
Sebastian Maneth

Lecture 20
Recap I

University of Edinburgh - March 24th, 2016

Applied Databases

2

Recap I & II

1. XML, DTDs, XPath, deterministic regex’s

2. Schemas, Normal Forms, SQL

3. TFIDF-ranking, string matching (KMP, automata, Boyer-Moore)

3

1. XML

(1) well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find.
Say for each violation whether it is context-free or context-dependent.

a) <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b) <auto<node>>XF23414</auto<node>>
c) <b at=”7”/><b at=”7”></b at=”4”>
d)
e) <a><a/><c></c>
f) <a b3=”a” b2=”b” b1=”a” b2=”5”/>

4

1. XML

(1) well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find.
Say for each violation whether it is context-free or context-dependent.

a) <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b) <auto<node>>XF23414</auto<node>>
c) <b at=”7”/><b at=”7”></b at=”4”>
d)
e) <a><a/><c></c>
f) <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a)

5

1. XML

(1) well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find.
Say for each violation whether it is context-free or context-dependent.

a) <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b) <auto<node>>XF23414</auto<node>>
c) <b at=”7”/><b at=”7”></b at=”4”>
d)
e) <a><a/><c></c>
f) <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a) not well-formed. After “<” must follow a letter, and not ‘>’.
 This is specified in the XML grammar → context-free

6

1. XML

(1) well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find.
Say for each violation whether it is context-free or context-dependent.

a) <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b) <auto<node>>XF23414</auto<node>>
c) <b at=”7”/><b at=”7”></b at=”4”>
d)
e) <a><a/><c></c>
f) <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a) not well-formed. After “<” must follow a letter, and not ‘>’.
 This is specified in the XML grammar → context-free

b) not well-formed. Symbol “<” cannot appear inside a tag-name. → context-free

7

1. XML

(1) well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find.
Say for each violation whether it is context-free or context-dependent.

a) <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b) <auto<node>>XF23414</auto<node>>
c) <b at=”7”/><b at=”7”></b at=”4”>
d)
e) <a><a/><c></c>
f) <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a) not well-formed. After “<” must follow a letter, and not ‘>’.
 This is specified in the XML grammar → context-free

b) not well-formed. Symbol “<” cannot appear inside a tag-name. → context-free

c) not well-formed. Two violations:
 (1) no end-tag for first -tag → context-free (!)
 (2) at=”4” not allowed in an end tag → context-free

8

1. XML

(1) well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find.
Say for each violation whether it is context-free or context-dependent.

a) <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b) <auto<node>>XF23414</auto<node>>
c) <b at=”7”/><b at=”7”></b at=”4”>
d)
e) <a><a/><c></c>
f) <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a) not well-formed. After “<” must follow a letter, and not ‘>’.
 This is specified in the XML grammar → context-free

b) not well-formed. Symbol “<” cannot appear inside a tag-name. → context-free

c) not well-formed. Two violations:
 (1) no end-tag for first -tag → context-free (!)
 (2) at=”4” not allowed in an end tag → context-free
d) well-formed.

9

1. XML

(1) well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find.
Say for each violation whether it is context-free or context-dependent.

a) <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b) <auto<node>>XF23414</auto<node>>
c) <b at=”7”/><b at=”7”></b at=”4”>
d)
e) <a><a/><c></c>
f) <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a) not well-formed. After “<” must follow a letter, and not ‘>’.
 This is specified in the XML grammar → context-free
b) not well-formed. Symbol “<” cannot appear inside a tag-name. → context-free
c) not well-formed. Two violations:
 (1) no end-tag for first -tag → context-free (!)
 (2) at=”4” not allowed in an end tag → context-free
d) well-formed.

e) not well-formed. Missing end tag for first <a>-tag → context-free

10

1. XML

(1) well-formedness
For each of the following, explain whether or not it is well-formed XML.
In case it is not well-formed, list all violations that you find.
Say for each violation whether it is context-free or context-dependent.

a) <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b) <auto<node>>XF23414</auto<node>>
c) <b at=”7”/><b at=”7”></b at=”4”>
d)
e) <a><a/><c></c>
f) <a b3=”a” b2=”b” b1=”a” b2=”5”/>

a) not well-formed. After “<” must follow a letter, and not ‘>’.
 This is specified in the XML grammar → context-free
b) not well-formed. Symbol “<” cannot appear inside a tag-name. → context-free
c) not well-formed. Two violations:
 (1) no end-tag for first -tag → context-free (!)
 (2) at=”4” not allowed in an end tag → context-free
d) well-formed.
e) not well-formed. Missing end tag for first <a>-tag → context-free
f) not well-formed. Duplicate attribute (b2) → context-dependent

