Applied Databases

Lecture 15
Indexed String Search, Suffix Trees

Sebastian Maneth

University of Edinburgh - March 7", 2016

Outline

Suffix Trie
Suffix Tree
Suffix Tree Construction

. Applications of Suffix Trees

String Search

— search over DNA sequences

— huge sequence over C, T, G A(ca. 3.2 billion)

— No spaces, no tokens....

= 0

- 0=

= sugar

phosphate

guanine
cytosine
adenine
thymine

57
113
189
225
281
237
35932
445
505
561
8l7
a73
729
785
841
897

GITACTCATACRE A CATEICTI T G TAGETACTCATGACTAGACACTGATETCATACT
GCTEETRAG TCETERCTCACETGRAGETCETACTCTTETETACTCR
T ETAT AT EC AT O AT T CACTCACTCACT ETCTAGCTEACCETAGCTECTE
CTERCACEERERCACTCICTCTATATCATGRAT CT AT CEEATTGTTETEACTCR
AR R AT T AT AT GAT T CAGT CETATGTACAGTCACGTTTEICICICTIR
TATCARCTCTCTCTATATCA TG TACACATETETETETAGACTRCGACACTEATETC
ATTEIETACTCRACTET TCTCTATATCATEATCTECACTICEETCT
CTRATATCATERT CT AT CEEETCICTCTATATCATTETETACTCAGTETASTCT
CICTATATCAT AT ACACAT T G TG IGTAGETICTICICTATATCALGTCTCTICTATE
TR EATTCT T AT ATCATGAT CTECACTCECTCTCTATATCATGAT CTECRACTCE
CETCTCTCTATATCATTCTCTACTCACTETACTCTCTCTATATCATGATRACRCATE
TETETETAGTIEIGTACTCACT CTAGTCTCTCTATATCATEATTICTCTATATCATE
AT T AT O T CTCICTAT AT CAT TG GTACT CAGTETAETICTCTCTATATCR
T ERTAC AR TET T T T AT T CTETACTCACTETTCTCTATATCATGATCTECRE
I T T T AT CACTCT AT CTCTCTATATCATGATACACATETETEIETAGTT
CIETACTCACTETAGTCTCTCTATATCATEATGTCTCICTATATCATTEIETACTC
AT ETACTCTCTCTATATCA TG TACACRATETETETETACTEATACACATETETET

String Search

— search over DNA sequences
— huge sequence over C, T, G A (ca. 3.2 billion)
— No spaces, no tokens....

Given
—along string T (text)
— a short string P (pattern)

Problem 1;: find all occurrences of Pin T
Problem 2: count #occurrenceof Pin T

String Search

— search over DNA sequences
— huge sequence over C, T, G A (ca. 3.2 billion)
— No spaces, no tokens....

Given
—along string T (text) of length n
— a short string P (pattern) of length m

Problem 1;: find all occurrences of Pin T
Problem 2: count #occurrenceof Pin T

Online Search O(|T|) time with O(|P|) preprocessing
E.g., using automaton or KMP

— sublinear time using Horspool / Boyer-Moore
— average time limit: O(n (log m)/m)

0.9

0.8

e ol o e
[[0} -] N

CHARACTERS INSPECTED N STRING/CHARACTER PASSED
o
w

0.2

ENGLISH

CENTENARY ALPHABET

EMPIRICAL COST

BINARY ALPHABET

83

BM — Average Case

To find first occurrence i
of an arbitrary 5-letter
word in an English text
Inspects on average

| .H

text symbols.

LENGTH OF PATTERN

14

— sublinear time using Horspool / Boyer-Moore
— average time limit: O(T (log m)/m)

0.9

0.8

e
~

o
-

ol
(2]

04

0.3

CHARACTERS INSPECTED N STRING/CHARACTER PASSED

0.2

0.1

83

—— BM — Average Case

BINARY ALPHABET

To find first occurrence i
. of an arbitrary 5-letter
word in an English text
- Inspects on average

| .H

text symbols.

ENGLISH

CENTENARY ALPHABET

LENGTH OF PATTERN

— for DNA, 40% of 3.2 billion is still huge (linear scan of >1TB)

Indexed String Search

Given
— along string T (text)
— a short string P (pattern) m =|P|

Problem 1 find all occurrences of Pin T
Problem 2 count #occurrence of Pin T

Offline Search = Indexed Search
= (linear time) preprocessing of T

— O(m) time for Problem 1

Highlights
— O(m + #occ) time for Problem 2

Indexed String Search

Given
— along string T (text)
— a short string P (pattern) m = |P]

Problem 1 find all occurrences of Pin T
Problem 2 count #occurrence of Pin T

Offline Search = Indexed Search
= (linear time) preprocessing of T

— O(m) time for Problem 1
— O(m + #occ) time for Problem 2

\

Highlights

Independent of size of text T!!!

