
Sebastian Maneth

Lecture 4
SAX Parsing, Entity Relationship Model

University of Edinburgh - January 21st, 2016

Applied Databases

2

Outline

1. SAX Simple API for XML

2. Comments wrt Assignment 1

3. Data Redundancy Problem

3. Entity Relationship Model

3

1. SAX – Simple API for XML

 if you want to build up your own (e.g. memory-efficient)
 data structure, you need to “talk” to the parser.

The XML parser should give you low level access to the data:

  tag by tag

  text-node by text-node.

in “document order”.

Recall one of the promises of XML:

  you never need to write a parser again.

4

1. SAX – Simple API for XML

 if you want to build up your own (e.g. memory-efficient)
 data structure, you need to “talk” to the parser.

The XML parser should give you low level access to the data:

  tag by tag

  text-node by text-node.

in “document order”.  SAX

Recall one of the promises of XML:

  you never need to write a parser again.

5

6

Not entirely correct:
Space proportional to document depth

7

(except open tags & DTD-relevant data)

8

(near)

9

Cave:
Characters of one text node
may be sent in several chunks(near)

10

11

12

 public void startElement(String nameSpaceURI, String localName,
 String rawName, Attributes atts) throws SAXException {

 System.out.println("Opening tag: " + localName);
 // Show attributes, if any
 if (atts.getLength() > 0)
 for (int index = 0; index < atts.getLength(); index++)
 System.out.println(“Attribute: atts.getLocalName(index)
 + " = " + atts.getValue(index));
 }

 public void endElement(String nameSpaceURI, String localName,
 String rawName) throws SAXException {
 System.out.print("Closing tag : " + localName);
 System.out.println();
 }

 // Character data handling
 public void characters(char[] ch, int start, int end)
 throws SAXException {
 System.out.println("#PCDATA: " + new String(ch, start, end));
 }

13

<?xml version=“1.0”?>
<!DOCTYPE greeting [
 <!ENTITY hi “Hello”>
 <!ENTITY hi1 “&hi;&hi;”>
 <!ENTITY hi2 “&hi1;&hi1;”>
 <!ENTITY hi3 “&hi2;&hi2;”>
 <!ENTITY s “<d></d>”>
]>
<a a1='17' a2='29'>
xy &hi3; world &s; zz

$ java MySAXApp file.xml
Start document
Start element: a
Attribute: a1=17
Attribute: a2=29
Start element: b
Characters: "xy "
Characters: "Hello"
Characters: "Hello"
Characters: "Hello"
Characters: "Hello"
Characters: "Hello"
Characters: "Hello"
Characters: "Hello"
Characters: "Hello world "
Start element: d
End element: d
Characters: " zz"
End element: b
End element: a
End document// Show attributes, if any

if (atts.getLength() > 0) {
 for (int index = 0; index < atts.getLength(); index++)
 System.out.println(“Attribute: atts.getLocalName(index)
 + " = " + atts.getValue(index));
}

file.xml

14

<?xml version=“1.0”?>
<!DOCTYPE greeting [
 <!ENTITY hi “Hello”>
 <!ENTITY hi1 “&hi;&hi;”>
 <!ENTITY hi2 “&hi1;&hi1;”>
 <!ENTITY hi3 “&hi2;&hi2;”>
 <!ENTITY s “<d></d>”>
]>
<a a1='17' a2='29'>
xy &hi3; world &s; zz

Warning
Should typically be glued together
into one large string!

$ java MySAXApp file.xml
Start document
Start element: a
Attribute: a1=17
Attribute: a2=29
Start element: b
Characters: "xy "
Characters: "Hello"
Characters: "Hello"
Characters: "Hello"
Characters: "Hello"
Characters: "Hello"
Characters: "Hello"
Characters: "Hello"
Characters: "Hello world "
Start element: d
End element: d
Characters: " zz"
End element: b
End element: a
End document// Show attributes, if any

if (atts.getLength() > 0) {
 for (int index = 0; index < atts.getLength(); index++)
 System.out.println(“Attribute: atts.getLocalName(index)
 + " = " + atts.getValue(index));
}

15

2. Comments for Assignment 1

16

2. Comments for Assignment 1

 You do not need the VirtualBox image that we provide
 to implement your converter!

 You only need a Java JDK (javac and java) and the SAX and DOM
 packages (org.xml.sax.* and org.w3c.dom.*)

 Only when you start to import into MySQL, it might be convenient
 to use the image, because it has a MySQL server running for you.

