------+
| part_id | supp_id |
+---------+---------+
P1	S1
P2	S2
P3	NULL
P4	NULL
+---------+---------+

SELECT * from Supplier;
+---------+------------+
| supp_id | supp_name |
+---------+------------+
S1	Supplier#1
S2	Supplier#2
S3	Supplier#3
+---------+------------+

SELECT * FROM Part NATURAL JOIN Supplier;
+---------+---------+------------+
| supp_id | part_id | supp_name |
+---------+---------+------------+
| S1 | P1 | Supplier#1 |
| S2 | P2 | Supplier#2 |
+---------+---------+------------+

Join on all
 common attributes

31

Left Outer Join

SELECT part_id,supp_name FROM
Part NATURAL LEFT JOIN Supplier;
+---------+------------+
| part_id | supp_name |
+---------+------------+
P1	Supplier#1
P2	Supplier#2
P3	NULL
P4	NULL
+---------+------------+

SELECT * FROM Part;
+---------+---------+
| part_id | supp_id |
+---------+---------+
P1	S1
P2	S2
P3	NULL
P4	NULL
+---------+---------+

SELECT * from Supplier;
+---------+------------+
| supp_id | supp_name |
+---------+------------+
S1	Supplier#1
S2	Supplier#2
S3	Supplier#3
+---------+------------+

32

Right Outer Join

SELECT part_id,supp_name FROM
Part NATURAL LEFT JOIN Supplier;
+---------+------------+
| part_id | supp_name |
+---------+------------+
P1	Supplier#1
P2	Supplier#2
P3	NULL
P4	NULL
+---------+------------+

SELECT part_id,supp_name FROM
Part NATURAL RIGHT JOIN Supplier;
+---------+------------+
| part_id | supp_name |
+---------+------------+
P1	Supplier#1
P2	Supplier#2
NULL	Supplier#3
+---------+------------+

SELECT * FROM Part;
+---------+---------+
| part_id | supp_id |
+---------+---------+
P1	S1
P2	S2
P3	NULL
P4	NULL
+---------+---------+

SELECT * from Supplier;
+---------+------------+
| supp_id | supp_name |
+---------+------------+
S1	Supplier#1
S2	Supplier#2
S3	Supplier#3
+---------+------------+

33

Full Outer Join
Part NATURAL LEFT JOIN Supplier;
+---------+------------+
| part_id | supp_name |
+---------+------------+
P1	Supplier#1
P2	Supplier#2
P3	NULL
P4	NULL
+---------+------------+	
Part NATURAL RIGHT JOIN Supplier;	
+---------+------------+	
part_id	supp_name
+---------+------------+	
P1	Supplier#1
P2	Supplier#2
NULL	Supplier#3
+---------+------------+

Part NATURAL FULL OUTER JOIN Supplier;
+---------+------------+
| part_id | supp_name |
+---------+------------+
P1	Supplier#1
P2	Supplier#2
P3	NULL
P4	NULL
NULL	Supplier#3
+---------+------------+

SELECT * FROM Part;
+---------+---------+
| part_id | supp_id |
+---------+---------+
P1	S1
P2	S2
P3	NULL
P4	NULL
+---------+---------+

SELECT * from Supplier;
+---------+------------+
| supp_id | supp_name |
+---------+------------+
S1	Supplier#1
S2	Supplier#2
S3	Supplier#3
+---------+------------+

34

Full Outer Join
Part NATURAL LEFT JOIN Supplier;
+---------+------------+
| part_id | supp_name |
+---------+------------+
P1	Supplier#1
P2	Supplier#2
P3	NULL
P4	NULL
+---------+------------+	
Part NATURAL RIGHT JOIN Supplier;	
+---------+------------+	
part_id	supp_name
+---------+------------+	
P1	Supplier#1
P2	Supplier#2
NULL	Supplier#3
+---------+------------+

Part NATURAL FULL OUTER JOIN Supplier;
+---------+------------+
| part_id | supp_name |
+---------+------------+
P1	Supplier#1
P2	Supplier#2
P3	NULL
P4	NULL
NULL	Supplier#3
+---------+------------+

→ no full outer join in mysql

→ write a query that does
 full outer join

SELECT * FROM Part;
+---------+---------+
| part_id | supp_id |
+---------+---------+
P1	S1
P2	S2
P3	NULL
P4	NULL
+---------+---------+

SELECT * from Supplier;
+---------+------------+
| supp_id | supp_name |
+---------+------------+
S1	Supplier#1
S2	Supplier#2
S3	Supplier#3
+---------+------------+

35

2. Joins

→ outer joins can be useful to efficiently implement other queries!

→ efficiency of joins?
 (*) nested loop
 (*) sort merge
 (*) hash join

→ intermediate result sizes can be HUGE

→ query performance often depends on how you write the query!
 (difficult problem)

→ create indexes on all columns on which you join!

36

Sort Merge Join

1;Sanjeev Saxena
2;Hans-Ulrich Simon
3;Nathan Goodman
4;Oded Shmueli
5;Norbert Blum
6;Arnold Schonhage
7;Juha Honkala
8;Chua-Huang Huang
9;Christian Lengauer
10;Alain Finkel
11;Annie Choquet
12;Joachim Biskup
13;Symeon Bozapalidis
.