Indexed String Search

Count / Find all occurrences of Pin T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1. List all substrings of T, together with their occurrence lists
(string1, [3,7,21]), (string2, [3,21)), ...

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

(a,[3,4,6,7,10,...)

<{(ab, [7,10, ..])
(ad, ..
(b, ...

a

(c

Indexed String Search

Count / Find all occurrences of Pin T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1. List all substrings of T, together with their occurrence lists
(string1, [3,7,21]), (string2, [3,21)), ...

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

a (a, [3,4,6,7,10,...]) Search occurrences of P:
<{(ab, [7,10, ..])
(ad, .. — jump to substrings starting with letter P[1]
(b, ... — from there, jump to substrings with
C : next letter P[2]
: Etc.
(c after m jumps, reach (or not) matching substring
with its occurrence list

Indexed String Search

Count / Find all occurrences of Pin T Search Time

e . . — O(m) [good]]
Preprocessing (“indexing”) of T is permitted

Indexing Time
— 2777

Naive Solution

1. List all substrings of T, together with their occurrence lists
(string1, [3,7,21]), (string2, [3,21)), ...

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

a (a, [3,4,6,7,10,...]) Search occurrences of P:
<{(ab, [7,10, ..])
(ad, .. — jump to substrings starting with letter P[1]
(b, ... — from there, jump to substrings with
C : next letter P[2]
: Etc.
(c after m jumps, reach (or not) matching substring
with its occurrence list

Indexed String Search

Count / Find all occurrences of P in T ieacr)czrrwn')l'lm[egoc)d!]

Preprocessing (“indexing”) of T is permitted

Indexing Time

— exceeds O(n"2)4 T8
N :
Naive Solution (sort n*2 substnnW
1. List all substrings of T, together with their occurrence lists L(

(string1, [3,7,21]), (string2, [3,21)), ...
2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

a (a, [3,4,6,7,10,...]) Search occurrences of P:
<{(ab, [7,10, ..])
(ad, .. — jump to substrings starting with letter P[1]
(b, ... — from there, jump to substrings with
C : next letter P[2]
: Etc.
(c after m jumps, reach (or not) matching substring
with its occurrence list

1. Suffix Trie

— |dea: consider all suffixes of text T
i.e., suffix starting at position 1 (= T)
suffix starting at position 2
suffix starting at position 3
Etc.

— arrange suffixes in a “prefix tree” (trie),
with longest common prefixes shared

1. Suffix Trie

— |dea: consider all suffixes of text T
i.e., suffix starting at position 1 (= T)
suffix starting at position 2
suffix starting at position 3
Etc.

— arrange suffixes in a “prefix tree” (trie),
with longest common prefixes shared

— trie datastructure: 19359 by de la Briandais

— “trie” (Fredkin, 1961), pronounced /'tri:/ (as "tree")

I

RETRIEVAL

— to distinguish from “tree” many authors
say /'trai/ (as "try")

12345678
T = abaababa

A a, b
I:)O I a | 5 La

la & Lp

o) 3 .a
a. 2

1. Suffix Trie

Suffixes

OO WN =

Trie of all suffixes of T=abaababa.

abaababa
baababa
aababa
ababa
baba

aba

ba

a

1. Suffix Trie

12345678 Suffixes
T = abaababa 1 abaababa
2 baababa
3 aababa
b
8 /\ 4 ababa
a 7 5 baba
O b 6 aba
7 ba
a b 8 a
b Db 5 C}a
4 N W
0 * ? — black nodes represent suffixes
3 a
]
; — are labeled by the corresponding
L 2 number of the suffix
1

Trie of all suffixes of T=abaababa.

1. Suffix Trie

12345678 Suffixes
T = abaababa 1 abaababa
2 baababa
3 aababa
b
8 %/A\b 4 ababa
Fa | w 7 5 ba ba
8‘3 5 b 4 6 aba
6 7 ba
a/ \b A ai b 8 a
o @] O
bO I a | 5 La
4 a b
Q ¢ Oa — how to search for all occurrences
b@ 3 ° of a pattern P?
a. 2

Trie of all suffixes of T=abaababa.

