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1. SAX – Simple API for XML

   if you want to build up your own (e.g. memory-efficient)
      data structure, you need to “talk” to the parser.

The XML parser should give you low level access to the data:

      tag by tag

      text-node by text-node.

in “document order”.

Recall one of the promises of XML:

                    you never need to write a parser again.
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1. SAX – Simple API for XML

   if you want to build up your own (e.g. memory-efficient)
      data structure, you need to “talk” to the parser.

The XML parser should give you low level access to the data:

      tag by tag

      text-node by text-node.

in “document order”.   SAX

Recall one of the promises of XML:

                    you never need to write a parser again.
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Not entirely correct:
Space proportional to document depth
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(except open tags & DTD-relevant data)
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(near)
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Cave:
Characters of one text node
may be sent in several chunks(near)
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    public void startElement(String nameSpaceURI, String localName, 
        String rawName, Attributes atts) throws SAXException { 
        
        System.out.println("Opening tag: " + localName); 
        // Show attributes, if any 
        if (atts.getLength() > 0) 
            for (int index = 0; index < atts.getLength(); index++)  
                System.out.println(“Attribute: atts.getLocalName(index) 
                                     + " = " + atts.getValue(index));
    } 

    public void endElement(String nameSpaceURI, String localName, 
                           String rawName) throws SAXException { 
        System.out.print("Closing tag : " + localName); 
        System.out.println(); 
    } 
 
    // Character data handling 
    public void characters(char[] ch, int start, int end) 
                         throws SAXException { 
        System.out.println("#PCDATA: " + new String(ch, start, end)); 
    } 
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<?xml version=“1.0”?>
<!DOCTYPE greeting [
  <!ENTITY hi “Hello”>
  <!ENTITY hi1 “&hi;&hi;”>
  <!ENTITY hi2 “&hi1;&hi1;”>
  <!ENTITY hi3 “&hi2;&hi2;”>
  <!ENTITY s “<d></d>”>
]>
<a a1='17' a2='29'>
<b>xy &hi3; world &s; zz</b></a>

$ java MySAXApp file.xml
Start document
Start element: a
Attribute: a1=17
Attribute: a2=29
Start element: b
Characters:    "xy "
Characters:    "Hello"
Characters:    "Hello"
Characters:    "Hello"
Characters:    "Hello"
Characters:    "Hello"
Characters:    "Hello"
Characters:    "Hello"
Characters:    "Hello world "
Start element: d
End element: d
Characters:    " zz"
End element: b
End element: a
End document// Show attributes, if any

if (atts.getLength() > 0) {
    for (int index = 0; index < atts.getLength(); index++)  
        System.out.println(“Attribute: atts.getLocalName(index) 
                             + " = " + atts.getValue(index));
}

file.xml
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<?xml version=“1.0”?>
<!DOCTYPE greeting [
  <!ENTITY hi “Hello”>
  <!ENTITY hi1 “&hi;&hi;”>
  <!ENTITY hi2 “&hi1;&hi1;”>
  <!ENTITY hi3 “&hi2;&hi2;”>
  <!ENTITY s “<d></d>”>
]>
<a a1='17' a2='29'>
<b>xy &hi3; world &s; zz</b></a>

Warning
Should typically be glued together
into one large string!

$ java MySAXApp file.xml
Start document
Start element: a
Attribute: a1=17
Attribute: a2=29
Start element: b
Characters:    "xy "
Characters:    "Hello"
Characters:    "Hello"
Characters:    "Hello"
Characters:    "Hello"
Characters:    "Hello"
Characters:    "Hello"
Characters:    "Hello"
Characters:    "Hello world "
Start element: d
End element: d
Characters:    " zz"
End element: b
End element: a
End document// Show attributes, if any

if (atts.getLength() > 0) {
    for (int index = 0; index < atts.getLength(); index++)  
        System.out.println(“Attribute: atts.getLocalName(index) 
                             + " = " + atts.getValue(index));
}
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2. Comments for Assignment 1
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2. Comments for Assignment 1

  You do not need the VirtualBox image that we provide
  to implement your converter!

  You only need a Java JDK (javac and java) and the SAX and DOM
      packages    (org.xml.sax.* and org.w3c.dom.*)

  Only when you start to import into MySQL, it might be convenient
 to use the image, because it has a MySQL server running for you.
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2. Comments for Assignment 1

 Download and install VirtualBox

 Download  adAssignment1_Ubuntu32.vdi.zip
     from assignment web page

  Unzip this file (this may take a while!) to obtain the VirtualBox disk image 
   adAssignment1_Ubuntu32.vdi

  Run VirtualBox. Click  Machine  New 
      -  give your new machine a name,
      -  select Type “Linux” and Version “Ubuntu (32-bit)”
      -  then select a Memory size (e.g., 512MB or 768MB)
      -  then click “Use an existing virtual had drive file”
     -   click on the folder icon and select your adAssignment1_Ubuntu32.vdi

  Now click on the machine, on top left, and then click “Start” from top
      The image will now boot, this may take a while.





