
SQL and Incomp?ete Data
A not so happy marriage

Dr Paolo Guagliardo

Applied Databases, Guest Lecture – 31 March 2016

SQL is efficient, correct and reliable

. . . as long as data is complete

When data is missing, things get ugly

Very poor design choices in the SQL standard

NULL: all-purpose marker to represent (different kinds of)
missing information
Main source of problems and inconsistencies

“. . . this topic cannot be described in a manner that is
simultaneously both comprehensive and comprehensible”

“Those SQL features are . . . fundamentally at odds with
the way the world behaves”

— C. Date & H. Darwen, A Guide to SQL Standard

1 / 25

SQL is efficient, correct and reliable
. . . as long as data is complete

When data is missing, things get ugly

Very poor design choices in the SQL standard

NULL: all-purpose marker to represent (different kinds of)
missing information
Main source of problems and inconsistencies

“. . . this topic cannot be described in a manner that is
simultaneously both comprehensive and comprehensible”

“Those SQL features are . . . fundamentally at odds with
the way the world behaves”

— C. Date & H. Darwen, A Guide to SQL Standard

1 / 25

SQL is efficient, correct and reliable
. . . as long as data is complete

When data is missing, things get ugly

Very poor design choices in the SQL standard

NULL: all-purpose marker to represent (different kinds of)
missing information
Main source of problems and inconsistencies

“. . . this topic cannot be described in a manner that is
simultaneously both comprehensive and comprehensible”

“Those SQL features are . . . fundamentally at odds with
the way the world behaves”

— C. Date & H. Darwen, A Guide to SQL Standard

1 / 25

SQL is efficient, correct and reliable
. . . as long as data is complete

When data is missing, things get ugly

Very poor design choices in the SQL standard

NULL: all-purpose marker to represent (different kinds of)
missing information
Main source of problems and inconsistencies

“. . . this topic cannot be described in a manner that is
simultaneously both comprehensive and comprehensible”

“Those SQL features are . . . fundamentally at odds with
the way the world behaves”

— C. Date & H. Darwen, A Guide to SQL Standard

1 / 25

What’s in a Null?

Two types of missing information:

I Unknown – there is a value, but we do not know which one

I Non-Applicable – a value does not exist

The problem is that NULL can represent both without distinction

Person

Name NINo

Jane NULL

Does Jane have a National Insurance number?

John NULL

Does John have a National Insurance number?

2 / 25

What’s in a Null?

Two types of missing information:

I Unknown – there is a value, but we do not know which one

I Non-Applicable – a value does not exist

The problem is that NULL can represent both without distinction

Person

Name NINo

Jane NULL

Does Jane have a National Insurance number?

John NULL

Does John have a National Insurance number?

2 / 25

What’s in a Null?

Two types of missing information:

I Unknown – there is a value, but we do not know which one

I Non-Applicable – a value does not exist

The problem is that NULL can represent both without distinction

Person

Name NINo

Jane NULL Does Jane have a National Insurance number?
John NULL

Does John have a National Insurance number?

2 / 25

What’s in a Null?

Two types of missing information:

I Unknown – there is a value, but we do not know which one

I Non-Applicable – a value does not exist

The problem is that NULL can represent both without distinction

Person

Name NINo

Jane NULL Does Jane have a National Insurance number?
John NULL Does John have a National Insurance number?

