Applied Databases

Lecture 15 Indexed String Search, Suffix Trees

Sebastian Maneth

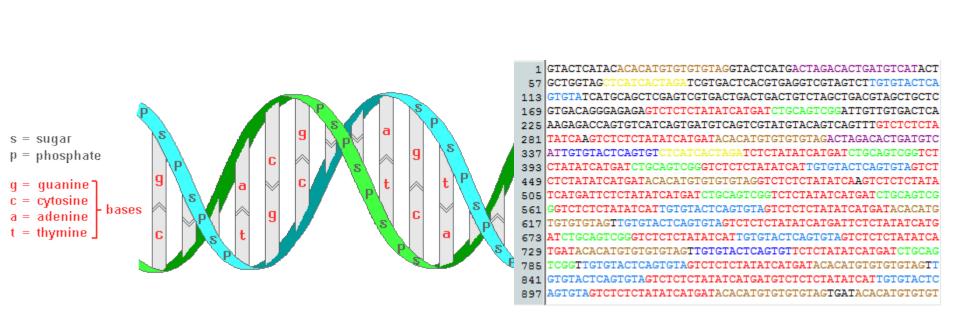
University of Edinburgh - March 7th, 2016

Outline

- 1. Suffix Trie
- 2. Suffix Tree
- 3. Suffix Tree Construction
- 4. Applications of Suffix Trees

String Search

- \rightarrow search over DNA sequences
- \rightarrow huge sequence over C, T, G A (ca. 3.2 billion)
- \rightarrow no spaces, no tokens....



String Search

- \rightarrow search over DNA sequences
- \rightarrow huge sequence over C, T, G A (ca. 3.2 billion)
- \rightarrow no spaces, no tokens....

Given

- a long string T (text)
- a short string P (pattern)
- Problem 1: find all occurrences of P in T
- Problem 2: count #occurrence of P in T

String Search

- \rightarrow search over DNA sequences
- \rightarrow huge sequence over C, T, G A (ca. 3.2 billion)
- \rightarrow no spaces, no tokens....

Given

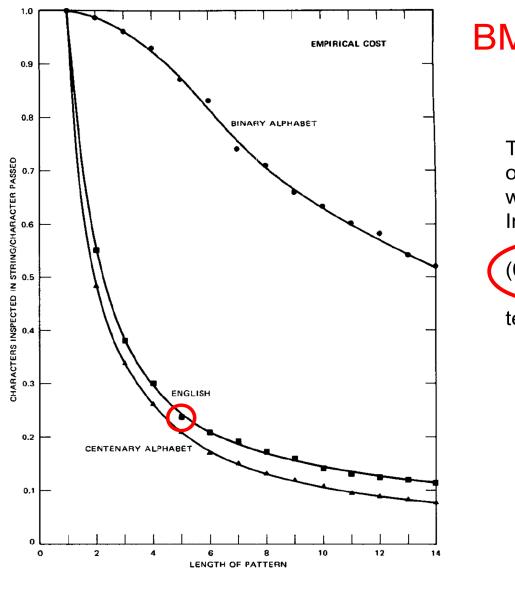
- a long string T (text) of length n
- a short string P (pattern) of length m

Problem 1: find all occurrences of P in T

Problem 2: count #occurrence of P in T

Online Search O(|T|) time with O(|P|) preprocessing E.g., using *automaton* or *KMP*

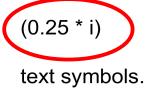
- \rightarrow sublinear time using Horspool / Boyer-Moore
- \rightarrow average time limit: O(n (log m)/m)



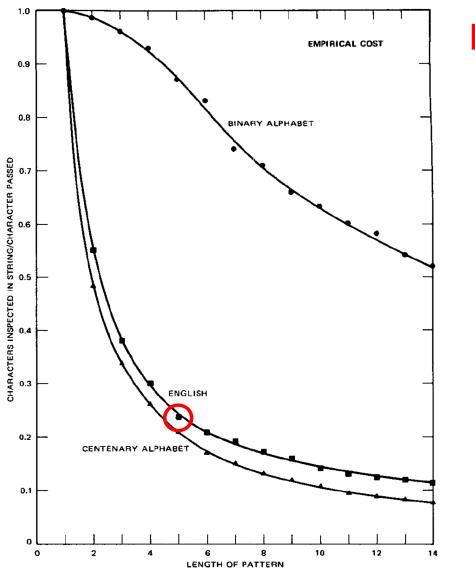
BM – Average Case

83

To find first occurrence i of an arbitrary <u>5-letter</u> word in an English text Inspects on average

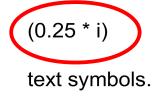


→ sublinear time using Horspool / Boyer-Moore → average time limit: O(T (log m)/m)

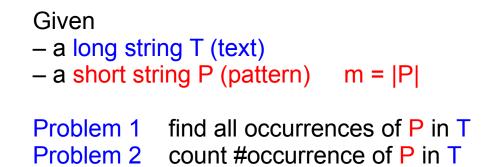


83

To find first occurrence i of an arbitrary <u>5-letter</u> word in an English text Inspects on average

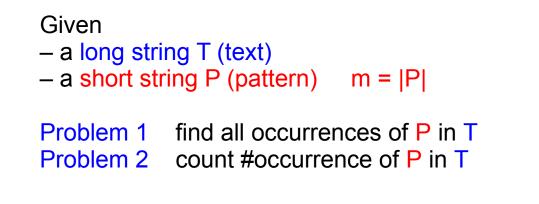


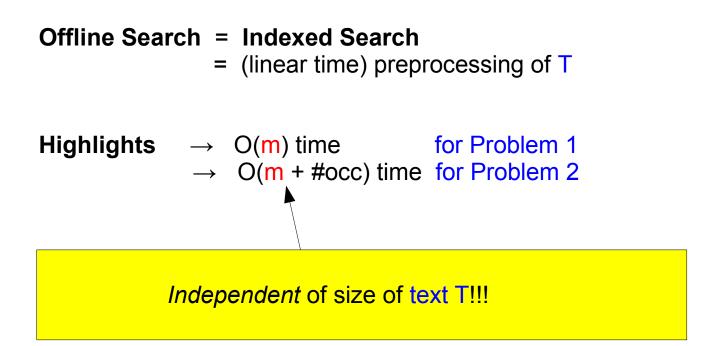
 \rightarrow for DNA, 40% of 3.2 billion is still huge (linear scan of >1TB)