1. Suffix Trie

12345678 Suffixes
T = abaababa 1 abaababa
2 baababa
3 aababa
b
8 %/A\b 4 ababa
Fa | % 7 5 ba ba
8‘3 5 b 4 6 aba
6 7 ba
a/ \b A ai b 8 a
o @] O
I:JO I a | 5 L2
4 a b
Q ¢ Oa — how to search for all occurrences
b@ 3 ° of a pattern P?
El. 2

— starting at the root node follow
1 letter-by-letter wrt P the
unique edges in the trie!

Trie of all suffixes of T=abaababa.

1. Suffix Trie

12345678
T = abaababa

g a ai Ob
I:JO a | 5 L2

L 4@ Lb

O 3 .a
al 2

Trie of all suffixes of T=abaababa.

Suffixes

OO Ok WwWwN =

abaababa
baababa
aababa
ababa
baba

aba

ba

a

— how to search for all occurrences
of a pattern P?

— starting at the root node follow
letter-by-letter wrt P the
unique edges in the trie!

P = aba

T

1. Suffix Trie

12345678 Suffixes
T = abaababa

abaababa
baababa
aababa
ababa
baba

aba

ba

a

OO Ok WwWwN =

— how to search for all occurrences
of a pattern P?

— starting at the root node follow
1 letter-by-letter wrt P the
unique edges in the trie!
Trie of all suffixes of T=abaababa.
P = aba

L]

T =

12345678
abaababa

1. Suffix Trie

Suffixes

OO Ok WwWwN =

Trie of all suffixes of T=abaababa.

abaababa
baababa
aababa
ababa
baba

aba

ba

a

— how to search for all occurrences
of a pattern P?

— starting at the root node follow
letter-by-letter wrt P the
unique edges in the trie!

P = aba

T

1. Suffix Trie

12345678
T = abaababa

/N a, b
I:JO a | 5 L2

la & Lp

o 3 .a
a 2

Trie of all suffixes of T=abaababa.

Suffixes

OO Ok WwWwN =

abaababa
baababa
aababa
ababa
baba

aba

ba

a

— how to search for all occurrences
of a pattern P?

— starting at the root node follow
letter-by-letter wrt P the
unique edges in the trie!

P = aba

T

1. Suffix Trie

12345678 Suffixes
T = abaababa 1 abaababa
2 baababa
3 aababa
AN 4 ababa
;ﬁ o@ 7 5 baba
g b m 6 aba
@j 7 ba
a/<b A ai b 8 a
o O O
bO a Db 5 L2
a b
Q ¢ ? — how to search for all occurrences
b@ 3 o of a pattern P?
a 2 :
o — starting at the root node follow
@ letter-by-letter wrt P the

unique edges in the trie!

3 matches of P = “aba”
P = aba

T

1. Suffix Trie

12345678 Suffixes
T = abaababa 1 abaababa
2 baababa
3 aababa
AN 4 ababa
;/% D&x 7 5 baba
O b m 6 aba
@j 7 ba
3 /<b a ai b 8 a
o O O
b a Db 5 Ga ;
O — O(m) count time
| .a Gb
3 a If we can count #black nodes of a
O ¢ subtree in constant time.
a 2
@ — O(m + #occ) retrieval time
If we can iterate leaves of a subtree
3 matches of P = "aba” with constant delay

12345678
T = abaababa

a a

S - O i ob
bO a | 5 La
a b

o @ 9]
a

o 3 ®

a. 2

3 matches of P = “aba”

1. Suffix Trie

Suffixes
abaababa
baababa
aababa
ababa
baba
aba

ba

a

OO WN =

— Indexing time?

12345678
T = abaababa

a d

S b O i Db
bo a 4§ S &
a b

@ g ¢
a

@) 3 ¢

El. 2

3 matches of P = “aba”

1. Suffix Trie

Suffixes
abaababa
baababa
aababa
ababa
baba
aba

ba

a

OO, WwWN=

— Indexing time?

No sorting, but
— still quadratic in m, i.e., O(m"2) :~(

— e.g. T=a"b"a"b"d

12345678
T = abaababa

a b

S O

o I a Q

S 4 ®
3

O

2. Suffix Tree

Suffixes
abaababa
baababa
aababa
ababa
baba

aba

ba

a

OO O WN =

New Idea

— collapse paths of white nodes!

