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String Search

— search over DNA sequences

— huge sequence over C, T, G A(ca. 3.2 billion)

— No spaces, no tokens....
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String Search

— search over DNA sequences
— huge sequence over C, T, G A (ca. 3.2 billion)
— No spaces, no tokens....

Given
—along string T (text)
— a short string P (pattern)

Problem 1;: find all occurrences of Pin T
Problem 2: count #occurrenceof Pin T




String Search

— search over DNA sequences
— huge sequence over C, T, G A (ca. 3.2 billion)
— No spaces, no tokens....

Given
—along string T (text) of length n
— a short string P (pattern) of length m

Problem 1;: find all occurrences of Pin T
Problem 2: count #occurrenceof Pin T

Online Search O(|T|) time with O(|P|) preprocessing
E.g., using automaton or KMP

— sublinear time using Horspool / Boyer-Moore
— average time limit: O(n (log m)/m)
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— sublinear time using Horspool / Boyer-Moore
— average time limit: O(T (log m)/m)
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— for DNA, 40% of 3.2 billion is still huge (linear scan of >1TB)



Indexed String Search

Given
— along string T (text)
— a short string P (pattern) m =|P|

Problem 1 find all occurrences of Pin T
Problem 2 count #occurrence of Pin T

Offline Search = Indexed Search
= (linear time) preprocessing of T

—  O(m) time for Problem 1

Highlights
— O(m + #occ) time for Problem 2



Indexed String Search

Given
— along string T (text)
— a short string P (pattern) m = |P]

Problem 1 find all occurrences of Pin T
Problem 2 count #occurrence of Pin T

Offline Search = Indexed Search
= (linear time) preprocessing of T

—  O(m) time for Problem 1
— O(m + #occ) time for Problem 2

\

Highlights

Independent of size of text T!!!




Indexed String Search

Count / Find all occurrences of Pin T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1. List all substrings of T, together with their occurrence lists
(string1, [3,7,21]), (string2, [3,21)), ...

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

(a,[3,4,6,7,10,... )

<{(ab, [7,10, ..])
(ad, ..
(b, ...

a

(c



Indexed String Search

Count / Find all occurrences of Pin T

Preprocessing (“indexing”) of T is permitted

Naive Solution

1. List all substrings of T, together with their occurrence lists
(string1, [3,7,21]), (string2, [3,21)), ...

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

a (a, [3,4,6,7,10,... ]) Search occurrences of P:
<{(ab, [7,10, ..])
(ad, .. — jump to substrings starting with letter P[1]
(b, ... — from there, jump to substrings with
C : next letter P[2]
: Etc.
(c after m jumps, reach (or not) matching substring
with its occurrence list




Indexed String Search

Count / Find all occurrences of Pin T Search Time

e . . — O(m) [good]]
Preprocessing (“indexing”) of T is permitted

Indexing Time
— 2777

Naive Solution

1. List all substrings of T, together with their occurrence lists
(string1, [3,7,21]), (string2, [3,21)), ...

2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

a (a, [3,4,6,7,10,... ]) Search occurrences of P:
<{(ab, [7,10, ..])
(ad, .. — jump to substrings starting with letter P[1]
(b, ... — from there, jump to substrings with
C : next letter P[2]
: Etc.
(c after m jumps, reach (or not) matching substring
with its occurrence list




Indexed String Search

Count / Find all occurrences of P in T ieacr)czrrwn')l'lm[egoc)d!]

Preprocessing (“indexing”) of T is permitted

Indexing Time

— exceeds O(n"2)4 T8
N :
Naive Solution (sort n*2 substnnW
1. List all substrings of T, together with their occurrence lists L(

(string1, [3,7,21]), (string2, [3,21)), ...
2. Lexicographically sort the substrings

3. Record the beginnings of each distinct “next letter” (tree structure)

a (a, [3,4,6,7,10,... ]) Search occurrences of P:
<{(ab, [7,10, ..])
(ad, .. — jump to substrings starting with letter P[1]
(b, ... — from there, jump to substrings with
C : next letter P[2]
: Etc.
(c after m jumps, reach (or not) matching substring
with its occurrence list




1. Suffix Trie

— |dea: consider all suffixes of text T
i.e., suffix starting at position 1 (= T)
suffix starting at position 2
suffix starting at position 3
Etc.