2 / 25

Unknown Vs. Non-Applicable Values

Person

Name NINo

Jane NULL
John NULL

No information on whether Jane/John have a
NINo (albeit its value is unknown) or whether
they do not have a NINo at all

PersonMoreInfo

Name HasNINo NINo

Jane Yes NULL

← unknown

John No NULL

← non-applicable

Person = SELECT Name, NINo FROM PersonMoreInfo

3 / 25

Unknown Vs. Non-Applicable Values

Person

Name NINo

Jane NULL
John NULL

No information on whether Jane/John have a
NINo (albeit its value is unknown) or whether
they do not have a NINo at all

PersonMoreInfo

Name HasNINo NINo

Jane Yes NULL

← unknown

John No NULL

← non-applicable

Person = SELECT Name, NINo FROM PersonMoreInfo

3 / 25

Unknown Vs. Non-Applicable Values

Person

Name NINo

Jane NULL
John NULL

No information on whether Jane/John have a
NINo (albeit its value is unknown) or whether
they do not have a NINo at all

PersonMoreInfo

Name HasNINo NINo

Jane Yes NULL ← unknown
John No NULL

← non-applicable

Person = SELECT Name, NINo FROM PersonMoreInfo

3 / 25

Unknown Vs. Non-Applicable Values

Person

Name NINo

Jane NULL
John NULL

No information on whether Jane/John have a
NINo (albeit its value is unknown) or whether
they do not have a NINo at all

PersonMoreInfo

Name HasNINo NINo

Jane Yes NULL ← unknown
John No NULL ← non-applicable

Person = SELECT Name, NINo FROM PersonMoreInfo

3 / 25

Unknown Vs. Non-Applicable Values

Person

Name NINo

Jane NULL
John NULL

No information on whether Jane/John have a
NINo (albeit its value is unknown) or whether
they do not have a NINo at all

PersonMoreInfo

Name HasNINo NINo

Jane Yes NULL ← unknown
John No NULL ← non-applicable

Person = SELECT Name, NINo FROM PersonMoreInfo

3 / 25

Getting Rid of Non-Applicable Values

PersonWithNINo

Name NINo

Jane NULL

PersonWithoutNINo

Name

John

SELECT Name, NINo
FROM PersonMoreInfo
WHERE HasNINo = 'Yes'

SELECT Name
FROM PersonMoreInfo
WHERE HasNINo = 'No'

PersonMoreInfo can be reconstructed as follows:

SELECT Name, 'Yes' AS HasNINo, NINo
FROM PersonWithNINo
UNION
SELECT Name, 'No', NULL
FROM PersonWithoutNINo

4 / 25

Getting Rid of Non-Applicable Values

PersonWithNINo

Name NINo

Jane NULL

PersonWithoutNINo

Name

John

SELECT Name, NINo
FROM PersonMoreInfo
WHERE HasNINo = 'Yes'

SELECT Name
FROM PersonMoreInfo
WHERE HasNINo = 'No'

PersonMoreInfo can be reconstructed as follows:

SELECT Name, 'Yes' AS HasNINo, NINo
FROM PersonWithNINo
UNION
SELECT Name, 'No', NULL
FROM PersonWithoutNINo

4 / 25

Getting Rid of Non-Applicable Values

PersonWithNINo

Name NINo

Jane NULL

PersonWithoutNINo

Name

John

SELECT Name, NINo
FROM PersonMoreInfo
WHERE HasNINo = 'Yes'

SELECT Name
FROM PersonMoreInfo
WHERE HasNINo = 'No'

PersonMoreInfo can be reconstructed as follows:

SELECT Name, 'Yes' AS HasNINo, NINo
FROM PersonWithNINo
UNION
SELECT Name, 'No', NULL
FROM PersonWithoutNINo

4 / 25

Nulls as Non-Applicable Values

Can be avoided with a better schema design

I Makes data semantics clearer (and queries easier to write)

I Saves storage space

Occur naturally in outer joins

A B

0 1
1 2
2 3

NATURAL LEFT JOIN A C

0 a
2 b

= A B C

0 1 a
1 2 NULL
2 3 b

If you cannot do without them,
at least be aware of what you are dealing with

5 / 25

Nulls as Non-Applicable Values

Can be avoided with a better schema design

I Makes data semantics clearer (and queries easier to write)

