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Tree-structured data
e.g. in
–  XML 
–  HTML 
–  JSON

query

    Sometimes:  more  intuitive / natural  to  query the tree directly    

Result List

    →  need a query language for trees / XML!   



XPath
  low-level query language to  select nodes  of an XML document

  W3C Standard  (1999)

  most important XML query language: used in many
       technologies such as     XQuery, 
                                             XSLT, 
                                             XPointer, 
                                             XLink,
                                             Javascript, ...

 Cave:  newer versions are more expressive than 1.0  
      We study XPath 1.0  [ current version: 3.0  (2014) ]

Terminology:  instead of  “query” we often say  XPath expression.

→  an expression is the primary construction of the XPath grammar;
it matches the production Expr of the XPath grammar.

http://www.w3.org/TR/xpath#NT-Expr
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  W3C Standard  (1999)

  most important XML query language: used in many
       technologies such as     XQuery, 
                                             XSLT, 
                                             XPointer, 
                                             XLink,
                                             Javascript, ...

 Cave:  newer versions are more expressive than 1.0  
      We study XPath 1.0  [ current version: 3.0  (2014) ]

Terminology:  instead of  “query” we often say  XPath expression.

→  an expression is the primary construction of the XPath grammar;
it matches the production Expr of the XPath grammar.

 Every web browser  
 supports XPath

http://www.w3.org/TR/xpath#NT-Expr


→  find Director's name 
      in the HTML 





Tree structure of
an IMDB movie page
(HTML)

→  deep tree structure

→  span-node of Director’s 
      name at depth > 50





Tree structure of
an IMDB movie page
(HTML)

→  deep tree structure
→  span-node for director’s 
      name at depth > 50

.//*[@id='title-overview-widget']/div[3]/div[1]/div[2]/span/a/span

XPath query selecting the
span-node



13

Outline

1.   XPath Data Model:  7 types of nodes

2.   Simple Examples

3.   Location Steps and Paths

4.   Value Comparison, and other Functions



XPath Data Model

XPath Query Q 

XML document D

sequence of
result nodes

Document D is modeled as a tree. 

THERE ARE SEVEN TYPES OF NODES in the XPath Data Model:

 root nodes
 element nodes
 text nodes 
 attribute nodes
 namespace nodes
 processing instruction nodes
 comment nodes

7 node
types

Evaluate Q
on D (in XPath 
          data model)
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Result Sequences 

XPath Query Q 

XML document D

sequence of
result nodes

  ordered in document order
  contains no duplicates  

Evaluate Q
on D (in XPath 
          data model)
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Simple Examples

In abbreviated syntax. 

Q1: /bib/book/year
 

Document:
<bib>
  <book>
    <author>Abiteboul</author>
    <author>Hull</author>
    <author>Vianu</author>
    <title>Foundations of Databases</title>
    <year>1995</year>
  </book>
  <book>
    <author>Ullmann</author>
    <title>Principles of Database and Knowledge Base Systems</title>
    <year>1998</year>
  </book>
</bib>

document element,  if labeled bib

child nodes  that are labeled book

child nodes  that are labeled year

child nodes of root node, labeled bib
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→  important:  there is always a (virtual)  Root-node!
     even if  <?xml … >  is missing.

Root /a   =  a-child of Root-node

/a/../*   =  same node
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/a   =  a-child of Root-node

/a/../*   =  same node

/a/../..//a  =  “No Match”

→  important:  there is always a (virtual)  Root-node!
     even if  <?xml … >  is missing.

Root
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/a   =  a-child of Root-node

/a/../*   =  same node

/a/../..//a  =  “No Match”

/a/.. = “No DOCTYPE Declaration, 
            Root is [Element :<a/>]”

Implementation-dependent

→  important:  there is always a (virtual)  Root-node!
     even if  <?xml … >  is missing.

Root
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Predicates (aka “Filters”)

Filters [..] have

→ existential semantics

→ [./b] = “there exists a
                 b-child”
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Predicates (aka “Filters”)
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Predicates (aka “Filters”)
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Predicates (aka “Filters”)
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→  from context node,
execute query:

axis::*
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→  from context node,
execute query:

axis::*
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Proceed similarly for S1 and a_2, et cetera

Finally, obtain    Sm  =  result sequence of query P.
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//*[.=”foofoobar”]
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//a    is abbreviation for    descendant-or-self::node()/child::a
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Which nodes?

//*[position()=2 and ../../../a]



67

Which node?

//*[position()=2 and ../../../../a]
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END
Lecture 17
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