Offline Search = Indexed Search = (linear time) preprocessing of T

Highlights
$$\rightarrow$$
 O(m) timefor Problem 1 \rightarrow O(m + #occ) timefor Problem 2





Count / Find all occurrences of P in T

Preprocessing ("indexing") of T is permitted

Naive Solution

- 1. List all substrings of T, together with their occurrence lists (string1, [3,7,21]), (string2, [3,21]), ...
- 2. Lexicographically sort the substrings
- 3. Record the beginnings of each distinct "next letter" (tree structure)

a (a, [3,4,6,7,10,...]) (ab, [7,10, ..]) (ad, ... (b, ... (c

Count / Find all occurrences of P in T

Preprocessing ("indexing") of T is permitted

Naive Solution

- 1. List all substrings of T, together with their occurrence lists (string1, [3,7,21]), (string2, [3,21]), ...
- 2. Lexicographically sort the substrings
- 3. Record the beginnings of each distinct "next letter" (tree structure)

a (a, [3,4,6,7,10,...]) (ab, [7,10, ..]) (ad, .. (b, ... (c (c

Search occurrences of P:

- \rightarrow jump to substrings starting with letter P[1]
- → from there, jump to substrings with next letter P[2]

Etc.

after m jumps, reach (or not) matching substring with its occurrence list

Count / Find all occurrences of P in T

Preprocessing ("indexing") of T is permitted

```
Search Time

\rightarrow O(m) [good!]

Indexing Time

\rightarrow ????
```

Naive Solution

- 1. List all substrings of T, together with their occurrence lists (string1, [3,7,21]), (string2, [3,21]), ...
- 2. Lexicographically sort the substrings
- 3. Record the beginnings of each distinct "next letter" (tree structure)

a (a, [3,4,6,7,10,...]) (ab, [7,10, ..]) (ad, .. (b, ... (c (c

Search occurrences of P:

- \rightarrow jump to substrings starting with letter P[1]
- → from there, jump to substrings with next letter P[2]

Etc.

after m jumps, reach (or not) matching substring with its occurrence list

Count / Find all occurrences of P in T

Preprocessing ("indexing") of T is permitted

Naive Solution

- 1. List all substrings of T, together with their occurrence lists (string1, [3,7,21]), (string2, [3,21]), ...
- 2. Lexicographically sort the substrings
- 3. Record the beginnings of each distinct "next letter" (tree structure)

a (a, [3,4,6,7,10,...]) (ab, [7,10, ..]) (ad, .. (b, ... (c

Search occurrences of P:

 \rightarrow jump to substrings starting with letter P[1]

Search Time

Indexing Time

 \rightarrow O(m) [good!]

 \rightarrow exceeds O(n^2)

(sort n² substrings)

→ from there, jump to substrings with next letter P[2]

Etc.

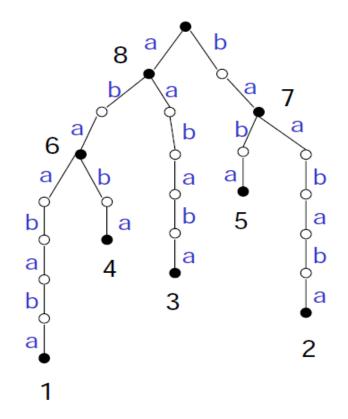
after m jumps, reach (or not) matching substring with its occurrence list

- → Idea: consider all suffixes of text T i.e., suffix starting at position 1 (= T) suffix starting at position 2 suffix starting at position 3 Etc.
- \rightarrow arrange suffixes in a "prefix tree" (trie), with longest common prefixes shared

- → Idea: consider all suffixes of text T i.e., suffix starting at position 1 (= T) suffix starting at position 2 suffix starting at position 3 Etc.
- \rightarrow arrange suffixes in a "prefix tree" (trie), with longest common prefixes shared

- \rightarrow trie datastructure: 1959 by de la Briandais
- → "trie" (Fredkin, 1961), pronounced /'triː/ (as "tree")
 ▲
 RETRIEVAL
 - → to distinguish from "tree" many authors say /'traɪ/ (as "try")

12345678T = abaababa



Suffixes

- 1 abaababa
- 2 baababa
- 3 aababa
- 4 ababa
- 5 baba
- 6 aba
- 7 ba
- 8 a

Trie of all suffixes of T=abaababa.

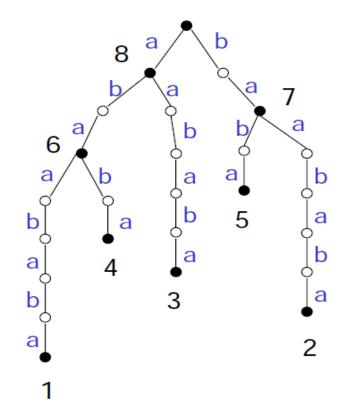
12345678 T = abaababa b а 8 а 7 а а b 6 а а b а b 5 а b а b а а 4 а 3 b а 2 1

Trie of all suffixes of T=abaababa.

Suffixes	
1	abaababa
2	baababa
3	aababa
4	ababa
5	baba
6	aba
7	ba
8	а

- \rightarrow black nodes represent suffixes
- \rightarrow are labeled by the corresponding number of the suffix

12345678T = abaababa



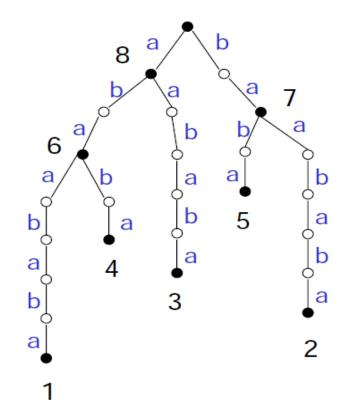
Suffixes

- 1 abaababa
- 2 baababa
- 3 aababa
- 4 ababa
- 5 baba
- 6 aba
- 7 ba
- 8 a

 \rightarrow how to search for all occurrences of a pattern P?

