
Sebastian Maneth

Lecture 17
XPath

University of Edinburgh - March 14th, 2016

Applied Databases

Tree-structured data
e.g. in
– XML
– HTML
– JSON

Relational tables (for SQL querying)

Inverted Files (for keyword search)

“shredding”

Tree-structured data
e.g. in
– XML
– HTML
– JSON

Relational tables (for SQL querying)

Inverted Files (for keyword search)

“shredding”

 Sometimes: more intuitive / natural to query the tree directly

Tree-structured data
e.g. in
– XML
– HTML
– JSON

query

 Sometimes: more intuitive / natural to query the tree directly

Result List

Tree-structured data
e.g. in
– XML
– HTML
– JSON

query

 Sometimes: more intuitive / natural to query the tree directly

Result List

 → need a query language for trees / XML!

XPath
 low-level query language to select nodes of an XML document

 W3C Standard (1999)

 most important XML query language: used in many
 technologies such as XQuery,
 XSLT,
 XPointer,
 XLink,
 Javascript, ...

 Cave: newer versions are more expressive than 1.0
 We study XPath 1.0 [current version: 3.0 (2014)]

Terminology: instead of “query” we often say XPath expression.

→ an expression is the primary construction of the XPath grammar;
it matches the production Expr of the XPath grammar.

http://www.w3.org/TR/xpath#NT-Expr

XPath
 low-level query language to select nodes of an XML document

 W3C Standard (1999)

 most important XML query language: used in many
 technologies such as XQuery,
 XSLT,
 XPointer,
 XLink,
 Javascript, ...

 Cave: newer versions are more expressive than 1.0
 We study XPath 1.0 [current version: 3.0 (2014)]

Terminology: instead of “query” we often say XPath expression.

→ an expression is the primary construction of the XPath grammar;
it matches the production Expr of the XPath grammar.

 Every web browser
 supports XPath

http://www.w3.org/TR/xpath#NT-Expr

→ find Director's name
 in the HTML

Tree structure of
an IMDB movie page
(HTML)

→ deep tree structure

→ span-node of Director’s
 name at depth > 50

Tree structure of
an IMDB movie page
(HTML)

→ deep tree structure
→ span-node for director’s
 name at depth > 50

.//*[@id='title-overview-widget']/div[3]/div[1]/div[2]/span/a/span

XPath query selecting the
span-node

13

Outline

1. XPath Data Model: 7 types of nodes

2. Simple Examples

3. Location Steps and Paths

4. Value Comparison, and other Functions

XPath Data Model

XPath Query Q

XML document D

sequence of
result nodes

Document D is modeled as a tree.

THERE ARE SEVEN TYPES OF NODES in the XPath Data Model:

 root nodes
 element nodes
 text nodes
 attribute nodes
 namespace nodes
 processing instruction nodes
 comment nodes

7 node
types

Evaluate Q
on D (in XPath
 data model)

15

Result Sequences

XPath Query Q

XML document D

sequence of
result nodes

 ordered in document order
 contains no duplicates

Evaluate Q
on D (in XPath
 data model)

16

Simple Examples

In abbreviated syntax.

Q1: /bib/book/year

Document:
<bib>
 <book>
 <author>Abiteboul</author>
 <author>Hull</author>
 <author>Vianu</author>
 <title>Foundations of Databases</title>
 <year>1995</year>
 </book>
 <book>
 <author>Ullmann</author>
 <title>Principles of Database and Knowledge Base Systems</title>
 <year>1998</year>
 </book>
</bib>

document element, if labeled bib

child nodes that are labeled book

child nodes that are labeled year

child nodes of root node, labeled bib

17

Simple Examples

18

Simple Examples

19

Simple Examples

20

Simple Examples

21

→ important: there is always a (virtual) Root-node!
 even if <?xml … > is missing.

Root /a = a-child of Root-node

/a/../* = same node

22

/a = a-child of Root-node

/a/../* = same node

/a/../..//a = “No Match”

→ important: there is always a (virtual) Root-node!
 even if <?xml … > is missing.

Root

23

/a = a-child of Root-node

/a/../* = same node

/a/../..//a = “No Match”

/a/.. = “No DOCTYPE Declaration,
 Root is [Element :<a/>]”

Implementation-dependent

→ important: there is always a (virtual) Root-node!
 even if <?xml … > is missing.

Root

24

25

Predicates (aka “Filters”)

Filters [..] have

→ existential semantics

→ [./b] = “there exists a
 b-child”

26

Predicates (aka “Filters”)

27

Predicates (aka “Filters”)

28

Predicates (aka “Filters”)

29

Predicates (aka “Filters”)

30

Predicates (aka “Filters”)

37

→ from context node,
execute query:

axis::*

38

→ from context node,
execute query:

axis::*

39

→ from context node,
execute query:

axis::*

40

→ from context node,
execute query:

axis::*

41

→ from context node,
execute query:

axis::*

42

→ from context node,
execute query:

axis::*

43

→ from context node,
execute query:

axis::*

44

→ from context node,
execute query:

axis::*

45

→ from context node,
execute query:

axis::*

46

→ from context node,
execute query:

axis::*

47

→ from context node,
execute query:

axis::*

48

→ from context node,
execute query:

axis::*

49

50

Proceed similarly for S1 and a_2, et cetera

Finally, obtain Sm = result sequence of query P.

51

52

53

54

55

56

57

58

//*[.=”foofoobar”]

59

60

61

62

63

64

//a is abbreviation for descendant-or-self::node()/child::a

65

66

Which nodes?

//*[position()=2 and ../../../a]

67

Which node?

//*[position()=2 and ../../../../a]

68

69

70

71

72

73

74

75

76

78

79

END
Lecture 17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

