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Recap I & II

1.   XML, DTDs, XPath, deterministic regex’s

2.   Schemas, Normal Forms, SQL

3.   TFIDF-ranking, string matching (KMP, automata, Boyer-Moore)
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1. XML

(1)  well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find. 
Say for each violation whether it is context-free or context-dependent.

a)   <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b)   <auto<node>>XF23414</auto<node>>
c)   <b><b><b at=”7”/><b at=”7”><b/></b><b/></b at=”4”></b>
d)   <a a=”a”/>
e)   <a><a/><b></b><c></c>
f)    <a b3=”a” b2=”b” b1=”a” b2=”5”/>
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1. XML

(1)  well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find. 
Say for each violation whether it is context-free or context-dependent.

a)   <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b)   <auto<node>>XF23414</auto<node>>
c)   <b><b><b at=”7”/><b at=”7”><b/></b><b/></b at=”4”></b>
d)   <a a=”a”/>
e)   <a><a/><b></b><c></c>
f)    <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a)    
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1. XML

(1)  well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find. 
Say for each violation whether it is context-free or context-dependent.

a)   <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b)   <auto<node>>XF23414</auto<node>>
c)   <b><b><b at=”7”/><b at=”7”><b/></b><b/></b at=”4”></b>
d)   <a a=”a”/>
e)   <a><a/><b></b><c></c>
f)    <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a)   not well-formed.    After “<” must follow a letter, and not ‘>’.
                                   This is specified in the XML grammar   →    context-free
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1. XML

(1)  well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find. 
Say for each violation whether it is context-free or context-dependent.

a)   <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b)   <auto<node>>XF23414</auto<node>>
c)   <b><b><b at=”7”/><b at=”7”><b/></b><b/></b at=”4”></b>
d)   <a a=”a”/>
e)   <a><a/><b></b><c></c>
f)    <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a)   not well-formed.    After “<” must follow a letter, and not ‘>’.
                                   This is specified in the XML grammar   →    context-free

b)   not well-formed.   Symbol “<” cannot appear inside a tag-name. →    context-free
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1. XML

(1)  well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find. 
Say for each violation whether it is context-free or context-dependent.

a)   <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b)   <auto<node>>XF23414</auto<node>>
c)   <b><b><b at=”7”/><b at=”7”><b/></b><b/></b at=”4”></b>
d)   <a a=”a”/>
e)   <a><a/><b></b><c></c>
f)    <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a)   not well-formed.    After “<” must follow a letter, and not ‘>’.
                                   This is specified in the XML grammar   →    context-free

b)   not well-formed.   Symbol “<” cannot appear inside a tag-name. →    context-free

c)   not well-formed.   Two violations:
                                   (1) no end-tag for first <b>-tag          →    context-free (!)
                                   (2) at=”4” not allowed in an end tag  →    context-free
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1. XML

(1)  well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find. 
Say for each violation whether it is context-free or context-dependent.

a)   <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b)   <auto<node>>XF23414</auto<node>>
c)   <b><b><b at=”7”/><b at=”7”><b/></b><b/></b at=”4”></b>
d)   <a a=”a”/>
e)   <a><a/><b></b><c></c>
f)    <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a)   not well-formed.    After “<” must follow a letter, and not ‘>’.
                                   This is specified in the XML grammar   →    context-free

b)   not well-formed.   Symbol “<” cannot appear inside a tag-name. →    context-free

c)   not well-formed.   Two violations:
                                   (1) no end-tag for first <b>-tag          →    context-free (!)
                                   (2) at=”4” not allowed in an end tag  →    context-free
d)   well-formed.  
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1. XML

(1)  well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find. 
Say for each violation whether it is context-free or context-dependent.