Trie of all suffixes of T=abaababa.

12345678T = abaababa

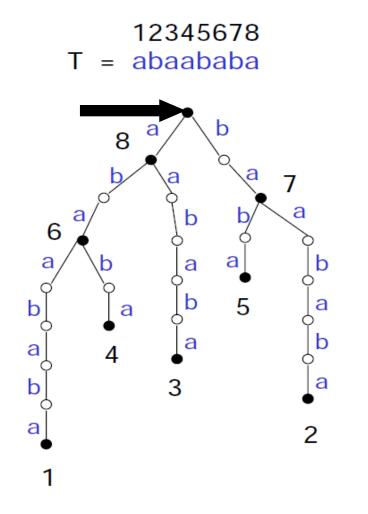


Trie of all suffixes of T=abaababa.

Suffixes

- 1 abaababa
- 2 baababa
- 3 aababa
- 4 ababa
- 5 baba
- 6 aba
- 7 ba
- 8 a

- → how to search for all occurrences of a pattern P?
- → starting at the root node follow letter-by-letter wrt P the unique edges in the trie!



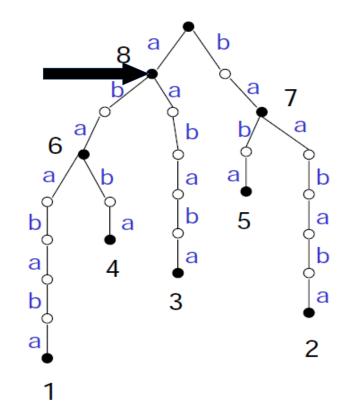
Trie of all suffixes of T=abaababa.

Suffixes

- 1 abaababa
- 2 baababa
- 3 aababa
- 4 ababa
- 5 baba
- 6 aba
- 7 ba
- 8 a

- → how to search for all occurrences of a pattern P?
- → starting at the root node follow letter-by-letter wrt P the unique edges in the trie!

12345678T = abaababa



Trie of all suffixes of T=abaababa.

Suffixes

- 1 abaababa
- 2 baababa
- 3 aababa
- 4 ababa
- 5 baba
- 6 aba
- 7 ba
- 8 a

- \rightarrow how to search for all occurrences of a pattern P?
- → starting at the root node follow letter-by-letter wrt P the unique edges in the trie!

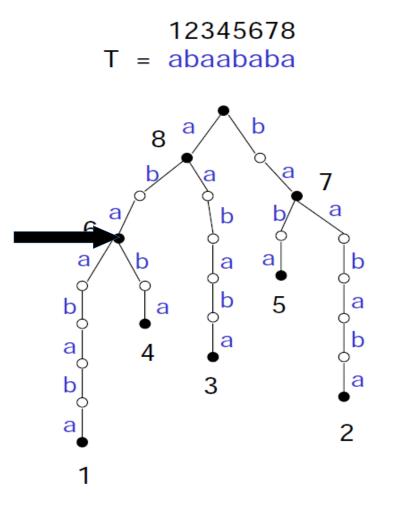
12345678 T = abaababa b а 8 7 а a b 6 а а b а b 5 а b а b а а 4 \cap а 3 b а 2 1

Trie of all suffixes of T=abaababa.

Suffixes

- 1 abaababa
- 2 baababa
- 3 aababa
- 4 ababa
- 5 baba
- 6 aba
- 7 ba
- 8 a

- → how to search for all occurrences of a pattern P?
- → starting at the root node follow letter-by-letter wrt P the unique edges in the trie!



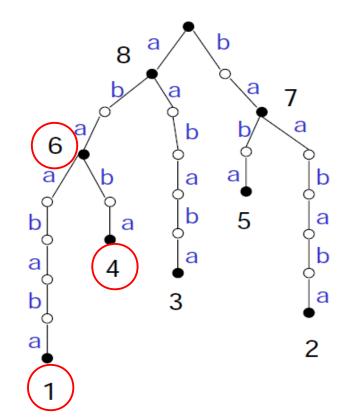
Trie of all suffixes of T=abaababa.

Suffixes

- 1 abaababa
- 2 baababa
- 3 aababa
- 4 ababa
- 5 baba
- 6 aba
- 7 ba
- 8 a

- \rightarrow how to search for all occurrences of a pattern P?
- → starting at the root node follow letter-by-letter wrt P the unique edges in the trie!

12345678T = abaababa



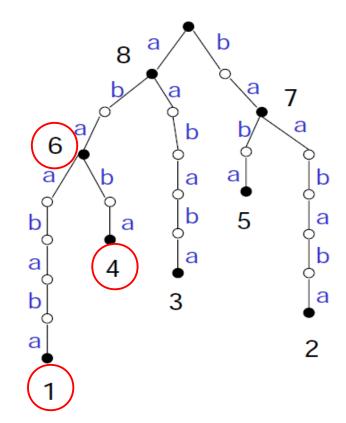
3 matches of P = "aba"

Suffixes

- 1 <u>aba</u>ababa
- 2 baababa
- 3 aababa
- 4 <u>aba</u>ba
- 5 baba
- 6 <u>aba</u>
- 7 ba
- 8 a

- \rightarrow how to search for all occurrences of a pattern P?
- → starting at the root node follow letter-by-letter wrt P the unique edges in the trie!