I Saves storage space

Occur naturally in outer joins

A B

0 1
1 2
2 3

NATURAL LEFT JOIN A C

0 a
2 b

= A B C

0 1 a
1 2 NULL
2 3 b

If you cannot do without them,
at least be aware of what you are dealing with

5 / 25

Nulls as Non-Applicable Values

Can be avoided with a better schema design

I Makes data semantics clearer (and queries easier to write)

I Saves storage space

Occur naturally in outer joins

A B

0 1
1 2
2 3

NATURAL LEFT JOIN A C

0 a
2 b

= A B C

0 1 a
1 2 NULL
2 3 b

If you cannot do without them,
at least be aware of what you are dealing with

5 / 25

Nulls in Selection Conditions (1)

What is the answer to

Q1: SELECT * FROM R, S WHERE R.A = S.A

Q2: SELECT * FROM R, S WHERE R.A <> S.A

Q3: SELECT * FROM R, S WHERE R.A = S.A OR R.A <> S.A

when R = {1,NULL} and S = {NULL}?

R.A

1
NULL

× S.A

NULL

= R.A S.A

1 NULL
NULL NULL

Answer to all three queries: {}

6 / 25

Nulls in Selection Conditions (1)

What is the answer to

Q1: SELECT * FROM R, S WHERE R.A = S.A

Q2: SELECT * FROM R, S WHERE R.A <> S.A

Q3: SELECT * FROM R, S WHERE R.A = S.A OR R.A <> S.A

when R = {1,NULL} and S = {NULL}?

R.A

1
NULL

× S.A

NULL

= R.A S.A

1 NULL
NULL NULL

Answer to all three queries: {}

6 / 25

Nulls in Selection Conditions (1)

What is the answer to

Q1: SELECT * FROM R, S WHERE R.A = S.A

Q2: SELECT * FROM R, S WHERE R.A <> S.A

Q3: SELECT * FROM R, S WHERE R.A = S.A OR R.A <> S.A

when R = {1,NULL} and S = {NULL}?

R.A

1
NULL

× S.A

NULL

= R.A S.A

1 NULL
NULL NULL

Answer to all three queries: {}

6 / 25

Evaluation of Selection Conditions

SQL uses three truth values: true (t), false (f), unknown (u)

1. Every comparison (except IS NULL and IS NOT NULL)
where one of the arguments is NULL evaluates to unknown

2. The truth values assigned to each comparison are propagated
using the following tables:

AND t f u

t t f u

f f f f

u u f u

OR t f u

t t t t

f t f u

u t u u

NOT

t f

f t

u u

3. The rows for which the condition evaluates to true are returned

7 / 25

Evaluation of Selection Conditions

SQL uses three truth values: true (t), false (f), unknown (u)

1. Every comparison (except IS NULL and IS NOT NULL)
where one of the arguments is NULL evaluates to unknown

2. The truth values assigned to each comparison are propagated
using the following tables:

AND t f u

t t f u

f f f f

u u f u

OR t f u

t t t t

f t f u

u t u u

NOT

t f

f t

u u

3. The rows for which the condition evaluates to true are returned

7 / 25

Evaluation of Selection Conditions

SQL uses three truth values: true (t), false (f), unknown (u)

1. Every comparison (except IS NULL and IS NOT NULL)
where one of the arguments is NULL evaluates to unknown

2. The truth values assigned to each comparison are propagated
using the following tables:

AND t f u

t t f u

f f f f

u u f u

OR t f u

t t t t

f t f u

u t u u

NOT

t f

f t

u u

3. The rows for which the condition evaluates to true are returned

7 / 25

Evaluation of Selection Conditions

SQL uses three truth values: true (t), false (f), unknown (u)

1. Every comparison (except IS NULL and IS NOT NULL)
where one of the arguments is NULL evaluates to unknown

2. The truth values assigned to each comparison are propagated
using the following tables:

AND t f u

t t f u

f f f f

u u f u

OR t f u

t t t t

f t f u

u t u u

NOT

t f

f t

u u

3. The rows for which the condition evaluates to true are returned

7 / 25

Nulls in Selection Conditions (2)

What is the answer to

Q1: SELECT * FROM R, S WHERE R.A = S.A

Q2: SELECT * FROM R, S WHERE R.A <> S.A

Q3: SELECT * FROM R, S WHERE R.A = S.A OR R.A <> S.A

when R = {1,NULL} and S = {NULL}?