a)   <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b)   <auto<node>>XF23414</auto<node>>
c)   <b><b><b at=”7”/><b at=”7”><b/></b><b/></b at=”4”></b>
d)   <a a=”a”/>
e)   <a><a/><b></b><c></c>
f)    <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a)   not well-formed.    After “<” must follow a letter, and not ‘>’.
                                   This is specified in the XML grammar   →    context-free
b)   not well-formed.   Symbol “<” cannot appear inside a tag-name. →    context-free
c)   not well-formed.   Two violations:
                                   (1) no end-tag for first <b>-tag          →    context-free (!)
                                   (2) at=”4” not allowed in an end tag  →    context-free
d)   well-formed.  

e)   not well-formed.   Missing end tag for first <a>-tag    →  context-free
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1. XML

(1)  well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find. 
Say for each violation whether it is context-free or context-dependent.

a)   <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b)   <auto<node>>XF23414</auto<node>>
c)   <b><b><b at=”7”/><b at=”7”><b/></b><b/></b at=”4”></b>
d)   <a a=”a”/>
e)   <a><a/><b></b><c></c>
f)    <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a)   not well-formed.    After “<” must follow a letter, and not ‘>’.
                                   This is specified in the XML grammar   →    context-free
b)   not well-formed.   Symbol “<” cannot appear inside a tag-name. →    context-free
c)   not well-formed.   Two violations:
                                   (1) no end-tag for first <b>-tag          →    context-free (!)
                                   (2) at=”4” not allowed in an end tag  →    context-free
d)   well-formed.  
e)   not well-formed.   Missing end tag for first <a>-tag    →  context-free
f)    not well-formed.   Duplicate attribute (b2)                      →   context-dependent



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

a) <bib><book></book></bib>
b) <bib><journal isbn=”xyz”><author/><title/></journal></bib>
c) <bib><book isbn=”123”><author/><title/></book><journal><author/>
<title/><cites><book isbn=”123”><author/><title/><book/></cites></journal></bib>
d) <bib book=”isbn”></bib>
e) <bib>no entries</bib>
f) <bib></bib><bib></bib>
g) <bib><author></author><title></title></Bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

a) <bib><book></book></bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

a) <bib><book></book></bib>
   →  not well-formed!
         (1)  book must have author and title children
         (2)  book must have isbn attribute

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

b) <bib><journal isbn=”xyz”><author/><title/></journal></bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

b) <bib><journal isbn=”xyz”><author/><title/></journal></bib>
    →  not well-formed!
          attribute isbn not declared for journal element 

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

c) <bib><book isbn=”123”><author/><title/></book><journal><author/>
<title/><cites><book isbn=”123”><author/><title/><book/></cites></journal></bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

c) <bib><book isbn=”123”><author/><title/></book><journal><author/>
<title/><cites><book isbn=”123”><author/><title/><book/></cites></journal></bib>
         →  not well-formed!
              Two violations:   (1)  end-tag of 2nd book-tag does not match (context-sensitive)
                                        (2)   ?  

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

c) <bib><book isbn=”123”><author/><title/></book><journal><author/>
<title/><cites><book isbn=”123”><author/><title/><book/></cites></journal></bib>
         →  not well-formed!
              Two violations:   (1)  end-tag of 2nd book-tag does not match (context-sensitive) 
                                        (2)   isbn-attribute of type ID has repeating values  

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

d) <bib book=”isbn”></bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

d) <bib book=”isbn”></bib>
         →  not well-formed!
          attribute book not declared for bib element 

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

e) <bib>no entries</bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

e) <bib>no entries</bib>
         →  not well-formed!
          bib-content must be (book | journal)*, so cannot be #PCDATA

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

f) <bib></bib><bib></bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

f) <bib></bib><bib></bib>
         →  not well-formed!
          no root node (must end after first </bib>)  context-free

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

g) <bib><author></author><title></title></Bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  DTDs
Which of the following are well-formed wrt the given DTD. 
List all violations that you find. 

g) <bib><author></author><title></title></Bib>
         →  not well-formed!
         Two violations: 
         (1)  Bib does not match start bib-tag  context-dependent
         (2)  bib may not have author or title children  

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>



(2)  Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a)  show a string accepted by the automaton,
     and one that is recjected.
     Give an equivalent deterministic automaton.
b)  Give a regular expression for the strings
     accepted by the automaton.
c)  Is your expression from b) deterministic?
     Show the Glushkov automaton.
d)  give a deterministic regular expression for the  
     strings over {a,b,c} that do not contain the 
     substring “aa”  and that end on “a”.