— arrange suffixes in a “prefix tree” (trie),
with longest common prefixes shared



1. Suffix Trie

— |dea: consider all suffixes of text T
i.e., suffix starting at position 1 (= T)
suffix starting at position 2
suffix starting at position 3
Etc.

— arrange suffixes in a “prefix tree” (trie),
with longest common prefixes shared

— trie datastructure: 19359 by de la Briandais

— “trie” (Fredkin, 1961), pronounced /'tri:/ (as "tree")

I

RETRIEVAL

— to distinguish from “tree” many authors
say /'trai/ (as "try")
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Suffixes

OO WN =

Trie of all suffixes of T=abaababa.
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1. Suffix Trie

12345678 Suffixes
T = abaababa 1 abaababa
2 baababa
3 aababa
b
8 /\ 4 ababa
a 7 5 baba
O b 6 aba
7 ba
a b 8 a
b Db 5 C}a
4 N W
0 * ? — black nodes represent suffixes
3 a
]
; — are labeled by the corresponding
L 2 number of the suffix
1

Trie of all suffixes of T=abaababa.



1. Suffix Trie

12345678 Suffixes
T = abaababa 1 abaababa
2 baababa
3 aababa
b
8 %/A\b 4 ababa
Fa | w 7 5 ba ba
8‘3 5 b 4 6 aba
6 7 ba
a/ \b A ai b 8 a
o @] O
bO I a | 5 La
4 a b
Q ¢ Oa — how to search for all occurrences
b@ 3 ° of a pattern P?
a. 2

Trie of all suffixes of T=abaababa.



1. Suffix Trie

12345678 Suffixes
T = abaababa 1 abaababa
2 baababa
3 aababa
b
8 %/A\b 4 ababa
Fa | % 7 5 ba ba
8‘3 5 b 4 6 aba
6 7 ba
a/ \b A ai b 8 a
o @] O
I:JO I a | 5 L2
4 a b
Q ¢ Oa — how to search for all occurrences
b@ 3 ° of a pattern P?
El. 2

— starting at the root node follow
1 letter-by-letter wrt P the
unique edges in the trie!

Trie of all suffixes of T=abaababa.



1. Suffix Trie
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— how to search for all occurrences
of a pattern P?

— starting at the root node follow
letter-by-letter wrt P the
unique edges in the trie!

P = aba

T



1. Suffix Trie

12345678 Suffixes
T = abaababa

abaababa
baababa
aababa
ababa
baba

aba

ba

a

OO Ok WwWwN =

— how to search for all occurrences
of a pattern P?

— starting at the root node follow
1 letter-by-letter wrt P the
unique edges in the trie!
Trie of all suffixes of T=abaababa.
P = aba

L]
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1. Suffix Trie

Suffixes

OO Ok WwWwN =

Trie of all suffixes of T=abaababa.
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— how to search for all occurrences
of a pattern P?

— starting at the root node follow
letter-by-letter wrt P the
unique edges in the trie!

P = aba

T



1. Suffix Trie
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Trie of all suffixes of T=abaababa.

Suffixes

OO Ok WwWwN =

abaababa
baababa
aababa
ababa
baba

aba

ba

a

— how to search for all occurrences
of a pattern P?

— starting at the root node follow
letter-by-letter wrt P the
unique edges in the trie!

P = aba

T



1. Suffix Trie

12345678 Suffixes
T = abaababa 1 abaababa
2 baababa
3 aababa
AN 4 ababa
;ﬁ o@ 7 5 baba
g b m 6 aba
@j 7 ba
a/<b A ai b 8 a
o O O
bO a Db 5 L2
a b
Q ¢ ? — how to search for all occurrences
b@ 3 o of a pattern P?
a 2 :
o — starting at the root node follow
@ letter-by-letter wrt P the

unique edges in the trie!

3 matches of P = “aba”
P = aba

T



1. Suffix Trie

12345678 Suffixes
T = abaababa 1 abaababa
2 baababa
3 aababa
AN 4 ababa
;/% D&x 7 5 baba
O b m 6 aba
@j 7 ba
3 /<b a ai b 8 a
o O O
b a Db 5 Ga ;
O — O(m) count time
| .a Gb
3 a If we can count #black nodes of a
O ¢ subtree in constant time.
a 2
@ — O(m + #occ) retrieval time
If we can iterate leaves of a subtree
3 matches of P = "aba” with constant delay
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— Indexing time?
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T = abaababa
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3 matches of P = “aba”

1. Suffix Trie

Suffixes
abaababa
baababa
aababa
ababa
baba
aba

ba

a

OO, WwWN=

— Indexing time?