R.A S.A

1 NULL
NULL NULL

c1

u
u

c2

u
u

c3

u
u

8 / 25

Nulls in Selection Conditions (2)

What is the answer to

Q1: SELECT * FROM R, S WHERE R.A = S.A

Q2: SELECT * FROM R, S WHERE R.A <> S.A

Q3: SELECT * FROM R, S WHERE R.A = S.A OR R.A <> S.A

when R = {1,NULL} and S = {NULL}?

R.A S.A

1 NULL
NULL NULL

c1

u
u

c2

u
u

c3

u
u

8 / 25

Nulls in Selection Conditions (2)

What is the answer to

Q1: SELECT * FROM R, S WHERE R.A = S.A

Q2: SELECT * FROM R, S WHERE R.A <> S.A

Q3: SELECT * FROM R, S WHERE R.A = S.A OR R.A <> S.A

when R = {1,NULL} and S = {NULL}?

R.A S.A

1 NULL
NULL NULL

c1

u
u

c2

u
u

c3

u
u

8 / 25

Nulls in Selection Conditions (2)

What is the answer to

Q1: SELECT * FROM R, S WHERE R.A = S.A

Q2: SELECT * FROM R, S WHERE R.A <> S.A

Q3: SELECT * FROM R, S WHERE R.A = S.A OR R.A <> S.A

when R = {1,NULL} and S = {NULL}?

R.A S.A

1 NULL
NULL NULL

c1

u
u

c2

u
u

c3

u
u

8 / 25

Nulls in Selection Conditions (2)

What is the answer to

Q1: SELECT * FROM R, S WHERE R.A = S.A

Q2: SELECT * FROM R, S WHERE R.A <> S.A

Q3: SELECT * FROM R, S WHERE R.A = S.A OR R.A <> S.A

when R = {1,NULL} and S = {NULL}?

R.A S.A

1 NULL
NULL NULL

c1

u
u

c2

u
u

c3

u
u

8 / 25

Nulls and Set Operations

What is the answer to

Q1: SELECT * FROM R UNION SELECT * FROM S

Q2: SELECT * FROM R INTERSECT SELECT * FROM S

Q3: SELECT * FROM R EXCEPT SELECT * FROM S

when R = {1,NULL} and S = {NULL}?

I Answer to Q1:

{1,NULL}

I Answer to Q2:

{NULL}

I Answer to Q3:

{1}

In set operations NULL is treated like any other value

9 / 25

Nulls and Set Operations

What is the answer to

Q1: SELECT * FROM R UNION SELECT * FROM S

Q2: SELECT * FROM R INTERSECT SELECT * FROM S

Q3: SELECT * FROM R EXCEPT SELECT * FROM S

when R = {1,NULL} and S = {NULL}?

I Answer to Q1: {1,NULL}
I Answer to Q2:

{NULL}

I Answer to Q3:

{1}

In set operations NULL is treated like any other value

9 / 25

Nulls and Set Operations

What is the answer to

Q1: SELECT * FROM R UNION SELECT * FROM S

Q2: SELECT * FROM R INTERSECT SELECT * FROM S

Q3: SELECT * FROM R EXCEPT SELECT * FROM S

when R = {1,NULL} and S = {NULL}?

I Answer to Q1: {1,NULL}
I Answer to Q2: {NULL}
I Answer to Q3:

{1}

In set operations NULL is treated like any other value

9 / 25

Nulls and Set Operations

What is the answer to

Q1: SELECT * FROM R UNION SELECT * FROM S

Q2: SELECT * FROM R INTERSECT SELECT * FROM S

Q3: SELECT * FROM R EXCEPT SELECT * FROM S

when R = {1,NULL} and S = {NULL}?