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

a) <bib><book></book></bib>
b) <bib><journal isbn=”xyz”><author/><title/></journal></bib>
c) <bib><book isbn=”123”><author/><title/></book><journal><author/>
<title/><cites><book isbn=”123”><author/><title/><book/></cites></journal></bib>
d) <bib book=”isbn”></bib>
e) <bib>no entries</bib>
f) <bib></bib><bib></bib>
g) <bib><author></author><title></title></Bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

a) <bib><book></book></bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

a) <bib><book></book></bib>
 → not well-formed!
 (1) book must have author and title children
 (2) book must have isbn attribute

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

b) <bib><journal isbn=”xyz”><author/><title/></journal></bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

b) <bib><journal isbn=”xyz”><author/><title/></journal></bib>
 → not well-formed!
 attribute isbn not declared for journal element

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

c) <bib><book isbn=”123”><author/><title/></book><journal><author/>
<title/><cites><book isbn=”123”><author/><title/><book/></cites></journal></bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

c) <bib><book isbn=”123”><author/><title/></book><journal><author/>
<title/><cites><book isbn=”123”><author/><title/><book/></cites></journal></bib>
 → not well-formed!
 Two violations: (1) end-tag of 2nd book-tag does not match (context-sensitive)
 (2) ?

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

c) <bib><book isbn=”123”><author/><title/></book><journal><author/>
<title/><cites><book isbn=”123”><author/><title/><book/></cites></journal></bib>
 → not well-formed!
 Two violations: (1) end-tag of 2nd book-tag does not match (context-sensitive)
 (2) isbn-attribute of type ID has repeating values

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

d) <bib book=”isbn”></bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

d) <bib book=”isbn”></bib>
 → not well-formed!
 attribute book not declared for bib element

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

e) <bib>no entries</bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

e) <bib>no entries</bib>
 → not well-formed!
 bib-content must be (book | journal)*, so cannot be #PCDATA

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

f) <bib></bib><bib></bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

f) <bib></bib><bib></bib>
 → not well-formed!
 no root node (must end after first </bib>) context-free

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

g) <bib><author></author><title></title></Bib>

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) DTDs
Which of the following are well-formed wrt the given DTD.
List all violations that you find.

g) <bib><author></author><title></title></Bib>
 → not well-formed!
 Two violations:
 (1) Bib does not match start bib-tag context-dependent
 (2) bib may not have author or title children

<!DOCTYPE bib [
<!ELEMENT bib (book | journal)*>
<!ELEMENT book (author, title)>
<!ELEMENT journal (author, title, cites?)>
<!ELEMENT cites (book | journal)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST book isbn ID #REQUIRED>
]>

(2) Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a) show a string accepted by the automaton,
 and one that is recjected.
 Give an equivalent deterministic automaton.
b) Give a regular expression for the strings
 accepted by the automaton.
c) Is your expression from b) deterministic?
 Show the Glushkov automaton.
d) give a deterministic regular expression for the
 strings over {a,b,c} that do not contain the
 substring “aa” and that end on “a”.

(2) Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a) show a string accepted by the automaton,
 and one that is recjected.
 Give an equivalent deterministic automaton.
b) Give a regular expression for the strings
 accepted by the automaton.
c) Is your expression from b) deterministic?
 Show the Glushkov automaton.
d) give a deterministic regular expression for the
 strings over {a,b,c} that do not contain the
 substring “aa” and that end on “a”.

a) It accepts “a” and it rejects “c”.

(2) Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a) show a string accepted by the automaton,
 and one that is recjected.
 Give an equivalent deterministic automaton.
b) Give a regular expression for the strings
 accepted by the automaton.
c) Is your expression from b) deterministic?
 Show the Glushkov automaton.
d) give a deterministic regular expression for the
 strings over {a,b,c} that do not contain the
 substring “aa” and that end on “a”.

a) It accepts “a” and it rejects “c”.

a, b, cc

a, b “strings that contain an ‘a’ or a ‘b’”

(2) Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a) show a string accepted by the automaton,
 and one that is recjected.
 Give an equivalent deterministic automaton.
b) Give a regular expression for the strings
 accepted by the automaton.
c) Is your expression from b) deterministic?
 Show the Glushkov automaton.
d) give a deterministic regular expression for the
 strings over {a,b,c} that do not contain the
 substring “aa” and that end on “a”.