12345678T = abaababa



3 matches of P = "aba"

Suffixes

- 1 <u>aba</u>ababa
- 2 baababa
- 3 aababa
- 4 <u>aba</u>ba
- 5 baba
- 6 <u>aba</u>
- 7 ba
- 8 a

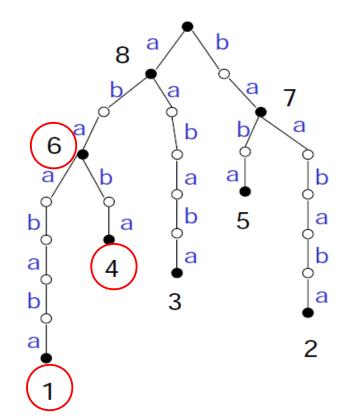
\rightarrow O(m) count time

If we can count #black nodes of a subtree in constant time.

 \rightarrow O(m + #occ) retrieval time

If we can iterate leaves of a subtree with constant delay

12345678T = abaababa



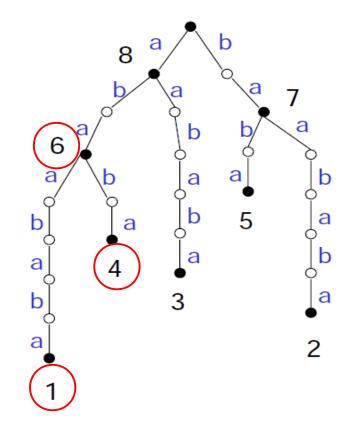
Suffixes

- 1 <u>aba</u>ababa
- 2 baababa
- 3 aababa
- 4 <u>aba</u>ba
- 5 baba
- 6 <u>aba</u>
- 7 ba
- 8 a

→ Indexing time?

3 matches of P ="aba"

12345678T = abaababa



3 matches of P = "aba"

Suffixes

- 1 <u>aba</u>ababa
- 2 baababa
- 3 aababa
- 4 <u>aba</u>ba
- 5 baba
- 6 <u>aba</u>
- 7 ba
- 8 a

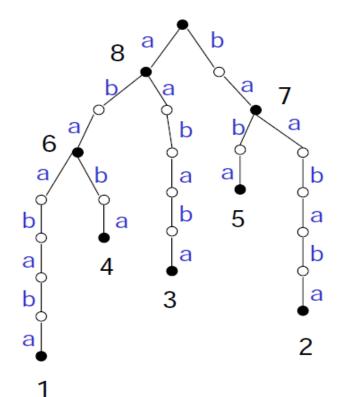
→ Indexing time?

No sorting, but

 \rightarrow still quadratic in m, i.e., O(m²) :-(

$$\rightarrow$$
 e.g. T = aⁿbⁿaⁿbⁿd

12345678T = abaababa



Suffixes

- 1 abaababa
- 2 baababa
- 3 aababa
- 4 ababa
- 5 baba
- 6 aba
- 7 ba
- 8 a

New Idea

 \rightarrow collapse paths of white nodes!

12345678 = abaababa Т b а 8 а а а b 6 а а а b D Q b 5 а b а \cap Ó b а а 4 Ó b 3 а Ó а 2

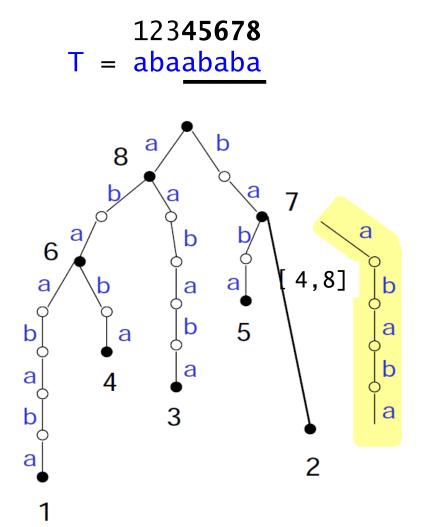
1

Suffixes

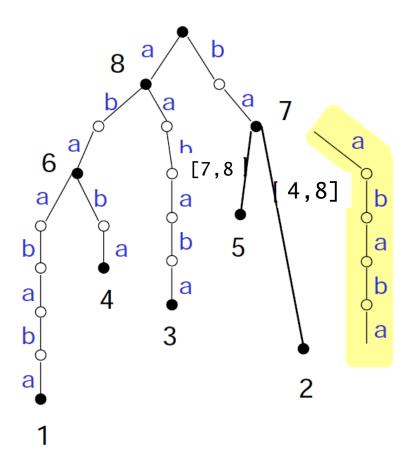
- 1 abaababa
- 2 baababa
- 3 aababa
- 4 ababa
- 5 baba
- 6 aba
- 7 ba
- 8 a

New Idea

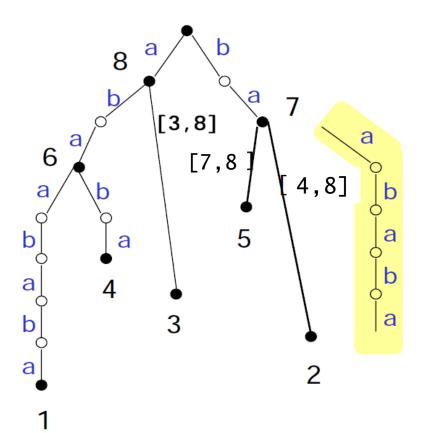
 \rightarrow collapse paths of white nodes!

