
Sebastian Maneth

Lecture 15
Indexed String Search, Suffix Trees

University of Edinburgh - March 7th, 2016

Applied Databases

2

Outline

1. Suffix Trie

2. Suffix Tree

3. Suffix Tree Construction

4. Applications of Suffix Trees

3

String Search

→ search over DNA sequences
→ huge sequence over C, T, G A (ca. 3.2 billion)
→ no spaces, no tokens....

4

String Search

→ search over DNA sequences
→ huge sequence over C, T, G A (ca. 3.2 billion)
→ no spaces, no tokens....

Given
– a long string T (text)
– a short string P (pattern)

Problem 1: find all occurrences of P in T
Problem 2: count #occurrence of P in T

5

String Search

→ search over DNA sequences
→ huge sequence over C, T, G A (ca. 3.2 billion)
→ no spaces, no tokens....

Given
– a long string T (text) of length n
– a short string P (pattern) of length m

Problem 1: find all occurrences of P in T
Problem 2: count #occurrence of P in T

Online Search O(|T|) time with O(|P|) preprocessing
 E.g., using automaton or KMP

 → sublinear time using Horspool / Boyer-Moore
 → average time limit: O(n (log m)/m)

6

String Search

 → sublinear time using Horspool / Boyer-Moore
 → average time limit: O(T (log m)/m)

7

String Search

 → for DNA, 40% of 3.2 billion is still huge (linear scan of >1TB)

8

Indexed String Search

Given
– a long string T (text)
– a short string P (pattern) m = |P|

Problem 1 find all occurrences of P in T
Problem 2 count #occurrence of P in T

Offline Search = Indexed Search
 = (linear time) preprocessing of T

Highlights → O(m) time for Problem 1
 → O(m + #occ) time for Problem 2

9

Indexed String Search

Given
– a long string T (text)
– a short string P (pattern) m = |P|

Problem 1 find all occurrences of P in T
Problem 2 count #occurrence of P in T

Offline Search = Indexed Search
 = (linear time) preprocessing of T

Highlights → O(m) time for Problem 1
 → O(m + #occ) time for Problem 2

 Independent of size of text T!!!

10

Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1. List all substrings of T, together with their occurrence lists
 (string1, [3,7,21]), (string2, [3,21]), …

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

 (a, [3,4,6,7,10,...])
 (ab, [7,10, ..])
 (ad, ..
 (b, …
 .
 .
 (c

a

c

11

Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1. List all substrings of T, together with their occurrence lists
 (string1, [3,7,21]), (string2, [3,21]), …

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

 (a, [3,4,6,7,10,...])
 (ab, [7,10, ..])
 (ad, ..
 (b, …
 .
 .
 (c

Search occurrences of P:

→ jump to substrings starting with letter P[1]
→ from there, jump to substrings with
 next letter P[2]
Etc.
after m jumps, reach (or not) matching substring
 with its occurrence list

a

c

12

Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1. List all substrings of T, together with their occurrence lists
 (string1, [3,7,21]), (string2, [3,21]), …

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

 (a, [3,4,6,7,10,...])
 (ab, [7,10, ..])
 (ad, ..
 (b, …
 .
 .
 (c

Search occurrences of P:

→ jump to substrings starting with letter P[1]
→ from there, jump to substrings with
 next letter P[2]
Etc.
after m jumps, reach (or not) matching substring
 with its occurrence list

Search Time
→ O(m) [good!]

Indexing Time
→ ????

a

c

13

Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1. List all substrings of T, together with their occurrence lists
 (string1, [3,7,21]), (string2, [3,21]), …

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

 (a, [3,4,6,7,10,...])
 (ab, [7,10, ..])
 (ad, ..
 (b, …
 .
 .
 (c

Search occurrences of P:

→ jump to substrings starting with letter P[1]
→ from there, jump to substrings with
 next letter P[2]
Etc.
after m jumps, reach (or not) matching substring
 with its occurrence list

Search Time
→ O(m) [good!]

Indexing Time
→ exceeds O(n^2)
(sort n^2 substrings)

a

c

14

1. Suffix Trie

→ Idea: consider all suffixes of text T
 i.e., suffix starting at position 1 (= T)
 suffix starting at position 2
 suffix starting at position 3
 Etc.

→ arrange suffixes in a “prefix tree” (trie),
 with longest common prefixes shared

15

1. Suffix Trie

→ Idea: consider all suffixes of text T
 i.e., suffix starting at position 1 (= T)
 suffix starting at position 2
 suffix starting at position 3
 Etc.