b) c*(a|b)(a|b|c)*

(2) Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a) show a string accepted by the automaton,
 and one that is recjected.
 Give an equivalent deterministic automaton.
b) Give a regular expression for the strings
 accepted by the automaton.
c) Is your expression from b) deterministic?
 Show the Glushkov automaton.
d) give a deterministic regular expression for the
 strings over {a,b,c} that do not contain the
 substring “aa” and that end on “a”.

c) c*(a|b)(a|b|c)*

< present on blackboard >

(2) Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a) show a string accepted by the automaton,
 and one that is recjected.
 Give an equivalent deterministic automaton.
b) Give a regular expression for the strings
 accepted by the automaton.
c) Is your expression from b) deterministic?
 Show the Glushkov automaton.
d) give a deterministic regular expression for the
 strings over {a,b,c} that do not contain the
 substring “aa” and that end on “a”.

d)

(2) Deterministic Regular Expressions

a, b, c

a, b, c

a, b, c

a

b

a) show a string accepted by the automaton,
 and one that is recjected.
 Give an equivalent deterministic automaton.
b) Give a regular expression for the strings
 accepted by the automaton.
c) Is your expression from b) deterministic?
 Show the Glushkov automaton.
d) give a deterministic regular expression for the
 strings over {a,b,c} that do not contain the
 substring “aa” and that end on “a”.

d) (b|c)*a((b|c)+a)*

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

a) //a

b) /*//*//a[preceding::a]

c) //*[.//d]

d) /*[not(a and b)]

e) //*[count(.//*)= count(ancestor::*)]

f) /descendant:*[position() mod 2 = count(.//*)]

g) //*[preceding-sibling::b]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

a) //a

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

a) //a

Answer: 1,4,5,8,9

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

b) /*//*//a[preceding::a]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

b) /*//*//a[preceding::a]

Answer: 8,9

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

c) //*[.//d]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

c) //*[.//d]

Answer: 1,2,4

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

d) /*[not(a and b)]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

d) /*[not(a and b)]

Answer: 1

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

e) //*[count(.//*)= count(ancestor::*)]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

e) //*[count(.//*)= count(ancestor::*)]

Answer: 4

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

f) /descendant:*[position() mod 2 = count(.//*)]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

f) /descendant:*[position() mod 2 = count(.//*)]

Answer: 6,8

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

g) //*[preceding-sibling::b]

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

(3) XPath

Write node-numbers of nodes selected by the following
XPath expressions:

g) //*[preceding-sibling::b]

Answer: 4, 7

1:a

2:b

3:b 4:a

5:a 6:d

7:b

8:a 9:a

2. Relational DBs

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

2) explain BCNF and how it removes fd-redundancies.

3) are there any “harmful” side-effects when transforming a table to BCNF?

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).

A table R has a functional dependency from S to T,
If R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one
T-tuple in R.

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).

A table R has a functional dependency from S to T,
If R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one
T-tuple in R.

X A

1 2

Functional dependencies? (“closed world assumption”)

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).

A table R has a functional dependency from S to T,
If R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one
T-tuple in R.

X A

1 2

Functional dependencies? (“closed world assumption”)

1) X → A
2) A → X

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).

A table R has a functional dependency from S to T,
If R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one
T-tuple in R.

X A

1 2

Functional dependencies? (“closed world assumption”)

1) X → A
2) A → X

→ what are the superkeys?

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).

A table R has a functional dependency from S to T,
If R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one
T-tuple in R.

X A

1 2

Functional dependencies? (“closed world assumption”)

1) X → A
2) A → X

→ what are the superkeys?

1) X
2) A

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).

A table R has a functional dependency from S to T,
If R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one
T-tuple in R.

X A

1 2

Functional dependencies? (“closed world assumption”)

1) X → A
2) A → X

→ what are the superkeys?

S is superkey if S → T and
S union T = all attributes.

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).

A table R has a functional dependency from S to T,
If R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one
T-tuple in R.

X A

1 2
2 2

Functional dependencies? (“closed world assumption”)
→ and now?

1) X → A
2) A → X

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).

A table R has a functional dependency from S to T,
If R’s projection to S union T gives a function from S to T.

Such a function implies that for every S-tuple, there is at most one
T-tuple in R.

X A

1 2
2 2

Functional dependencies? (“closed world assumption”)
→ and now?

1) X → A
2) A → X

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

X A Z

1 2 5
1 2 6
1 2 7

← how many functional dependencies?

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

X A Z

1 2 5
1 2 6
1 2 7

← how many functional dependencies?

X → A
A → X

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

X A Z

1 2 5
1 2 6
1 2 7

← how many functional dependencies?

X → A
A → X
Z → X
Z → A
Z → { X, A }

→ any more?

