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String Search

→  search over DNA sequences
→  huge sequence over C, T, G A (ca. 3.2 billion)
→  no spaces, no tokens....
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String Search

→  search over DNA sequences
→  huge sequence over C, T, G A (ca. 3.2 billion)
→  no spaces, no tokens....

Given 
– a long string T (text) of length n  
– a short string P (pattern) of length m

Problem 1:    find all occurrences of P in T
Problem 2:    count #occurrence of P in T

Online Search    O(|T|) time with O(|P|) preprocessing
                            E.g., using  automaton  or  KMP

                           →  sublinear time using  Horspool  /  Boyer-Moore
                           →  average time limit: O(n (log m)/m)
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String Search

                           →  sublinear time using  Horspool  /  Boyer-Moore
                           →  average time limit: O(T (log m)/m)
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String Search

         →  for DNA, 40% of 3.2 billion is still huge (linear scan of >1TB)
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Indexed String Search

Given 
– a long string T (text)  
– a short string P (pattern)     m = |P|

Problem 1    find all occurrences of P in T
Problem 2    count #occurrence of P in T

Offline Search  =  Indexed Search
                          =  (linear time) preprocessing of T

Highlights     →   O(m) time              for Problem 1
                       →   O(m + #occ) time  for Problem 2
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Indexed String Search

Given 
– a long string T (text)  
– a short string P (pattern)     m = |P|

Problem 1    find all occurrences of P in T
Problem 2    count #occurrence of P in T

Offline Search  =  Indexed Search
                          =  (linear time) preprocessing of T

Highlights     →   O(m) time              for Problem 1
                       →   O(m + #occ) time  for Problem 2

                  Independent of size of text T!!!  
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Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1.  List all substrings of T, together with their occurrence lists
     (string1, [3,7,21]), (string2, [3,21]), … 

2.  Lexicographically sort the substrings

3.  Record the beginnings of each distinct “next letter”  (tree structure)

         (a, [3,4,6,7,10,... ])
         (ab, [7,10, ..])
         (ad, ..
         (b, …
         .
         .
         (c

a

c
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Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1.  List all substrings of T, together with their occurrence lists
     (string1, [3,7,21]), (string2, [3,21]), … 

2.  Lexicographically sort the substrings

3.  Record the beginnings of each distinct “next letter”  (tree structure)

         (a, [3,4,6,7,10,... ])
         (ab, [7,10, ..])
         (ad, ..
         (b, …
         .
         .
         (c

Search occurrences of P:

→  jump to substrings starting with letter P[1]
→  from there, jump to substrings with 
                                                next letter P[2]
Etc.  
after m jumps, reach (or not) matching substring
                                           with its occurrence list

a

c
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Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1.  List all substrings of T, together with their occurrence lists
     (string1, [3,7,21]), (string2, [3,21]), … 

2.  Lexicographically sort the substrings

3.  Record the beginnings of each distinct “next letter”  (tree structure)

         (a, [3,4,6,7,10,... ])
         (ab, [7,10, ..])
         (ad, ..
         (b, …
         .
         .
         (c

Search occurrences of P:

→  jump to substrings starting with letter P[1]
→  from there, jump to substrings with 
                                                next letter P[2]
Etc.  
after m jumps, reach (or not) matching substring
                                           with its occurrence list

Search Time
→  O(m)    [good!]

Indexing Time
→  ????

a

c



13

Indexed String Search
Count / Find all occurrences of P in T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1.  List all substrings of T, together with their occurrence lists
     (string1, [3,7,21]), (string2, [3,21]), … 

2.  Lexicographically sort the substrings

3.  Record the beginnings of each distinct “next letter”  (tree structure)

         (a, [3,4,6,7,10,... ])
         (ab, [7,10, ..])
         (ad, ..
         (b, …
         .
         .
         (c

Search occurrences of P:

→  jump to substrings starting with letter P[1]
→  from there, jump to substrings with 
                                                next letter P[2]
Etc.  
after m jumps, reach (or not) matching substring
                                           with its occurrence list

Search Time
→  O(m)    [good!]

Indexing Time
→ exceeds O(n^2)
(sort n^2  substrings)

a

c



14

1. Suffix Trie

→  Idea:  consider all suffixes of text T
                i.e., suffix starting at position 1  (= T)
                       suffix starting at position 2
                       suffix starting at position 3
                       Etc.