→ arrange suffixes in a “prefix tree” (trie),
 with longest common prefixes shared

→ trie datastructure: 1959 by de la Briandais

→ “trie” (Fredkin, 1961), pronounced / tri / (as "tree")ˈ ː

RETRIEVAL

→ to distinguish from “tree” many authors
 say / tra / (as "try")ˈ ɪ

16

1. Suffix Trie

17

1. Suffix Trie

→ black nodes represent suffixes

→ are labeled by the corresponding
 number of the suffix

18

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

19

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

→ starting at the root node follow
 letter-by-letter wrt P the
 unique edges in the trie!

20

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

→ starting at the root node follow
 letter-by-letter wrt P the
 unique edges in the trie!

P = aba

21

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

→ starting at the root node follow
 letter-by-letter wrt P the
 unique edges in the trie!

P = aba

22

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

→ starting at the root node follow
 letter-by-letter wrt P the
 unique edges in the trie!

P = aba

23

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

→ starting at the root node follow
 letter-by-letter wrt P the
 unique edges in the trie!

P = aba

24

1. Suffix Trie

→ how to search for all occurrences
 of a pattern P?

→ starting at the root node follow
 letter-by-letter wrt P the
 unique edges in the trie!

P = aba
3 matches of P = “aba”

25

1. Suffix Trie

3 matches of P = “aba”

→ O(m) count time

If we can count #black nodes of a
subtree in constant time.

→ O(m + #occ) retrieval time

If we can iterate leaves of a subtree
with constant delay

26

1. Suffix Trie

3 matches of P = “aba”

→ Indexing time?

27

1. Suffix Trie

3 matches of P = “aba”

→ Indexing time?

No sorting, but

→ still quadratic in m, i.e., O(m^2) :-(

→ e.g. T = anbnanbnd

28

2. Suffix Tree

New Idea

→ collapse paths of white nodes!

29

2. Suffix Tree

New Idea

→ collapse paths of white nodes!

30

2. Suffix Tree

4,8]

 12345678
T = abaababa

31

2. Suffix Tree

4,8]
7,8[7,8

 12345678
T = abaababa

32

2. Suffix Tree

4,8]
[7,8

 12345678
T = abaababa

33

2. Suffix Tree

4,8]
7,8]

[7,8

 12345678
T = abaababa

[4,8]

34

2. Suffix Tree

→ how many nodes (at most)
 In the suffix tree of T?4,8]

7,8]

[7,8

 12345678
T = abaababa

[4,8]

35

2. Suffix Tree

 123456789
T = abaababa$

→ add end marker “$”

→ one-to-one correspondence of
 leaves to suffixes

→ a tree with m+1 leaves has
 <= 2m+1 nodes!

Lemma
Size of suffix tree for “T$” is
linear in n=|T|, i.e., in O(n).

36

2. Suffix Tree

 123456789
T = abaababa$

→ search time still O(|P|), as for suffix trie!
→ perfect data structure for our task!

→ add end marker “$”

→ one-to-one correspondence of
 leaves to suffixes

→ a tree with m+1 leaves has
 <= 2m+1 nodes!

Lemma
Size of suffix tree for “T$” is
linear in n=|T|, i.e., in O(n).

37

3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

But, rather complex construction algorithms

→ Weiner 1973 [Knuth: “Algorithm of the year 1973”]

38

3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→ Weiner 1973 [Knuth: “Algorithm of the year 1973”]

→ McCreight 1976 Simplification of Weiner’s algorithm

39

3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→ Weiner 1973 [Knuth: “Algorithm of the year 1973”]

→ McCreight 1976 Simplification of Weiner’s algorithm

→ Ukkonen 1995 first online algorithm!
→ T may come from a stream
→ build suffix tree for TT’ from suffix tree for T
→ huge breakthrough!!

40

3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→ Weiner 1973

→ McCreight 1976

→ Ukkonen 1995

Linear time only for constant-size alphabets!
Otherwise, O(n log n)

41

3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→ Weiner 1973

→ McCreight 1976

→ Ukkonen 1995

→ Farach 1997

Linear time for any integer alphabet,
 drawn from a polynomial range

→ again a big breakthrough

Linear time only for constant-size alphabets!
Otherwise, O(n log n)

42

3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→ Weiner 1973

→ McCreight 1976

→ Ukkonen 1995

→ Farach 1997

43

Suffix Link

44

Suffix Link

45

Suffix Link

46

Suffix Link

57

58

4. Applications of Suffix Trees

59

60

g

61

Proceed downwards to longest match
(as in ordinary search)

62

6363

4. Applications of Suffix Trees

64

65

END
Lecture 15

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