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

X A Z

1 2 5
1 2 6
1 2 7

← how many functional dependencies?

X → A
A → X
Z → X
Z → A
Z → { X, A }
{ Z, A } → X
{ Z, X } → A

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

X A Z

1 2 5
1 2 6
1 2 7

← how many functional dependencies?

X → A
A → X
Z → X
Z → A
Z → { X, A }
{ Z, A } → X
{ Z, X } → A

→ how many superkeys?

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

X A Z

1 2 5
1 2 6
1 2 7

← how many functional dependencies?

X → A
A → X
Z → X
Z → A
Z → { X, A }
{ Z, A } → X
{ Z, X } → A

→ how many superkeys?

three

Z, { Z, A }, { Z, X }

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

A table R has fd-redundancy w.r.t. S → T ,
if R contains two distinct tuples with equal (S,T)-values.

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

A table R has fd-redundancy w.r.t. S → T ,
if R contains two distinct tuples with equal (S,T)-values.

X A Z

1 2 5
1 2 6

← are there any fd-redundancies?

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

A table R has fd-redundancy w.r.t. S → T ,
if R contains two distinct tuples with equal (S,T)-values.

X A Z

1 2 5
1 2 6

← are there any fd-redundancies?

Yes: 1) fd-redundancy wrt X → A
 2) fd-redundancy wrt A → X

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

A table R has fd-redundancy w.r.t. S → T ,
if R contains two distinct tuples with equal (S,T)-values.

X A Z

1 2 5
1 2 6
2 2 6

← list all fd-redundancies!

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

A table R has fd-redundancy w.r.t. S → T ,
if R contains two distinct tuples with equal (S,T)-values.

X A Z

1 2 5
1 2 6
2 2 6

← list all fd-redundancies!

1) fd-redundancy wrt X → A

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

A table R has fd-redundancy w.r.t. S → T ,
if R contains two distinct tuples with equal (S,T)-values.

X A Z

1 2 5
1 2 6
2 2 6

← list all fd-redundancies!

1) fd-redundancy wrt X → A
→ A to X is not a functional depencency anymore!

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

A table R has fd-redundancy w.r.t. S → T ,
if R contains two distinct tuples with equal (S,T)-values.

X A Z

1 2 5
1 2 6
2 2 6

← list all fd-redundancies!

1) fd-redundancy wrt X → A
→ A to X is not a functional depencency anymore!

2) fd-redundancy wrt Z → A

1) explain, using examples, what a functional dependency (fd) is,
 and what a fd-redundancy is.

Let S and T be non-empty disjoint sets of attributes (column names).
Functional dependency from S to T:
for every S-tuple, there is at most one T-tuple in R.

A table R has fd-redundancy w.r.t. S → T ,
if R contains two distinct tuples with equal (S,T)-values.

X A Z

1 2 5
1 2 6
2 2 6

← list all fd-redundancies!

1) fd-redundancy wrt X → A
→ A to X is not a functional depencency anymore!

2) fd-redundancy wrt Z → A

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

X A

1 2
2 2

← in BCNF?

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

X A

1 2
2 2

← in BCNF?
 Yes: X is superkey, and
 X → A is the only functional dependency.

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

← in BCNF?
X A Z

1 2 5
1 2 6

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

← in BCNF?
 No: X → A is fd, but X is not a superkey
 A → X is fd, but A is not a superkey

X A Z

1 2 5
1 2 6

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

X A Z

1 2 5
1 2 6

X A

1 2
1 2

X Z

1 5
1 6

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

X A Z

1 2 5
1 2 6

X A

1 2
1 2

X Z

1 5
1 6

In BCNF, there can be no
fd-redundancies.

Why?

2) explain BCNF and how it removes fd-redundancies.

BCNF = if S → T is a functional dependency of R, then S is a superkey.

 (assuming S disjoint T)

X A Z

1 2 5
1 2 6

X A

1 2
1 2

X Z

1 5
1 6

In BCNF, there can be no
fd-redundancies.

Why?

Would imply that a tuple
exists twice in R

3) are there any “harmful” side-effects when transforming a table to BCNF?

X A Z

1 2 5
1 2 6
2 2 6

3) are there any “harmful” side-effects when transforming a table to BCNF?

X A Z

1 2 5
1 2 6
2 2 6

X A

1 2
2 2

X Z

1 5
1 6
2 6

3) are there any “harmful” side-effects when transforming a table to BCNF?

X A Z

1 2 5
1 2 6
2 2 6

X A

1 2
2 2

X Z

1 5
1 6
2 6

We lost the dependency { X, Z } → A

END
Lecture 20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