17

2. Comments for Assignment 1

 Download and install VirtualBox

 Download adAssignment1_Ubuntu32.vdi.zip
 from assignment web page

 Unzip this file (this may take a while!) to obtain the VirtualBox disk image
 adAssignment1_Ubuntu32.vdi

 Run VirtualBox. Click Machine  New
 - give your new machine a name,
 - select Type “Linux” and Version “Ubuntu (32-bit)”
 - then select a Memory size (e.g., 512MB or 768MB)
 - then click “Use an existing virtual had drive file”
 - click on the folder icon and select your adAssignment1_Ubuntu32.vdi

 Now click on the machine, on top left, and then click “Start” from top
 The image will now boot, this may take a while.

 Press CTRL-ALT-T to open a terminal
(double click on top-bar to make terminal full-screen)

 we assume some rudimentary knowledge of Unix shell commands
 (e.g. ls, cd, less, vi)

(use CTRL-+ and – to increase/decrease font size)

If you like to use another editor, e.g., emacs, then install it via:

→ sudo apt-get install emacs

(no password required)

25

3. Data Redundancy Problem
<!ELEMENT Items (Item*)>
<!ELEMENT Item (Name, Category+, Currently, Buy_Price?,
 First_Bid, Number_of_Bids,
 Bids, Location, Country, Started, Ends,
 Seller, Description)>
<!ELEMENT Bids (Bid*)>
 <!ELEMENT Bid (Bidder, Time, Amount)>
 <!ATTLIST Bidder UserID CDATA #REQUIRED
 Rating CDATA #REQUIRED>
<!ELEMENT Seller EMPTY>
<!ATTLIST Seller UserID CDATA #REQUIRED
 Rating CDATA #REQUIRED>

Items

Item Item

Seller
UserID=“!peanut”
Rating=58823 Seller

UserID=“!peanut”
Rating=58823

26
<!ELEMENT Bids (Bid*)>
 <!ELEMENT Bid (Bidder, Time, Amount)>
 <!ATTLIST Bidder UserID CDATA #REQUIRED
 Rating CDATA #REQUIRED>
<!ELEMENT Seller EMPTY>
<!ATTLIST Seller UserID CDATA #REQUIRED
 Rating CDATA #REQUIRED>

Items

Item Item

Seller SellerBids

Bid

UserID=“nobody138”
Rating=427

Bidder Time

Dec-04-01 23:20:07

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823

27

Items

Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

 If you store the data in XML (as given)
 what are possible problems?

UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823

28

Items

Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

 If you store the data in XML (as given)
 what are possible problems?

Redundancy Problem!
UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823

29

Items

Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

 If you store the data in XML (as given)
 what are possible problems?

UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823

Or is this useful?
 does it add information?

Redundancy Problem!

30

Items

Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

 If you store the data in XML (as given)
 what are possible problems?

UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823

Or is this useful?
 does it add information?
→ Assumption: same fixed
 rating per user

Redundancy Problem!

31

Items

Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

 Why is data redundancy a problem?

UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823

Redundancy Problem!

32

Items

Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

 Why is data redundancy a problem?

 Imagine later do want to change a Rating
 (say, in a DB of only open auctions)

UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823

Redundancy Problem!

Items

33

Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

 Updating redundant copies:

 All Sellers/Bidders to be updated have to be locked
 and updated “at once” to guarantee consistency
 Expensive!! (generates “out-time”)

UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823

Redundancy Problem!

34

 Data redundancy leads to data anomalies and corruption.

 Data redundancy should be avoided by design!

 in our XML example,
 how can the Rating-redundancy be removed?

35

 Data redundancy leads to data anomalies and corruption.

 Data redundancy should be avoided by design!

 in our XML example,
 how can the Rating-redundancy be removed?

User

User

Seller
SellerID=“!peanut”

BidderID=“nobody138” Bidder

<!ATTLIST User UserID ID #REQUIRED>
<!ATTLIST User Rating CDATA #REQUIRED>

<!ATTLIST Bidder BidderID IDREF #REQUIRED>
<!ATTLIST Seller SellerID IDREF #REQUIRED>

Ratings appear only once!

UserID=“!peanut”
Rating=58823

UserID=“nobody138”
Rating=427

36

Issue with the ID/IDREF solution:

 Where are UserID-entries kept in the tree?
 (arbitrary / ‘tree-implementation-detail’)

 ID-attribute must contain an XML name that is
 unique within the document; more precisely: no other ID-attribute
 in the document can have the same value.

User

User

Seller

Bidder

Ratings appear only once!