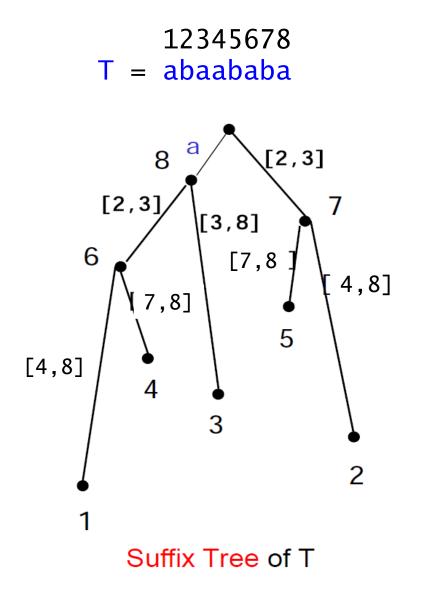


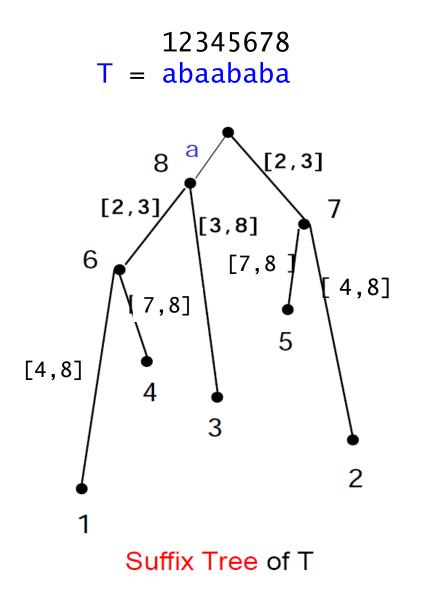
T = abaababa



T = abaababa

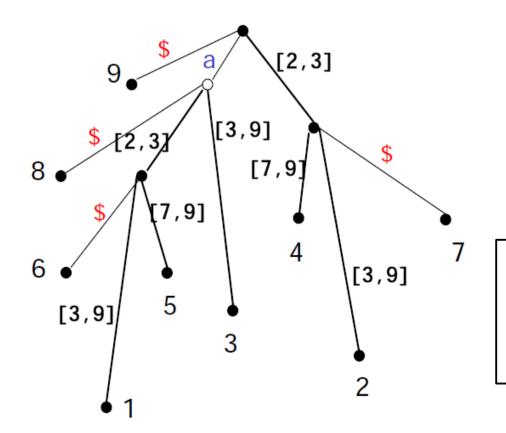






→ how many nodes (at most) In the suffix tree of T?

123456789T = abaababa



- \rightarrow add end marker "\$"
- → one-to-one correspondence of leaves to suffixes
- \rightarrow a tree with m+1 leaves has <= 2m+1 nodes!

Lemma Size of suffix tree for "T\$" is linear in n=|T|, i.e., in O(n).

T = abaababa[2,3] а 9 [3,9] \$ [7,9] 8 [7,9] 4 7 6 [3,9] 5 [3,9] 3 2

123456789

- \rightarrow add end marker "\$"
- → one-to-one correspondence of leaves to suffixes
- \rightarrow a tree with m+1 leaves has <= 2m+1 nodes!

Lemma Size of suffix tree for "T\$" is linear in n=|T|, i.e., in O(n).

→ search time still O(|P|), as for suffix trie! → perfect data structure for our task!

Good news: Suffix tree can be constructed in linear time!

But, rather complex construction algorithms

 \rightarrow Weiner 1973 [Knuth: "Algorithm of the year 1973"]

Good news: Suffix tree can be constructed in linear time!

Complex construction algorithms

- \rightarrow Weiner 1973 [Knuth: "Algorithm of the year 1973"]
- \rightarrow McCreight 1976 Simplification of Weiner's algorithm

Good news: Suffix tree can be constructed in linear time!

Complex construction algorithms

- \rightarrow Weiner 1973 [Knuth: "Algorithm of the year 1973"]
- → McCreight 1976 Simplification of Weiner's algorithm
- \rightarrow Ukkonen 1995 \triangleleft first online algorithm!
 - \rightarrow T may come from a stream
 - \rightarrow build suffix tree for TT' from suffix tree for T
 - \rightarrow huge breakthrough!!

Good news: Suffix tree can be constructed in linear time!

Complex construction algorithms

- \rightarrow Weiner 1973
- \rightarrow McCreight 1976
- \rightarrow Ukkonen 1995

Linear time only for *constant-size alphabets*! Otherwise, O(n log n)

Good news: Suffix tree can be constructed in linear time!

Complex construction algorithms

- \rightarrow Weiner 1973
- \rightarrow McCreight 1976
- → Ukkonen 1995
- \rightarrow Farach 1997

Linear time only for *constant-size alphabets*! Otherwise, O(n log n)

Linear time for **any integer alphabet**, drawn from a polynomial range

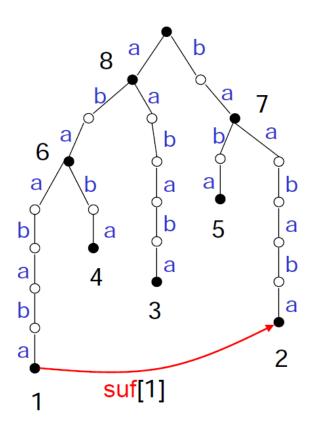
 \rightarrow again a big breakthrough

Good news: Suffix tree can be constructed in linear time!

Complex construction algorithms

- \rightarrow Weiner 1973
- \rightarrow McCreight 1976
- → Ukkonen 1995
- \rightarrow Farach 1997

12345678T = abaababa

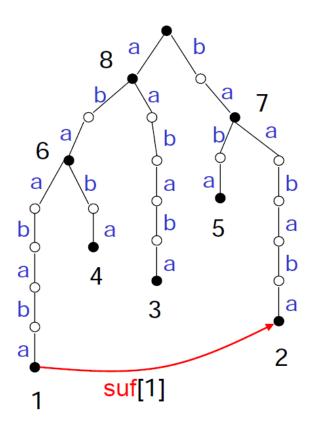


Suffix Link

Definition

If x=ay is the string corresponding to a node u in the ST then the suffix link suf[u] is the node v corresponding to y in ST.

12345678T = abaababa



Suffix Link

Definition

If x=ay is the string corresponding to a node u in the ST then the suffix link suf[u] is the node v corresponding to y in ST.

Where is the suffix link of node "2"?

12345678 T = abaababa b а 8 7 a a b 6 а а а b b 5 a b а b а a 4 a 3 b а 2 suf[1] 1

Suffix Link

Definition

If x=ay is the string corresponding to a node u in the ST then the suffix link suf[u] is the node v corresponding to y in ST.