(2)  Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a)  show a string accepted by the automaton,
     and one that is recjected.
     Give an equivalent deterministic automaton.
b)  Give a regular expression for the strings
     accepted by the automaton.
c)  Is your expression from b) deterministic?
     Show the Glushkov automaton.
d)  give a deterministic regular expression for the  
     strings over {a,b,c} that do not contain the 
     substring “aa”  and that end on “a”.

a)  It accepts “a” and it rejects “c”.



(2)  Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a)  show a string accepted by the automaton,
     and one that is recjected.
     Give an equivalent deterministic automaton.
b)  Give a regular expression for the strings
     accepted by the automaton.
c)  Is your expression from b) deterministic?
     Show the Glushkov automaton.
d)  give a deterministic regular expression for the  
     strings over {a,b,c} that do not contain the 
     substring “aa”  and that end on “a”.

a)  It accepts “a” and it rejects “c”.

a, b, cc

a, b “strings that contain an ‘a’ or a ‘b’”



(2)  Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a)  show a string accepted by the automaton,
     and one that is recjected.
     Give an equivalent deterministic automaton.
b)  Give a regular expression for the strings
     accepted by the automaton.
c)  Is your expression from b) deterministic?
     Show the Glushkov automaton.
d)  give a deterministic regular expression for the  
     strings over {a,b,c} that do not contain the 
     substring “aa”  and that end on “a”.

b)  c*(a|b)(a|b|c)*



(2)  Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a)  show a string accepted by the automaton,
     and one that is recjected.
     Give an equivalent deterministic automaton.
b)  Give a regular expression for the strings
     accepted by the automaton.
c)  Is your expression from b) deterministic?
     Show the Glushkov automaton.
d)  give a deterministic regular expression for the  
     strings over {a,b,c} that do not contain the 
     substring “aa”  and that end on “a”.

c)  c*(a|b)(a|b|c)*

<  present on blackboard  >



(2)  Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a)  show a string accepted by the automaton,
     and one that is recjected.
     Give an equivalent deterministic automaton.
b)  Give a regular expression for the strings
     accepted by the automaton.
c)  Is your expression from b) deterministic?
     Show the Glushkov automaton.
d)  give a deterministic regular expression for the  
     strings over {a,b,c} that do not contain the 
     substring “aa”  and that end on “a”.

d) 



(2)  Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a)  show a string accepted by the automaton,
     and one that is recjected.
     Give an equivalent deterministic automaton.
b)  Give a regular expression for the strings
     accepted by the automaton.
c)  Is your expression from b) deterministic?
     Show the Glushkov automaton.
d)  give a deterministic regular expression for the  
     strings over {a,b,c} that do not contain the 
     substring “aa”  and that end on “a”.

d)  (b|c)*a((b|c)+a)* 



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

a) //a

b) /*//*//a[preceding::a]

c) //*[.//d]

d) /*[not(a and b)]

e) //*[count(.//*)= count(ancestor::*)]

f) /descendant:*[position() mod 2 = count(.//*)]

g) //*[preceding-sibling::b]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

a) //a  

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

a) //a

Answer:  1,4,5,8,9  

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

b) /*//*//a[preceding::a]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

b) /*//*//a[preceding::a]

Answer:  8,9  

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

c) //*[.//d]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

c) //*[.//d]

Answer:  1,2,4  

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

d) /*[not(a and b)]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

d) /*[not(a and b)]

Answer:  1

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

e) //*[count(.//*)= count(ancestor::*)]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

e) //*[count(.//*)= count(ancestor::*)]

Answer:  4

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

f) /descendant:*[position() mod 2 = count(.//*)]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

f) /descendant:*[position() mod 2 = count(.//*)]

Answer:  6,8

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

g) //*[preceding-sibling::b]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



(3)  XPath

Write node-numbers of nodes selected by the following 
XPath expressions:

g) //*[preceding-sibling::b]

Answer:  4, 7

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a



2. Relational DBs

1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      
2)  explain BCNF and how it removes fd-redundancies.