SellerID=“!peanut”

BidderID=“nobody138”UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

<!ATTLIST User UserID ID #REQUIRED>
<!ATTLIST User Rating CDATA #REQUIRED>

<!ATTLIST Bidder BidderID IDREF #REQUIRED>
<!ATTLIST Seller SellerID IDREF #REQUIRED>

37

Issue with the ID/IDREF solution:

 Where are UserID-entries kept in the tree?
 (arbitrary / ‘tree-implementation-detail’)

 ID-attribute must contain an XML name that is
 unique within the document; more precisely: no other ID-attribute
 in the document can have the same value.

 thus, if ItemID was an ID-attribute, then each entry would have
 to be different from any UserID!
  Why? Why would it be satisfied in the data?

User Bidder

Ratings appear only once!

BidderID=“nobody138”UserID=“nobody138”
Rating=427

<!ATTLIST User UserID ID #REQUIRED>
<!ATTLIST User Rating CDATA #REQUIRED>

<!ATTLIST Bidder BidderID IDREF #REQUIRED>
<!ATTLIST Seller SellerID IDREF #REQUIRED>

38

<!ATTLIST User UserID ID #REQUIRED>
<!ATTLIST User Rating CDATA #REQUIRED>

<!ATTLIST Bidder BidderID IDREF #REQUIRED>
<!ATTLIST Seller SellerID IDREF #REQUIRED>

Issue with the ID/IDREF solution:

 Where are UserID-entries kept in the tree?
 (arbitrary / ‘tree-implementation-detail’)

 ID-attribute must contain an XML name that is
 unique within the document; more precisely: no other ID-attribute
 in the document can have the same value.

 thus, if ItemID was an ID-attribute, then each entry would have
 to be different from any UserID!
  Why? Why would it be satisfied in the data?

→ On EBAY data this solution does NOT work! (because of XML name issues)

39

<!DOCTYPE greeting [
 <!ELEMENT greeting (user | bidder | seller)*>
 <!ELEMENT user EMPTY>
 <!ATTLIST user BidderID ID #REQUIRED>
 <!ATTLIST user Rating CDATA #REQUIRED>
 <!ELEMENT bidder EMPTY>
 <!ATTLIST bidder BidderID IDREF #REQUIRED>
]>
<greeting>
 <user BidderID="!peanut" rating="427"/>
 <seller BidderID="!peanut"/>
</greeting>

test.xml

$ xml-xparse –n test.xml
Attempting validating, namespace-ignorant parse
Error:file:/home/ad/test.xml:11:48:Attribute value "!peanut"
of type ID must be a name.
Error:file:/home/ad/test.xml:11:76:Attribute value "!peanut"
of type IDREF must be a name.
Parse succeeded (0.37) with 2 errors and no warnings.
$

40

[1] document ::= prolog element Misc*
[2] Char ::= a Unicode character
[3] S ::= (‘ ’ | ‘\t’ | ‘\n’ | ‘\r’)+
[4] NameChar ::= (Letter | Digit | ‘.’ | ‘-’ | ‘:’
[5] Name ::= (Letter | '_' | ':') (NameChar)*
[84] Letter ::= [a-zA-Z]
[88] Digit ::= [0-9]

 Name must start with a-zA-Z or with ‘_’ or with ‘:’

 BidderID may not equal !peanut

41

[1] document ::= prolog element Misc*
[2] Char ::= a Unicode character
[3] S ::= (‘ ’ | ‘\t’ | ‘\n’ | ‘\r’)+
[4] NameChar ::= (Letter | Digit | ‘.’ | ‘-’ | ‘:’
[5] Name ::= (Letter | '_' | ':') (NameChar)*
[84] Letter ::= [a-zA-Z]
[88] Digit ::= [0-9]

 in presence of namespaces, must even be an NCName

 NCName ::= Name - (Char* ‘:’ Char*)

$ xml-xparse test.xml
Attempting validating, namespace-aware parse
Error:file:/home/ad/test.xml:11:48:Attribute value "!peanut"
of type ID must be an NCName when namespaces are enabled.
Error:file:/home/ad/test.xml:11:76:Attribute value "!peanut"
of type IDREF must be an NCName when namespaces are enabled.
Parse succeeded (0.37) with 2 errors and no warnings.
$

42

Issue with the ID/IDREF solution:

 On the EBAY-data, solution does not work (because of XML names)!