I Answer to Q1: {1,NULL}
I Answer to Q2: {NULL}
I Answer to Q3: {1}

In set operations NULL is treated like any other value

9 / 25

Nulls and Set Operations

What is the answer to

Q1: SELECT * FROM R UNION SELECT * FROM S

Q2: SELECT * FROM R INTERSECT SELECT * FROM S

Q3: SELECT * FROM R EXCEPT SELECT * FROM S

when R = {1,NULL} and S = {NULL}?

I Answer to Q1: {1,NULL}
I Answer to Q2: {NULL}
I Answer to Q3: {1}

In set operations NULL is treated like any other value

9 / 25

Nulls and Query Equivalence

Q1

SELECT R.A FROM R
INTERSECT
SELECT S.A FROM S

Q2

SELECT DISTINCT R.A
FROM R, S
WHERE R.A = S.A

On databases without nulls, Q1 and Q2 give the same answers

On databases with nulls, they do not

For example, when R = S = {NULL}
I Q1 returns {NULL}
I Q2 returns {}

10 / 25

Nulls and Query Equivalence

Q1

SELECT R.A FROM R
INTERSECT
SELECT S.A FROM S

Q2

SELECT DISTINCT R.A
FROM R, S
WHERE R.A = S.A

On databases without nulls, Q1 and Q2 give the same answers

On databases with nulls, they do not

For example, when R = S = {NULL}
I Q1 returns {NULL}
I Q2 returns {}

10 / 25

Nulls and Arithmetic Operations

Every arithmetic operation that involves a NULL results in NULL

SELECT 1+NULL AS sum , 1-NULL AS diff,
1*NULL AS mult, 1/NULL AS div

sum | diff | mult | div
------+------+------+------
NULL | NULL | NULL | NULL

(1 row)

Observe that SELECT NULL/0 also returns NULL
instead of throwing a DIVISION BY ZERO error!

11 / 25

Nulls and Arithmetic Operations

Every arithmetic operation that involves a NULL results in NULL

SELECT 1+NULL AS sum , 1-NULL AS diff,
1*NULL AS mult, 1/NULL AS div

sum | diff | mult | div
------+------+------+------
NULL | NULL | NULL | NULL

(1 row)

Observe that SELECT NULL/0 also returns NULL
instead of throwing a DIVISION BY ZERO error!

11 / 25

Nulls and Aggregation (1)

Aggregate functions ignore nulls

Consider R = {0, 1,NULL} on attribute A

SELECT MIN(A), MAX(A), COUNT(A), SUM(A),
CAST(AVG(A) AS numeric(2,1))

FROM R

min | max | count | sum | avg
-----+-----+-------+-----+-----

0 | 1 | 2 | 1 | 0.5
(1 row)

12 / 25

Nulls and Aggregation (1)

Aggregate functions ignore nulls

Consider R = {0, 1,NULL} on attribute A

Exception:

SELECT COUNT(*) FROM R

count

3
(1 row)

12 / 25

Nulls and Aggregation (2)

Applying an aggregate function other than COUNT to an empty set
results in NULL

Consider R = {0, 1,NULL} on attribute A

SELECT MIN(A), MAX(A), SUM(A), AVG(A), COUNT(A)
FROM R
WHERE A = 2

min | max | sum | avg | count
------+------+------+------+-------
NULL | NULL | NULL | NULL | 0

(1 row)

The semantics of these nulls is that of non-applicable values

13 / 25

Possible Worlds

An incomplete database can represent (infinitely) many complete
databases, depending on how the missing values are interpreted

Each of these possible worlds corresponds to
a substitution of actual values for the nulls

Name Age

Jane NULL
John NULL
Mary 27

14 / 25

Possible Worlds

An incomplete database can represent (infinitely) many complete
databases, depending on how the missing values are interpreted