Where is the suffix link of node "2"?

- essential node
- non-essential node

12345678 = abaababa Т а D 8 а а b 6 а а а b 5 b а С а b а а а 3 С а 2 suf[1]

Suffix Link

Definition

If x=ay is the string corresponding to a node u in the ST then the suffix link suf[u] is the node v corresponding to y in ST.

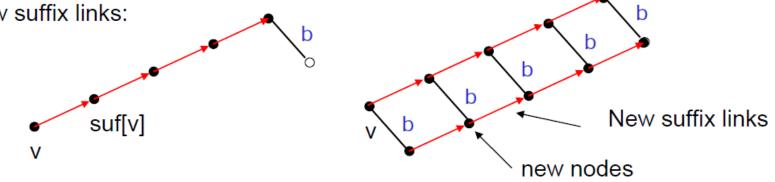
Using suffix links, we can *on-line* build the Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

- essential node
- non-essential node

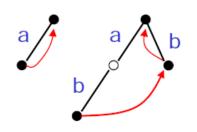
T = abaabb Online construction

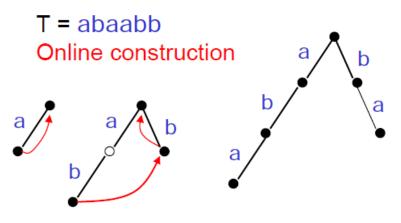
v = lowest leaf in tree
b = T[current]
From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], suf²[v], ..., suf^{k-1}[v]
If there is no such u, create b-sons for all of them, up to k

T = abaabb Online construction



T = abaabb Online construction



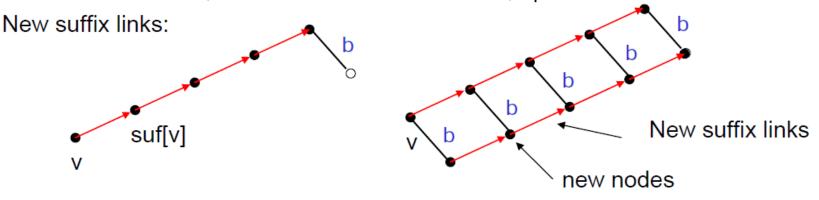


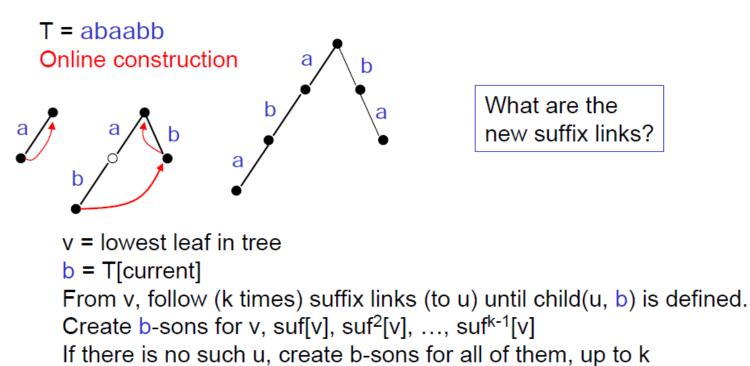
v = lowest leaf in tree

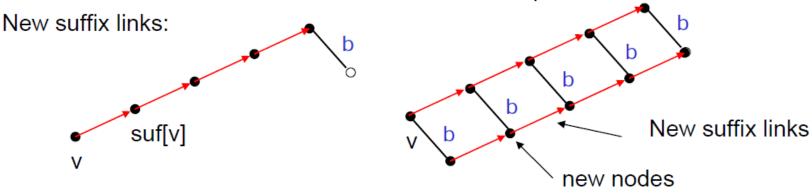
b = T[current]

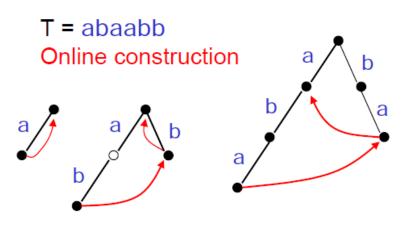
From v, follow (k times) suffix links (to u) until child(u, b) is defined. Create b-sons for v, suf[v], suf²[v], ..., suf^{k-1}[v]

If there is no such u, create b-sons for all of them, up to k





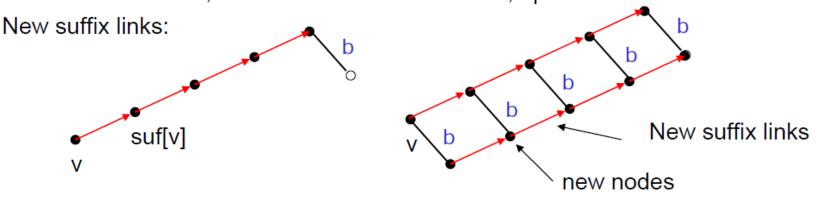


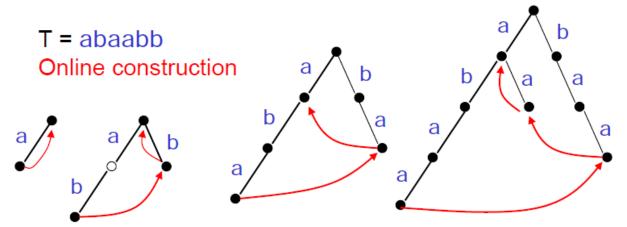


- v = lowest leaf in tree
- b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined. Create b-sons for v, suf[v], suf²[v], ..., suf^{k-1}[v]