 Would need to introduce additional IDs that are allowed
 ( one more level of indirection)

<!DOCTYPE greeting [
 <!ELEMENT greeting (user | bidder | seller)*>
 <!ELEMENT user EMPTY>
 <!ATTLIST user Bidder_ID ID #REQUIRED>
 <!ATTLIST user BidderID CDATA #REQUIRED>
 <!ATTLIST user Rating CDATA #REQUIRED>
 <!ELEMENT bidder EMPTY>
 <!ATTLIST bidder BidderID IDREF #REQUIRED>
]>
<greeting>
 <user Bidder_ID=“u127” BidderID="!peanut" Rating="427"/>
 <bidder Bidder_ID="u127"/>
</greeting>

unique wrt all ID-attribute values!

43

Issue with the ID/IDREF solution:

 On the EBAY-data, solution does not work (because of XML names)!

 Would need to introduce additional IDs that are allowed
 ( one more level of indirection)

 Similar to an ‘implementation’ of a table of this form:

 In a table (of a database), u127 can simply be 127

.

.

.
u127 !peanut 427
.
.
.

44

Issue with the ID/IDREF solution:

 On the EBAY-data, solution does not work (because of XML names)!

 Would need to introduce additional IDs that are allowed
 ( one more level of indirection)

 Similar to an ‘implementation’ of a table of this form:

 In a DB: first column not needed..

.

.

.
!peanut 427 start end
!peanut 425 s2 start
.
.

time intervals

not needed for your
Assignment 1!

45

Proposed Solution

 use XML to exchange data, not to store or query it

 store data in tables of a database

 query the tables using SQL

.

.

.
!peanut 427
!peanut 425
.
.XML / JSON

“shredding”

46

Questions

 introduce new integer-ID column: yes or no?

 how to declare that a column is of type ID?

 does every table have an ID column?

 can there be duplicates of tuples (rows) in a table?

 how can we check if our tables contain redundancy?

 how can we express additional constraints that hold on the data?
 (e.g., end-time is after start-time)

.

.

.
!peanut 427
!peanut 425
.
.

47

Roadmap

 Entity-Relationship Model (short)
 - define primary key (“ID column”) in an abstract setting

 Define data redundancy

 Define functional dependencies

 Define normal forms

48

4. Entity Relationship Model

→ high-level database model [Peter Chen (MIT) TODS 1, 1976]

→ useful for design before moving to a lower level model (e.g. relational)

ER Model has

→ Structural part
 - entity types
 - attributes
 - relationship types

→ Integrity constraints
 - primary keys for entity and relationship types
 - multiplicity constraints for relationship types

Next slides from Peter Wood’s DB Management Lecture

49

4. Entity Relationship Model

ER Diagrams

→ relatively simple
→ user-friendly
→ unified view of data, independent
 of any implemented data mode.

→ high-level database model [Peter Chen (MIT) TODS 1, 1976]

→ useful for design before moving to a lower level model (e.g. relational)

ER Model has

→ Structural part
 - entity types
 - attributes
 - relationship types

→ Integrity constraints
 - primary keys for entity and relationship types
 - multiplicity constraints for relationship types

50

Entity Types

Entity = a “thing” that exists and can be uniquely identified,
 e.g. an individual person

Entity type = collection of similar entities, e.g., a collection of people
(rectangle)

Entity type has attributes (circles), representing properties of the entities.

Each Person has single Name, Address, and Nat. Insurance numer (NI#)
Each Person can have many Phones

51

Relationship Types

Relationship Type = association between two or more entity types.
(diamond)

Multiplicity Constraints in Relationship Types

→ Many-to-One (or One-to-Many)
 An Employee Works in one Department or a
 Department has many Employees.
→ One-to-One
 A Manager Heads one Department and vice versa.
→ Many-to-Many
 A Lecturer Teaches many Students and a Student is
 Taught by many Lecturers

52

Example of Many-to-One Relationship Type

The arrowhead is drawn at the “one” end of rel. type

→ Each Emplyee Works-in one Department

→ Each Department has many Employees Working in it.

53

Example of One-to-One Relationship Type

The arrowhead is drawn at both ends

→ Each Manager Occupies one Office

→ Each Office has one Manager Occupying it

54

Example of Many-to-Many Relationship Type

No arrowheads

→ Each Lecturer Teaches many Students

→ Each Student is taught by many Lecturers

55

Multiple Relationship Types

56

Participation Constraints in Relationships

→ optional (our default, sometimes indicated by multiplicity constraint 0..*)
 e.g. Employee may or may not be assigned to a Department

→ mandatory (double lines, or multiplicity constraint 1..*)

→ some Lecturers may not Teach any Students
→ each Student must be taught by at least one Lecturer

57

Multiway Relationship Types

→ each supplier may supply different parts to different projects

58

END
Lecture 4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