3)  are there any “harmful” side-effects when transforming a table to BCNF?



1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

Let S and T be non-empty disjoint sets of attributes (column names).

A table R has a functional dependency from S to T, 
If R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one 
T-tuple in R. 



1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

Let S and T be non-empty disjoint sets of attributes (column names).

A table R has a functional dependency from S to T, 
If R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one 
T-tuple in R. 

X  A  

1  2  
    
  

Functional dependencies?      (“closed world assumption”)



1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

Let S and T be non-empty disjoint sets of attributes (column names).
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1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

Let S and T be non-empty disjoint sets of attributes (column names).

A table R has a functional dependency from S to T, 
If R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one 
T-tuple in R. 

X  A  

1  2  
    
  

Functional dependencies?      (“closed world assumption”)

1)   X → A
2)   A → X

→  what are the superkeys?

1) X
2) A



1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

Let S and T be non-empty disjoint sets of attributes (column names).

A table R has a functional dependency from S to T, 
If R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one 
T-tuple in R. 

X  A  

1  2  
    
  

Functional dependencies?      (“closed world assumption”)

1)   X → A
2)   A → X

→  what are the superkeys?

S is superkey if S → T and 
S union T = all attributes.
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1)  explain, using examples, what a functional dependency (fd) is, 
     and what a fd-redundancy is. 
      

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R. 

X  A  Z

1  2  5
1  2  6
1  2  7

←   how many functional dependencies? 

X → A
A → X
Z → X
Z → A 
Z → { X, A }
{ Z, A } → X
{ Z, X } → A

→  how many superkeys?

three

Z, { Z, A }, { Z, X }
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Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R. 

A table R has fd-redundancy w.r.t. S → T , 
if R contains two distinct tuples with equal (S,T)-values.

X  A  Z

1  2  5
1  2  6

←  are there any fd-redundancies?

Yes:    1)  fd-redundancy wrt X → A
           2)  fd-redundancy wrt A → X
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BCNF  =  if S → T is a functional dependency of R, then S is a superkey.

                (assuming S disjoint T)
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← in BCNF?
    Yes:   X is superkey, and 
              X → A is the only functional dependency.
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BCNF  =  if S → T is a functional dependency of R, then S is a superkey.

                (assuming S disjoint T)

← in BCNF?
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2)  explain BCNF and how it removes fd-redundancies.
      

BCNF  =  if S → T is a functional dependency of R, then S is a superkey.

                (assuming S disjoint T)

← in BCNF?
     No:   X → A is fd, but X is not a superkey
             A → X is fd, but A is not a superkey
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2)  explain BCNF and how it removes fd-redundancies.
      

BCNF  =  if S → T is a functional dependency of R, then S is a superkey.

                (assuming S disjoint T)

X  A  Z

1  2  5
1  2  6

X  A  

1  2  
1  2  

X  Z

1  5
1  6

In BCNF, there can be no
fd-redundancies.

Why?

Would imply that a tuple
exists twice in R
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3)  are there any “harmful” side-effects when transforming a table to BCNF?
      

X  A  Z

1  2  5
1  2  6
2  2  6

X  A  

1  2  
2  2  

X  Z

1  5
1  6
2  6



3)  are there any “harmful” side-effects when transforming a table to BCNF?
      

X  A  Z

1  2  5
1  2  6
2  2  6

X  A  

1  2  
2  2  

X  Z

1  5
1  6
2  6

We lost the dependency { X, Z } → A 



END
Lecture 20
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