If there is no such u, create b-sons for all of them, up to k



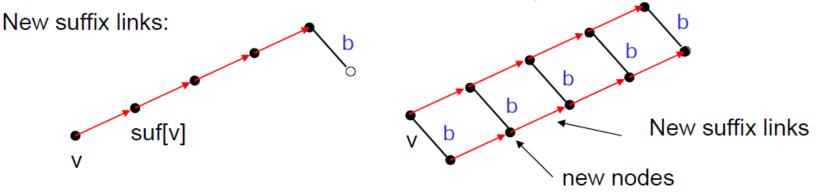


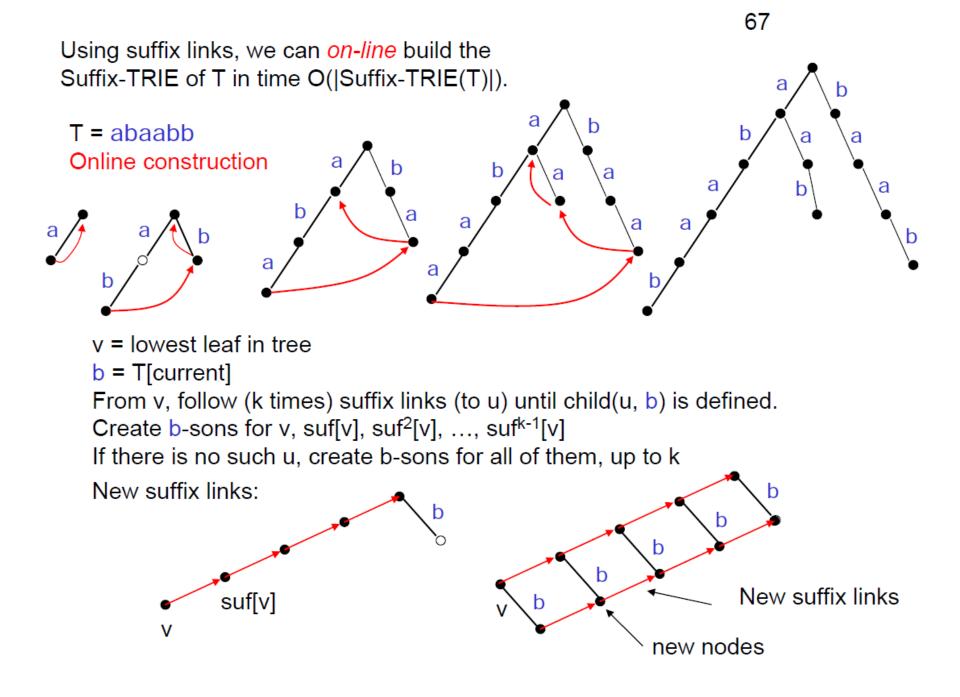
v = lowest leaf in tree

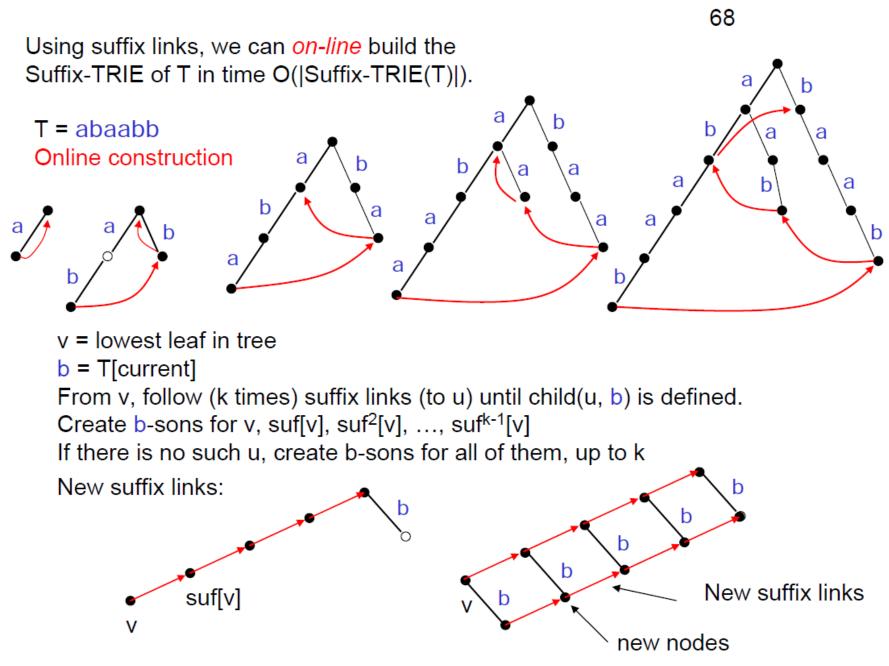
b = T[current]

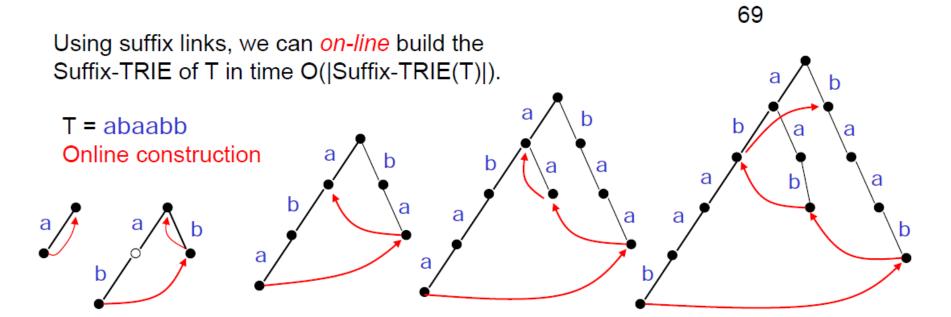
From v, follow (k times) suffix links (to u) until child(u, b) is defined. Create b-sons for v, suf[v], suf²[v], ..., suf^{k-1}[v]

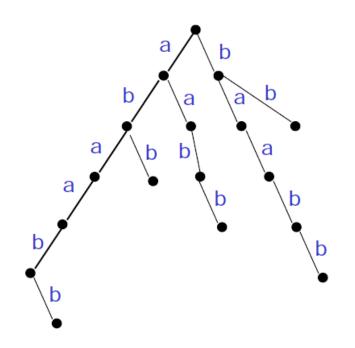
If there is no such u, create b-sons for all of them, up to k