→   arrange suffixes in a “prefix tree” (trie), 
       with longest common prefixes shared
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1. Suffix Trie

→  Idea:  consider all suffixes of text T
                i.e., suffix starting at position 1  (= T)
                       suffix starting at position 2
                       suffix starting at position 3
                       Etc.

→   arrange suffixes in a “prefix tree” (trie), 
       with longest common prefixes shared

→   trie datastructure:   1959 by de la Briandais

→  “trie” (Fredkin, 1961), pronounced  / tri / (as "tree")ˈ ː

RETRIEVAL

→  to distinguish from “tree” many authors
      say  / tra / (as "try")ˈ ɪ
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1. Suffix Trie
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1. Suffix Trie

→  black nodes represent suffixes

→  are labeled by the corresponding
      number of the suffix
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1. Suffix Trie

→  how to search for all occurrences
      of a pattern P? 
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→   starting at the root node follow 
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       unique edges in the trie! 
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      of a pattern P?
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       unique edges in the trie! 

P = aba 



24

1. Suffix Trie

→  how to search for all occurrences
      of a pattern P?

→   starting at the root node follow 
       letter-by-letter wrt P the
       unique edges in the trie! 

P = aba 
3 matches of P = “aba”
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1. Suffix Trie

3 matches of P = “aba”

→  O(m)  count time

If we can count #black nodes of a 
subtree in constant time.

→  O(m + #occ)  retrieval time

If we can iterate leaves of a subtree
with constant delay
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1. Suffix Trie

3 matches of P = “aba”

→  Indexing time?
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1. Suffix Trie

3 matches of P = “aba”

→  Indexing time?

No sorting, but

→  still quadratic in m, i.e., O(m^2)  :-(

→  e.g.  T = anbnanbnd
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2. Suffix Tree

New Idea 

→  collapse paths of white nodes!
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2. Suffix Tree

New Idea 

→  collapse paths of white nodes!
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2. Suffix Tree

4,8]

    12345678
T = abaababa
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2. Suffix Tree

4,8]
7,8[7,8

    12345678
T = abaababa
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2. Suffix Tree

4,8]
[7,8

    12345678
T = abaababa
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2. Suffix Tree

4,8]
7,8]

[7,8

    12345678
T = abaababa

[4,8]
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2. Suffix Tree

→  how many nodes (at most)
      In the suffix tree of T?4,8]

7,8]

[7,8

    12345678
T = abaababa

[4,8]
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2. Suffix Tree

    123456789
T = abaababa$

→  add end marker “$” 

→  one-to-one correspondence of
      leaves to suffixes

→  a tree with m+1 leaves has
      <=  2m+1  nodes!

Lemma
Size of suffix tree for “T$” is
linear in n=|T|, i.e., in O(n).
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2. Suffix Tree

    123456789
T = abaababa$

→  search time still O(|P|), as for suffix trie!
→  perfect data structure for our task!

→  add end marker “$” 

→  one-to-one correspondence of
      leaves to suffixes

→  a tree with m+1 leaves has
      <=  2m+1  nodes!

Lemma
Size of suffix tree for “T$” is
linear in n=|T|, i.e., in O(n).
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3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

But, rather complex construction algorithms

→  Weiner 1973        [Knuth:  “Algorithm of the year 1973”]
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3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→  Weiner 1973        [Knuth:  “Algorithm of the year 1973”]

→  McCreight 1976   Simplification of Weiner’s algorithm
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3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→  Weiner 1973        [Knuth:  “Algorithm of the year 1973”]

→  McCreight 1976   Simplification of Weiner’s algorithm

→  Ukkonen 1995 first online algorithm!
→  T may come from a stream
→  build suffix tree for TT’ from suffix tree for T
→  huge breakthrough!!
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3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→  Weiner 1973        

→  McCreight 1976

→  Ukkonen 1995

Linear time only for constant-size alphabets!
Otherwise, O(n log n)
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3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→  Weiner 1973        

→  McCreight 1976

→  Ukkonen 1995

→  Farach 1997

Linear time for any integer alphabet, 
                      drawn from a polynomial range

→ again a big breakthrough

Linear time only for constant-size alphabets!
Otherwise, O(n log n)
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3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

→  Weiner 1973        

→  McCreight 1976

→  Ukkonen 1995

→  Farach 1997
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Suffix Link
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Suffix Link
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Suffix Link
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Suffix Link
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4. Applications of Suffix Trees



59



60

g
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Proceed downwards to longest match
(as in ordinary search)
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4. Applications of Suffix Trees
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END
Lecture 15
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