  Press  CTRL-ALT-T  to open a  terminal
(double click on top-bar to make terminal full-screen)

  we assume some rudimentary knowledge of Unix shell commands
                                                                      (e.g. ls, cd, less, vi)

(use CTRL-+ and – to increase/decrease font size)

If you like to use another editor, e.g., emacs, then install it via:

→  sudo apt-get install emacs

(no password required)
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3. Data Redundancy Problem
<!ELEMENT Items            (Item*)>
<!ELEMENT Item             (Name, Category+, Currently, Buy_Price?,
                            First_Bid, Number_of_Bids,
                            Bids, Location, Country, Started, Ends,
                            Seller, Description)>
<!ELEMENT Bids             (Bid*)>
    <!ELEMENT Bid          (Bidder, Time, Amount)>
    <!ATTLIST Bidder       UserID CDATA #REQUIRED
                           Rating CDATA #REQUIRED>
<!ELEMENT Seller           EMPTY>
<!ATTLIST Seller           UserID CDATA #REQUIRED
                           Rating CDATA #REQUIRED>

Items

Item Item

Seller
UserID=“!peanut”
Rating=58823 Seller

UserID=“!peanut”
Rating=58823
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<!ELEMENT Bids             (Bid*)>
    <!ELEMENT Bid          (Bidder, Time, Amount)>
    <!ATTLIST Bidder       UserID CDATA #REQUIRED
                           Rating CDATA #REQUIRED>
<!ELEMENT Seller           EMPTY>
<!ATTLIST Seller           UserID CDATA #REQUIRED
                           Rating CDATA #REQUIRED>

Items

Item Item

Seller SellerBids

Bid

UserID=“nobody138”
Rating=427

Bidder Time

Dec-04-01 23:20:07

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823
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Items

Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

 If you store the data in XML (as given)
     what are possible problems?

UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823
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Items

Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

 If you store the data in XML (as given)
     what are possible problems?

Redundancy Problem!
UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823
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Items

Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

 If you store the data in XML (as given)
     what are possible problems?

UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823

Or is this useful?
 does it add information?

Redundancy Problem!
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Items

Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

 If you store the data in XML (as given)
     what are possible problems?

UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823

Or is this useful?
 does it add information?
→  Assumption: same fixed 
      rating per user

Redundancy Problem!
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Items

Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

  Why is data redundancy a problem?

UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823

Redundancy Problem!
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Items

Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

  Why is data redundancy a problem?

  Imagine later do want to change a Rating 
   (say, in a DB of only open auctions)

UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823

Redundancy Problem!



Items
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Item Item

Seller SellerBids

Bid

Bidder Time

Dec-04-01 23:20:07

   Updating redundant copies:

   All Sellers/Bidders to be updated have to be locked
       and updated “at once” to guarantee consistency
   Expensive!! (generates “out-time”)

UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

UserID=“!peanut”
Rating=58823

Redundancy Problem!
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  Data redundancy  leads to data anomalies and corruption. 

  Data redundancy  should be avoided by design!

  in our XML example, 
      how can the Rating-redundancy be removed?
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  Data redundancy  leads to data anomalies and corruption. 

  Data redundancy  should be avoided by design!

  in our XML example, 
      how can the Rating-redundancy be removed?

User

User

Seller
SellerID=“!peanut”

BidderID=“nobody138” Bidder

<!ATTLIST User UserID ID #REQUIRED>
<!ATTLIST User Rating CDATA #REQUIRED>

<!ATTLIST Bidder BidderID IDREF #REQUIRED>
<!ATTLIST Seller SellerID IDREF #REQUIRED>

Ratings appear only once!

UserID=“!peanut”
Rating=58823

UserID=“nobody138”
Rating=427
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Issue with the ID/IDREF solution:

  Where are UserID-entries kept in the tree?
      (arbitrary / ‘tree-implementation-detail’)

  ID-attribute must contain an XML name that is
      unique within the document; more precisely: no other ID-attribute 
      in the document can have the same value. 

User

User

Seller

Bidder

Ratings appear only once!