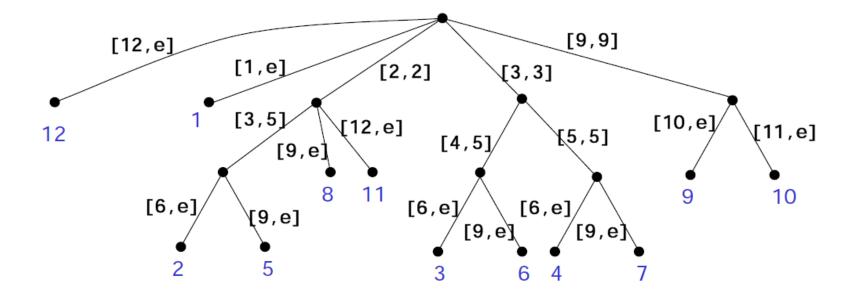






Ukkonen's on-line construction of suffix trees works in a similar way.

It maintains collapsed edges at all times.



4. Applications of Suffix Trees

Generalized Suffix tree for a SET S of strings:

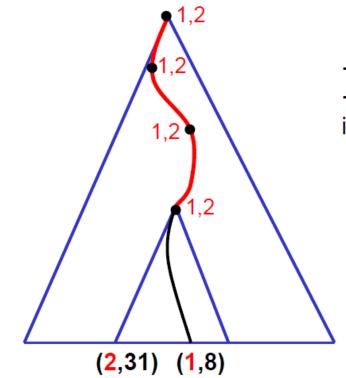
S = { S₁, S₂, S₃, ..., S_k } T = S₁ $\#_1$ S₂ $\#_2$ S₃ $\#_3$ S_k $\#_k$

Where $\#_1, \#_2, ..., \#_k$ are fresh new symbols.

(b) Longest Common Substring of two Strings

 S_1 = superiorcalifornialives S_2 = sealiver

 $LCS(S_1, S_2) = alive$



→ Build generalized suffix tree of $\{S_1, S_2\}$ → Mark internal nodes with "1" or "2" if subtree contains (1,_) pair or (2, _) pair.

LCS(S1, S2) = maximal *string depth* of any node marked "1,2"

→ Can be determined by a simple tree traversal

(b) Longest Common Substring of two Strings

Theorem The *longest common substring* of two strings can be found in linear time, using a generalized suffix tree.

[Karp,Miller,Rosenberg1972] solved the problem in $O((m+n)\log(m+n))$ time where m=|S₁| and n=|S₂|.

In 1970 Donald Knuth conjectured that it is *impossible* to solve the problem in linear time!

→ Linear time solution by [Weiner,1973]

First linear time suffix tree construction algorithm

(c) Matching Statistics

ms(k) = length L of longest substring T[k...k+L] that matches a substring in P.p(k) = start position in P of a substring of length <math>ms(k) matching T[k...k+ms(k)]

T = <mark>abc</mark> xabcdex P = y <mark>abc</mark> wzgabcdw	Computation of ms and p
ms(1) = 3	Build suffix tree of P (including suffix links). At node v corresponding to ms(i),
p(1) = 2	compute <mark>ms</mark> (i+1) as follows: (1) If v is internal, follow its suffix link.
ms(5) = 4 p(4) = 8	(2) If v is leaf, walk to parent (label γ)
	Current node is prefix of T[i+1n].
	Proceed downwards to longest match (as in ordinary search)

→Allows to find LCS(S_1,S_2) using only *one* suffix tree (of the shorter string).

(d) Compression

LZ-variant with infinite window

abaabaaabababaabb

```
a b a abaa aba baba ab b
longest string that has appeared before
coded as: (position, length)
a b a (1,4) (1,3) (9,4) (1,2) b
```

- → Build suffix tree of text T
- \rightarrow Annotate internal nodes by smallest position number in their subtree
- → To find pair (x,y) at a position p in T, match T[x...] against suffix tree as long as minimal pos number is smaller than x.

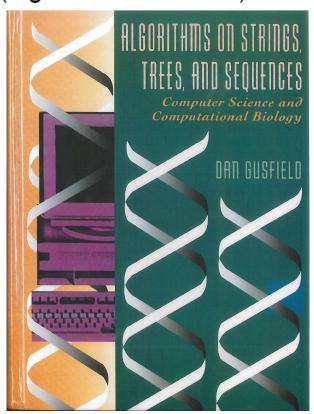
Implemented in an open-source compression tool.

→ Very high compression ratios!

4. Applications of Suffix Trees

Suffix trees have *many* more applications e.g. in computational biology see [Gusfield book].

- → Substring problem for a database of patterns
- → DNA contamination problem
- → Find complemented palindroms in DNA (e.g. AGCTCGCGAGCT)
- \rightarrow Find all maximal repeats / maximal pairs
- → ...



7 First Applications of Suffix Trees		122
7.	1 APL1: Exact string matching	122
7.	2 APL2: Suffix trees and the exact set matching problem	123
7.	3 APL3: The substring problem for a database of patterns	124
7.	4 APL4: Longest common substring of two strings	125
7.	5 APL5: Recognizing DNA contamination	125
7.	6 APL6: Common substrings of more than two strings	127
7.	7 APL7: Building a smaller directed graph for exact matching	129
7.		132
7.	9 APL9: Space-efficient longest common substring algorithm	135
7.	10 APL10: All-pairs suffix-prefix matching	135
7.	11 Introduction to repetitive structures in molecular strings	138
7.	12 APL11: Finding all maximal repetitive structures in linear time	143
7.	13 APL12: Circular string linearization	148
7.	14 APL13: Suffix arrays – more space reduction	149
7.	15 APL14: Suffix trees in genome-scale projects	156
7.	16 APL15: A Boyer–Moore approach to exact set matching	157
7.	17 APL16: Ziv–Lempel data compression	164
7.	18 APL17: Minimum length encoding of DNA	167
7.	19 Additional applications	168
7.	20 Exercises	168

END Lecture 15