1;1
2;2
3;3
3;4
4;5
5;6
6;7
7;8
7;9
8;10
8;11
9;12
10;13
10;14
10;15

1;1
57;1
1089;1
49018;1
2;2
3784;2
992;2
3;3
10193;3
.
.
.

sort

already sorted

pick up join results in
one top-down traversal on both tables

37

Sort Merge Join

→ a B-tree index is nothing else but a SORTED search-tree
 that behaves well on disk

→ even having such sorted B-tree indexes, efficient join
 processing remains a tremendous challenge

 E.g. how to pick best order, in which to apply joins?

(SELECT … FROM ..) JOIN (SELECT … FROM ..) JOIN
 (SELECT …)

Smallest result?

→ histograms & approximations!

38

Sort Order

→ can cause the query to run

 few seconds, or a day ...

→ absolutely crucial to determine good join order!

(SELECT … FROM ..) JOIN (SELECT … FROM ..) JOIN
 (SELECT …)

Smallest result?

→ histograms & approximations!

39

3. Limits of SQL

In a graph, determine if two given nodes A,B are connected.

40

3. Limits of SQL

In a graph, determine if two given nodes A,B are connected.

What we can do in SQL:

1) determine all nodes at distance 1 from A:

(SELECT cid FROM CA WHERE aid=A) = CA0

2) apply to this set of nodes the same query

SELECT cid FROM CA WHERE aid IN CA0 - { A }; (= CA1)

This determines all nodes at distance two.

3) SELECT …. aid IN CA1 – CA0;

→ after k such queries we have nodes at distance k.

aid cid
.
.
 3 4
 4 3
.
.

table CA

41

3. Limits of SQL

On the given Co-Author Graph CA (1.6 million nodes, 6.7 million edges)
this is feasible.
→ for ONE AUTHOR, and takes about 5 minutes (on a laptop)

But, find distance for EVERY PAIR OF AUTHORS
is infeasible.

1.6 million authors.
1.6 * 1.6 million numbers to compute. Storage: 2.5 TB

(probably takes years to compute)

SELECT 1.0*COUNT(*)/(2* (SELECT COUNT(distinct aid) from CA));
4.37035511508065

42

3. Limits of SQL

→ distance for EVERY PAIR OF AUTHORS

→ is between 0 and 15.

Degree Distribution?
→ follows a POWER LAW! (such as Zipf Distribution!)

Average?

Mean / mode?

Power Law

node degree (= number
of outgoing edges)
was computed for all
nodes.

→ formulate a SQL query
 (over CA) that does this!

44

Power Law

y = axb

log(y) = log(a) + b log(x)

y = log(a) + bX

a line

e.g., typical Zipf could be:

N
N/2
N/3
N/4
N/5
N/6
.
.
.

(a = 1, b = – 1)

Power Law

Dynamics of the Co-Author Graph

SELECT DISTINCT W1.aid, W2.aid
FROM Paper P, WrittenBy W1 join WrittenBy W2 on W1.pid=W2.pid
WHERE W1.aid<>W2.aid AND
P.pid=W1.pid and P.year<=1955;

1955 version of CoAuthor Graph
1960
1965
.
.
.
1995

1955

1960

1965

1970

1975

1980

1990

1995

Small World

“I read somewhere that everybody on this planet is separated by
only six other people. Six degrees of separation. Between us
and everybody else on this planet. The president of the
United States. A gondolier in Venice. fill in the names. I find that
A)tremendously comforting that we're so close and
B)like Chinese water torture that we're so close. Because you
have to find the right six people to make the connection. It's not
just big names. It's anyone. A native in a rain forest. A Tierra
del Fuegan. An Eskimo. I am bound to everyone on this planet by
a trail of six people. It's a profound thought. How Paul found us.
How to find the man whose son he pretends to be. Or perhaps is
his son, although I doubt it. How every person is a new door,
opening up into other worlds. Six degrees of separation between
me and everyone else on this planet. But to find the
right six people.”

John Guare

Step-Wise-Reachable-Nodes (SWRN)
INSERT INTO Auth
(SELECT A.aid FROM Acopy A ORDER BY RANDOM() LIMIT 1)

DELETE FROM CA1;
INSERT INTO CA1 SELECT DISTINCT C.cid FROM CA C, CA0 D
WHERE D.aid=C.aid AND C.cid NOT IN (SELECT E.aid FROM CA0 E);

INSERT INTO Adist SELECT Auth.aid,Counter.i,COUNT(C.cid)
FROM Auth,Counter, CA1 C;

INSERT INTO CA0 SELECT * FROM CA1;
UPDATE Counter SET i=(SELECT Counter.i+1 FROM Counter);

repeat until
CA1 becomes
empty

at most 17-times
(longest distance in the graph)

Adist table
1513 | 1 | 65
1513 | 2 | 1,599
1513 | 3 | 37,748
1513 | 4 | 407,839
1513 | 5 | 665,405
1513 | 6 | 223,957
1513 | 7 | 4,3758
1513 | 8 | 8,684
1513 | 9 | 1904
.
 13| 11

Degrees of Separation in the DPLP Co-Author Graph

→ obtained by
running SWRN
on a random sample
of 50 nodes.

→ what “confidence”
does the sample give?

DPLP Co-Author Graph

$ Rscript.exe do_stats.R
Distance Frequency Distribution -- Summary:
 mean median mode var sd
5.941985 6.000000 6.000000 1.256740 1.121044
Coverage of largest component (in %): [1] 73.0216
Percentage reached after 5 hops (in that component): [1] 35.10105
Percentage reached after 6 hops (in that component): [1] 72.53906

59

END
Lecture 8

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