SellerID=“!peanut”

BidderID=“nobody138”UserID=“nobody138”
Rating=427

UserID=“!peanut”
Rating=58823

<!ATTLIST User UserID ID #REQUIRED>
<!ATTLIST User Rating CDATA #REQUIRED>

<!ATTLIST Bidder BidderID IDREF #REQUIRED>
<!ATTLIST Seller SellerID IDREF #REQUIRED>
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Issue with the ID/IDREF solution:

  Where are UserID-entries kept in the tree?
      (arbitrary / ‘tree-implementation-detail’)

  ID-attribute must contain an XML name that is
      unique within the document; more precisely: no other ID-attribute 
      in the document can have the same value.

  thus, if ItemID was an ID-attribute, then each entry would have
      to be different from any UserID!  
       Why? Why would it be satisfied in the data?

User Bidder

Ratings appear only once!

BidderID=“nobody138”UserID=“nobody138”
Rating=427

<!ATTLIST User UserID ID #REQUIRED>
<!ATTLIST User Rating CDATA #REQUIRED>

<!ATTLIST Bidder BidderID IDREF #REQUIRED>
<!ATTLIST Seller SellerID IDREF #REQUIRED>
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<!ATTLIST User UserID ID #REQUIRED>
<!ATTLIST User Rating CDATA #REQUIRED>

<!ATTLIST Bidder BidderID IDREF #REQUIRED>
<!ATTLIST Seller SellerID IDREF #REQUIRED>

Issue with the ID/IDREF solution:

  Where are UserID-entries kept in the tree?
      (arbitrary / ‘tree-implementation-detail’)

  ID-attribute must contain an XML name that is
      unique within the document; more precisely: no other ID-attribute 
      in the document can have the same value.

  thus, if ItemID was an ID-attribute, then each entry would have
      to be different from any UserID!  
       Why? Why would it be satisfied in the data?

→  On EBAY data this solution does NOT work!  (because of XML name issues)
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<!DOCTYPE greeting [
  <!ELEMENT greeting (user | bidder | seller)*>
  <!ELEMENT user EMPTY>
  <!ATTLIST user BidderID ID #REQUIRED>
  <!ATTLIST user Rating CDATA #REQUIRED>
  <!ELEMENT bidder EMPTY>
  <!ATTLIST bidder BidderID IDREF #REQUIRED>
]>
<greeting>
    <user BidderID="!peanut" rating="427"/>
    <seller BidderID="!peanut"/>
</greeting>

test.xml

$ xml-xparse –n test.xml
Attempting validating, namespace-ignorant parse
Error:file:/home/ad/test.xml:11:48:Attribute value "!peanut" 
of type ID must be a name.
Error:file:/home/ad/test.xml:11:76:Attribute value "!peanut" 
of type IDREF must be a name.
Parse succeeded (0.37) with 2 errors and no warnings.
$ 
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[1]   document   ::=   prolog element Misc*
[2]       Char   ::=   a Unicode character
[3]          S   ::=   (‘ ’ | ‘\t’ | ‘\n’ | ‘\r’)+
[4]   NameChar   ::=   (Letter | Digit | ‘.’ | ‘-’ | ‘:’
[5]       Name   ::=   (Letter | '_' | ':') (NameChar)*
[84] Letter      ::=   [a-zA-Z]
[88] Digit       ::=   [0-9]

  Name must start with  a-zA-Z  or with  ‘_’  or with  ‘:’

  BidderID  may not equal  !peanut
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[1]   document   ::=   prolog element Misc*
[2]       Char   ::=   a Unicode character
[3]          S   ::=   (‘ ’ | ‘\t’ | ‘\n’ | ‘\r’)+
[4]   NameChar   ::=   (Letter | Digit | ‘.’ | ‘-’ | ‘:’
[5]       Name   ::=   (Letter | '_' | ':') (NameChar)*
[84] Letter      ::=   [a-zA-Z]
[88] Digit       ::=   [0-9]

  in presence of namespaces, must even be an  NCName

        NCName   ::=   Name - (Char* ‘:’ Char*)

$ xml-xparse test.xml
Attempting validating, namespace-aware parse
Error:file:/home/ad/test.xml:11:48:Attribute value "!peanut" 
of type ID must be an NCName when namespaces are enabled.
Error:file:/home/ad/test.xml:11:76:Attribute value "!peanut" 
of type IDREF must be an NCName when namespaces are enabled.
Parse succeeded (0.37) with 2 errors and no warnings.
$ 
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Issue with the ID/IDREF solution:

 On the EBAY-data, solution does not work (because of XML names)!