Each of these possible worlds corresponds to
a substitution of actual values for the nulls

Name Age

Jane 45
John 1
Mary 27

14 / 25

Possible Worlds

An incomplete database can represent (infinitely) many complete
databases, depending on how the missing values are interpreted

Each of these possible worlds corresponds to
a substitution of actual values for the nulls

Name Age

Jane 18
John 90
Mary 27

14 / 25

Possible Worlds

An incomplete database can represent (infinitely) many complete
databases, depending on how the missing values are interpreted

Each of these possible worlds corresponds to
a substitution of actual values for the nulls

Name Age

Jane 28
John 29
Mary 27

14 / 25

Possible Worlds

An incomplete database can represent (infinitely) many complete
databases, depending on how the missing values are interpreted

Each of these possible worlds corresponds to
a substitution of actual values for the nulls

Name Age

Jane 27
John 27
Mary 27

14 / 25

Certain Answers

Answers independent of the interpretation of missing information

For a query Q and a database D, they are defined as

certain(Q,D) =
⋂
Q(D′)

over all possible worlds D′ described by D

D:

Name Age

Jane NULL
John NULL
Mary 27

Q: “people over 18”

certain(Q,D) = {(Mary, 27)}

Provide the notion of correctness on incomplete databases

15 / 25

Certain Answers

Answers independent of the interpretation of missing information

For a query Q and a database D, they are defined as

certain(Q,D) =
⋂
Q(D′)

over all possible worlds D′ described by D

D:

Name Age

Jane NULL
John NULL
Mary 27

Q: “people over 18”

certain(Q,D) = {(Mary, 27)}

Provide the notion of correctness on incomplete databases

15 / 25

Certain Answers

Answers independent of the interpretation of missing information

For a query Q and a database D, they are defined as

certain(Q,D) =
⋂
Q(D′)

over all possible worlds D′ described by D

D:

Name Age

Jane NULL
John NULL
Mary 27

Q: “people over 18”

certain(Q,D) = {(Mary, 27)}

Provide the notion of correctness on incomplete databases

15 / 25

Certain Answers

Answers independent of the interpretation of missing information

For a query Q and a database D, they are defined as

certain(Q,D) =
⋂
Q(D′)

over all possible worlds D′ described by D

D:

Name Age

Jane NULL
John NULL
Mary 27

Q: “people over 18”

certain(Q,D) = {(Mary, 27)}

Provide the notion of correctness on incomplete databases

15 / 25

SQL and Correctness

“If you have any nulls in your database, you’re getting
wrong answers to some of your queries. What’s more,
you have no way of knowing, in general, just which
queries you’re getting wrong answers to; all results
become suspect. You can never trust the answers you get
from a database with nulls”

— C. Date, Database in Depth

16 / 25

Wrong Answers in SQL

Orders

ord id price

ord1 30
ord2 15
ord3 50

Payments

ord id pay date

ord1 2015-10-12
NULL 2015-12-11

Q: list unpaid orders

SELECT O.ord_id
FROM Orders O
WHERE NOT EXISTS (
SELECT *
FROM Payments P
WHERE P.ord_id = O.ord_id)

Answer: {ord2, ord3}

incorrect! certain(Q,D) = {}

17 / 25

Wrong Answers in SQL

Orders

ord id price

ord1 30
ord2 15
ord3 50

Payments

ord id pay date

ord1 2015-10-12
NULL 2015-12-11

Q: list unpaid orders

SELECT O.ord_id
FROM Orders O
WHERE NOT EXISTS (
SELECT *
FROM Payments P
WHERE P.ord_id = O.ord_id)