O T L T

2. Suffix Tree

12345678 Suffixes
T = abaababa 1 abaababa
2 baababa
3 aababa
8 %/!\E 4 ababa
a 5 baba
2 ab \gﬁja ' 6 aba
6 \\b 7 ba
a b a ai b 8 a
o O O
O I “ ¢ 0 ’38
a
Q 4 ® e New Idea
i 3 —
5 — collapse paths of white nodes!
@

2. Suffix Tree

12345678
T = abaababa

a b a al 4,8] b
S O O
b
bO T a 4 S Oa
& 4 .a ob
3 d

12345678
T = abaababa

a b C a
5)
b
O T 0 .
a
& 4 ®
3

2. Suffix Tree

2. Suffix Tree

12345678
T = abaababa

; /\b

O [3,8] / A
o
/< j 4,8] |p
O
a
O
4 ob
3 a

2. Suffix Tree

12345678
T = abaababa

Suffix Tree of T

2. Suffix Tree

12345678
T = abaababa

— how many nodes (at most)
In the suffix tree of T?

Suffix Tree of T

2. Suffix Tree

123456789
T = abaababa$

— add end marker “$”

— one-to-one correspondence of
leaves to suffixes

— a tree with m+1 leaves has
<= 2m+1 nodes!

Lemma
Size of suffix tree for “T$” is
linear in n=|T|, i.e., in O(n).

2. Suffix Tree

123456789
T = abaababa$

— add end marker “$”

— one-to-one correspondence of
leaves to suffixes

— a tree with m+1 leaves has
<= 2m+1 nodes!

Lemma
Size of suffix tree for “T$” is
linear in n=|T|, i.e., in O(n).

— search time still O(|P]), as for suffix trie!
— perfect data structure for our task!

3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

But, rather complex construction algorithms

— Weiner 1973 [Knuth: “Algorithm of the year 19737]

3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

— Weiner 1973 [Knuth: “Algorithm of the year 19737]

— McCreight 1976 Simplification of Weiner’s algorithm

3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

— Weiner 1973 [Knuth: “Algorithm of the year 1973"]
— McCreight 1976 Simplification of Weiner’s algorithm

— Ukkonen 1995 «——— first online algorithm!
— T may come from a stream
— build suffix tree for TT from suffix tree for T
— huge breakthrough!!

3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

— Weiner 1973

- Linear time only for constant-size alphabets!
M ht 197
— McCreight 1976 Otherwise, O(n log n)

— Ukkonen 1995

3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

— Weiner 1973

- Linear time only for constant-size alphabets!
M ht 197
— MeCreight 1976 Otherwise, O(n log n)

— Ukkonen 1995

— Farach 1997

Linear time for any integer alphabet,
drawn from a polynomial range

— again a big breakthrough

3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

— Weiner 1973

@Creight 1976

— Ukkonen 1995

— Farach 1997

12345678
T = abaababa

Suffix Link
Definition

If x=ay is the string corresponding
to a node u in the ST then

the suffix link suffu] is the node v
corresponding toy in ST.

12345678
T = abaababa

Suffix Link
Definition

If x=ay is the string corresponding
to a node u in the ST then

the suffix link suffu] is the node v
corresponding toy in ST.

Where is the
suffix link of node “277?

Suffix Link

12345678

T _ abaababa Definition

If x=ay is the string corresponding
3 a/\b to a node u in the ST then
the suffix link suff[u] is the node v

O corresponding toy in ST.

Where is the
suffix link of node “277?

suf[1]

® essential node
o non-essential node

Suffix Link

12345678

T - abaababa Definition

If x=ay is the string corresponding
3 a/\b to a node u in the ST then
the suffix link suf[u] is the node v

o corresponding to y in ST.
b
(

Using suffix links, we can on-line build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

suf[1]

® ecssential node
o non-essential node

60
Using suffix links, we can on-/ine build the

Suffix-TRIE of T in time O(|Suffix-TRIE(T))).

T = abaabb
Online construction

o

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k

61
Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb
Online construction

%

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes

62
Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb
Online construction

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes

63
Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb
Online construction a b

S oA a/b/ X

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes

64

Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T

= abaabb

Online construction a b

L
b/ \a What are the
a /&b . new suffix links?

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes

65
Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb
Online construction a
o

b
b
oA NS
o a

w M

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.

Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]
If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes

66
Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb

Online construction b b/Q ‘\
b
A / \‘* /
O
= lowest leaf in tree
b = T[current]
From v, follow (k times) suffix links (to u) until child(u, b) is defined.

Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]
If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes

Using suffix links, we can on-/ine build the

Suffix-TRIE of T in time O(|Suffix-TRIE(T))). 4

= abaabb a/\b b/ \ 4 \a
Online construction ii b b/‘i\a ‘\ /\

T

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes

Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb
Online construction a b b/

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes

Using suffix links, we can on-line build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb

Online construction a b b/&

a

Ukkonen’s on-line
construction of suffix trees
works in a similar way.

It maintains collapsed edges

at all times.

mississippi$

[12,e

12

[6.e]

[9,9]
[1.e [2,2] 3,3]
3,5
| o) a5 5,51 %) N11el
8 11
9 e] [6,e [6,e] ° 10
' [9,e [9,e

S7

4. Applications of Suffix Trees

Generalized Suffix tree for a SET S of strings:
S={S,,5, S5, 5}
T=8,#,S,#,S;#;.... S5, #

Where #,, #,, ..., #,_are fresh new symbols.

58

(b) Longest Common Substring of two Strings

S;=superiorcalifornialives
S, =seal iver

LCS(S,, S,) = alive

- Build generalized suffix tree of { S, S, }
- Mark internal nodes with “1” or “2”
if subtree contains (1,_) pair or (2, _) pair.

LCS(S1, S2) =
maximal string depth of any
node marked “1,2”

- Can be determined by a simple
tree traversal

(2,31) (1,8)

(b) Longest Common Substring of two Strings

Theorem
The longest common substring of two strings can be found
in linear time, using a generalized suffix tree.

[Karp,Miller,Rosenberg1972] solved the problem in
O((m+n)log(m+n)) time where m=|S,| and n=|S,|.

In 1970 Donald Knuth conjectured that it is impossible to
solve the problem in linear time!

—> Linear time solution by [Weiner,1973]

\ First linear time suffix tree

construction algorithm

(c) Matching Statistics

ms(k) = length L of longest substring T[k...k+L] that matches a substring in P.
p(k) = start position in P of a substring of length ms(k) matching T[k...k+ms(k)]

T = abcxabcdex Computation of ms and p
P = yabcwzgabcdw
Build suffix tree of P (including suffix links).

ms(1) =3 At node v corresponding to ms(i),
p(1) =2 compute ms(i+1) as follows:

(1) If v is internal, follow its suffix link.
ms(5) = 4 (2) If v is leaf, walk to parent (label ~)
p(4)=8

Current node is prefix of T[i+1...n].

Proceed downwards to longest match
(as in ordinary search)

—Allows to find LCS(S_1,S_2) using only
*one™ suffix tree (of the shorter string).

(d) Compression |
Implemented in an open-source

compression tool.
LZ-variant with infinite window > Very high compression ratios!

abaabaaabababaabb

ab aabaaabababaabb

longest string that has appeared before
coded as: (position, length)

aba(1,4)(1,3)(9,4)(1,2)b

- Build suffix tree of text T
- Annotate internal nodes by smallest position number in their subtree

- To find pair (x,y) at a position p in T, match T[x...] against suffix tree
as long as minimal pos number is smaller than x.

63

4. Applications of Suffix Trees

Suffix trees have many more applications
e.g. in computational biology see [Gusfield book].

- Substring problem for a database of patterns
- DNA contamination problem
- Find complemented palindroms in DNA (e.g. AGCTCGCGAGCT)
- Find all maximal repeats / maximal pairs |
ALGORITAMS 00 STRINGS

-2 ...
[

63

7 First Applications of Suffix Trees

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20

APL1: Exact string matching

APL2: Suffix trees and the exact set matching problem

APL3: The substring problem for a database of patterns

APLA4: Longest common substring of two strings

APLS5: Recognizing DNA contamination

APL6: Common substrings of more than two strings

APL7: Building a smaller directed graph for exact matching
APLS: A reverse role for suffix trees, and major space reduction
APLY: Space-efficient longest common substring algorithm
APL10: All-pairs suffix-prefix matching

Introduction to repetitive structures in molecular strings
APL11: Finding all maximal repetitive structures in linear time
APL12: Circular string linearization

APL13: Suffix arrays — more space reduction

APL14: Suffix trees in genome-scale projects

APLI15: A Boyer-Moore approach to exact set matching
APL16: Ziv-Lempel data compression

APL17: Minimum length encoding of DNA

Additional applications

Exercises

122

122
123
124
125
125
127
129
132
135
135
138
143
148
149
156
157
164
167
168
168

64

65

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