 Would need to introduce additional IDs that are allowed
        ( one more level of indirection)

<!DOCTYPE greeting [
  <!ELEMENT greeting (user | bidder | seller)*>
  <!ELEMENT user EMPTY>
  <!ATTLIST user Bidder_ID ID #REQUIRED>
  <!ATTLIST user BidderID CDATA #REQUIRED>
  <!ATTLIST user Rating CDATA #REQUIRED>
  <!ELEMENT bidder EMPTY>
  <!ATTLIST bidder BidderID IDREF #REQUIRED>
]>
<greeting>
    <user Bidder_ID=“u127” BidderID="!peanut" Rating="427"/>
    <bidder Bidder_ID="u127"/>
</greeting>

unique wrt all ID-attribute values!
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Issue with the ID/IDREF solution:

 On the EBAY-data, solution does not work (because of XML names)!

 Would need to introduce additional IDs that are allowed
        ( one more level of indirection)

  Similar to an ‘implementation’ of a table of this form:

 In a table (of a database), u127 can simply be 127

.

.

.
u127  !peanut  427
.
.
.
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Issue with the ID/IDREF solution:

 On the EBAY-data, solution does not work (because of XML names)!

 Would need to introduce additional IDs that are allowed
        ( one more level of indirection)

  Similar to an ‘implementation’ of a table of this form:

 In a DB: first column not needed..

.

.

.
!peanut  427  start  end
!peanut  425  s2     start
.
.

time intervals

not needed for your
Assignment 1!
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Proposed Solution

  use XML to exchange data, not to store or query it

  store data in tables of a database

  query the tables using SQL

.

.

.
!peanut  427 
!peanut  425 
.
.XML / JSON

“shredding”
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Questions

 introduce new integer-ID column:  yes or no?

 how to declare that a column is of type ID?

 does every table have an ID column?

 can there be duplicates of tuples (rows) in a table?

 how can we check if our tables contain redundancy?

 how can we express additional constraints that hold on the data?
      (e.g., end-time is after start-time)

.

.

.
!peanut  427 
!peanut  425 
.
.
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Roadmap

   Entity-Relationship Model (short)
       - define primary key (“ID column”) in an abstract setting

   Define  data redundancy

   Define functional dependencies

   Define normal forms
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4. Entity Relationship Model

→  high-level database model               [Peter Chen (MIT) TODS 1, 1976]

→  useful for design before moving to a lower level model (e.g. relational)

ER Model has

→  Structural part 
       - entity types
       - attributes
       - relationship types

→  Integrity constraints
       - primary keys for entity and relationship types
       - multiplicity constraints for relationship types

Next slides from Peter Wood’s DB Management Lecture
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4. Entity Relationship Model

ER Diagrams

→  relatively simple
→  user-friendly
→  unified view of data, independent
      of any implemented data mode.

→  high-level database model               [Peter Chen (MIT) TODS 1, 1976]

→  useful for design before moving to a lower level model (e.g. relational)

ER Model has

→  Structural part 
       - entity types
       - attributes
       - relationship types

→  Integrity constraints
       - primary keys for entity and relationship types
       - multiplicity constraints for relationship types
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Entity Types

Entity  =   a “thing” that exists and can be uniquely identified, 
                e.g. an individual person

Entity type  =  collection of similar entities, e.g., a collection of people
(rectangle)

Entity type has attributes (circles), representing properties of the entities.

Each Person has single Name, Address, and Nat. Insurance numer (NI#)
Each Person can have many Phones
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Relationship Types

Relationship Type = association between two or more entity types.
(diamond)

Multiplicity Constraints in Relationship Types

→ Many-to-One (or One-to-Many)
      An Employee Works in one Department or a
      Department has many Employees.
→ One-to-One 
       A Manager Heads one Department and vice versa.
→ Many-to-Many
       A Lecturer Teaches many Students and a Student is
       Taught by many Lecturers
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Example of Many-to-One Relationship Type

The arrowhead is drawn at the “one” end of rel. type

→  Each Emplyee Works-in one Department

→  Each Department has many Employees Working in it. 



53

Example of One-to-One Relationship Type

The arrowhead is drawn at both ends

→  Each Manager Occupies one Office

→  Each Office has one Manager Occupying it
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Example of Many-to-Many Relationship Type

No arrowheads

→  Each Lecturer Teaches many Students

→  Each Student is taught by many Lecturers



55

Multiple Relationship Types
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Participation Constraints in Relationships

→  optional  (our default, sometimes indicated by multiplicity constraint 0..*)
      e.g. Employee may or may not be assigned to a Department

→  mandatory (double lines, or multiplicity constraint 1..*)

→  some Lecturers may not Teach any Students
→  each Student must be taught by at least one Lecturer
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Multiway Relationship Types

→  each supplier may supply different parts to different projects



58

END
Lecture 4
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