Answer: {ord2, ord3}

incorrect! certain(Q,D) = {}

17 / 25

Wrong Answers in SQL

Orders

ord id price

ord1 30
ord2 15
ord3 50

Payments

ord id pay date

ord1 2015-10-12
NULL 2015-12-11

Q: list unpaid orders

SELECT O.ord_id
FROM Orders O
WHERE NOT EXISTS (
SELECT *
FROM Payments P
WHERE P.ord_id = O.ord_id)

Answer: {ord2, ord3} incorrect! certain(Q,D) = {}
17 / 25

Is This a Real Problem?
Experiment

I Data from TPC-H Benchmark (models a business scenario)
I 4 queries with negation: 2 from TPC-H, 2 from a textbook
I Approximate algorithms for detecting wrong answers

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

90

100

Null rate, %

A
ve
ra
ge

%
of

w
ro
n
g
an

sw
er
s

Q1

Q2

Q3

Q4

1

18 / 25

Correctness in SQL (1)

It can be achieved for a restricted subset of the language:

I No duplicate elimination (DISTINCT not allowed)

I No set operations (i.e., UNION, INTERSECT, EXCEPT)

I No grouping/aggregation

I No explicit NOT in WHERE conditions

I Semijoins (EXISTS)

I Antijoins (NOT EXISTS)
I Restricted theta-joins, allowed only inside:

I a projection on non-nullable attributes, or
I the right-hand side of a semijoin or antijoin

19 / 25

Correctness in SQL (2)

Main idea: translate a query Q into a pair Q+, Q? where

I Q+ approximates correct answers

I Q? represents potential answers

R+ = R(
σθ(Q)

)+
= σθ+(Q

+)(
πα(Q)

)+
= πα(Q

+)

(Q1 onθ Q2)
+ = Q+

1 onθ+ Q
+
2

(Q1 nθ Q2)
+ = Q+

1 nθ+ Q
+
2

(Q1 nθ Q2)
+ = Q+

1 nθ? Q
?
2

R? = R(
σθ(Q)

)?
= σθ?(Q

?)(
πα(Q)

)?
= πα(Q

?)

(Q1 onθ Q2)
? = Q?

1 onθ? Q
?
2

(Q1 nθ Q2)
? = Q?

1 nθ? Q
?
2

(Q1 nθ Q2)
? = Q?

1 nθ+ Q
+
2

Key task: translating selection/join conditions θ

20 / 25

Translation of Conditions

(A opB)+ = (A opB) ∧ not null(A) ∧ not null(B)

(A op c)+ = (A op c) ∧ not null(A) (c is a constant)

(θ1 ∧ θ2)+ = θ+1 ∧ θ
+
2

(θ1 ∨ θ2)+ = θ+1 ∨ θ
+
2

(A opB)? = (A opB) ∨ null(A) ∨ null(B)

(A op c)? = (A op c) ∨ null(A) (c is a constant)

(θ1 ∧ θ2)? = θ?1 ∧ θ?2
(θ1 ∨ θ2)? = θ?1 ∨ θ?2

21 / 25

Example of Translation

SELECT o_orderkey
FROM orders
WHERE NOT EXISTS (

SELECT *
FROM lineitem
WHERE l_orderkey = o_orderkey

AND l_suppkey <> $supp_key

)

In relational algebra: πo orderkey

(
ordersnθ lineitem

)
where θ is the condition in the WHERE clause

22 / 25

Example of Translation

SELECT o_orderkey
FROM orders
WHERE NOT EXISTS (

SELECT *
FROM lineitem
WHERE (l_orderkey = o_orderkey

OR l_orderkey IS NULL
OR o_orderkey IS NULL)

AND (l_suppkey <> $supp_key
OR l_suppkey IS NULL)

)

In relational algebra: πo orderkey

(
ordersnθ lineitem

)
where θ is the condition in the WHERE clause

22 / 25

Example of Translation

SELECT o_orderkey
FROM orders
WHERE NOT EXISTS (

SELECT *
FROM lineitem
WHERE l_orderkey = o_orderkey

AND (l_suppkey <> $supp_key
OR l_suppkey IS NULL)

)

In relational algebra: πo orderkey

(
ordersnθ lineitem

)
where θ is the condition in the WHERE clause

22 / 25

Does It Work in Practice?

Yes, with mixed results

The good small overhead (< 4%)

1 2 3 4 5
·10−2

1

1.01

1.02

1.03

Null rate

A
ve
ra
ge

re
la
ti
ve

p
er
fo
rm

an
ce

Query Q+
1

1 2 3 4 5
·10−2

1

1.01

1.02

1.03

1.04

Null rate

A
ve
ra
ge

re
la
ti
ve

p
er
fo
rm

an
ce

Query Q+
3

The bad and the ugly describe the status of query optimizers

23 / 25

Does It Work in Practice?

Yes, with mixed results

The fantastic significant speed-up (more than 103 times faster)

1 2 3 4 5
·10−2

2

4

6

8

·10−4

Null rate

A
ve
ra
ge

re
la
ti
ve

p
er
fo
rm

an
ce

Query Q+
2

The bad and the ugly describe the status of query optimizers

23 / 25

Does It Work in Practice?

Yes, with mixed results

The tolerable moderate slow-down (roughly half the speed)

1 2 3 4 5
·10−2

1

1.2

1.4

1.6

1.8

Null rate

A
ve
ra
ge

re
la
ti
ve

p
er
fo
rm

an
ce

Query Q+
4

The bad and the ugly describe the status of query optimizers

23 / 25

Does It Work in Practice?

Yes, with mixed results

The bad and the ugly describe the status of query optimizers

23 / 25

Marked Nulls

Theoretical model where each missing value has an identifier

Person

Name Age

Jane NULL:1
John NULL:1
Mary 27
Carl NULL:2

We do not know what the age of Jane, John and Carl is
But we know that Jane and John have the same age

I Allow cross-referencing of unknown values

I Indexable, seen as regular values by the optimizer

24 / 25

Marked Nulls

Theoretical model where each missing value has an identifier

Person

Name Age

Jane NULL:1
John NULL:1
Mary 27
Carl NULL:2

We do not know what the age of Jane, John and Carl is
But we know that Jane and John have the same age

I Allow cross-referencing of unknown values

I Indexable, seen as regular values by the optimizer

24 / 25

Conclusions

The way SQL handles incomplete data is disastrous

I Ambiguous (mixing different kinds of missing information)

I Inconsistent (nulls behave in conflicting ways)

I Incorrect (producing wrong answers)

There is hope for a fix, but lots of work needs to be done
both theoretical and practical

I Aggregation

I Constraints

I Query optimization

I Marked nulls

I SQL-to-SQL translations

I More experiments

25 / 25

Conclusions

The way SQL handles incomplete data is disastrous

I Ambiguous (mixing different kinds of missing information)

I Inconsistent (nulls behave in conflicting ways)

I Incorrect (producing wrong answers)

There is hope for a fix, but lots of work needs to be done
both theoretical and practical

I Aggregation

I Constraints

I Query optimization

I Marked nulls

I SQL-to-SQL translations

I More experiments

25 / 25

	SQL and Incomp?ete Data
	What's in a Null?
	Unknown Vs. Non-Applicable Values
	Getting Rid of Non-Applicable Values
	Nulls as Non-Applicable Values
	Nulls in Selection Conditions (1)
	Evaluation of Selection Conditions
	Nulls in Selection Conditions (2)
	Nulls and Set Operations
	Nulls and Query Equivalence
	Nulls and Arithmetic Operations
	Nulls and Aggregation (1)
	Nulls and Aggregation (2)
	Possible Worlds
	Certain Answers
	SQL and Correctness
	Wrong Answers in SQL
	Is This a Real Problem?
	Correctness in SQL (1)
	Correctness in SQL (2)
	Translation of Conditions
	Example of Translation
	Does It Work in Practice?
	Marked Nulls
	Conclusions