No sorting, but
— still quadratic in m, i.e., O(m"2) :~(

— e.g. T=a"b"a"b"d
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2. Suffix Tree

Suffixes
abaababa
baababa
aababa
ababa
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OO O WN =

New Idea

— collapse paths of white nodes!
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2. Suffix Tree

12345678 Suffixes
T = abaababa 1 abaababa
2 baababa
3 aababa
8 %/!\E 4 ababa
a 5 baba
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2. Suffix Tree

12345678
T = abaababa

a b a al 4,8] b
S O O
b
bO T a 4 S Oa
& 4 .a ob
3 d




12345678
T = abaababa

a b C a
5 )
b
O T 0 .
a
& 4 ®
3

2. Suffix Tree




2. Suffix Tree
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2. Suffix Tree

12345678
T = abaababa

Suffix Tree of T



2. Suffix Tree

12345678
T = abaababa

— how many nodes (at most)
In the suffix tree of T?

Suffix Tree of T



2. Suffix Tree

123456789
T = abaababa$

— add end marker “$”

— one-to-one correspondence of
leaves to suffixes

— a tree with m+1 leaves has
<= 2m+1 nodes!

Lemma
Size of suffix tree for “T$” is
linear in n=|T|, i.e., in O(n).




2. Suffix Tree

123456789
T = abaababa$

— add end marker “$”

— one-to-one correspondence of
leaves to suffixes

— a tree with m+1 leaves has
<= 2m+1 nodes!

Lemma
Size of suffix tree for “T$” is
linear in n=|T|, i.e., in O(n).

— search time still O(|P]), as for suffix trie!
— perfect data structure for our task!



3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

But, rather complex construction algorithms

— Weiner 1973 [Knuth: “Algorithm of the year 19737]



3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

— Weiner 1973 [Knuth: “Algorithm of the year 19737]

— McCreight 1976 Simplification of Weiner’s algorithm



3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

— Weiner 1973 [Knuth: “Algorithm of the year 1973"]
— McCreight 1976 Simplification of Weiner’s algorithm

— Ukkonen 1995 «——— first online algorithm!
— T may come from a stream
— build suffix tree for TT  from suffix tree for T
— huge breakthrough!!



3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

— Weiner 1973

- Linear time only for constant-size alphabets!
M ht 197
— McCreight 1976 Otherwise, O(n log n)

— Ukkonen 1995



3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

— Weiner 1973

- Linear time only for constant-size alphabets!
M ht 197
— MeCreight 1976 Otherwise, O(n log n)

— Ukkonen 1995

— Farach 1997

Linear time for any integer alphabet,
drawn from a polynomial range

— again a big breakthrough



3. Suffix Tree Construction

Good news:
Suffix tree can be constructed in linear time!

Complex construction algorithms

— Weiner 1973

@Creight 1976

— Ukkonen 1995

— Farach 1997
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Suffix Link
Definition

If x=ay is the string corresponding
to a node u in the ST then

the suffix link suffu] is the node v
corresponding toy in ST.



12345678
T = abaababa

Suffix Link
Definition

If x=ay is the string corresponding
to a node u in the ST then

the suffix link suffu] is the node v
corresponding toy in ST.

Where is the
suffix link of node “277?



Suffix Link

12345678

T _ abaababa Definition

If x=ay is the string corresponding
3 a/\b to a node u in the ST then
the suffix link suff[u] is the node v

O corresponding toy in ST.

Where is the
suffix link of node “277?

suf[1]

® essential node
o non-essential node



Suffix Link

12345678

T - abaababa Definition

If x=ay is the string corresponding
3 a/\b to a node u in the ST then
the suffix link suf[u] is the node v

o corresponding to y in ST.
b
(

Using suffix links, we can on-line build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

suf[1]

® ecssential node
o non-essential node



60
Using suffix links, we can on-/ine build the

Suffix-TRIE of T in time O(|Suffix-TRIE(T))).

T = abaabb
Online construction

o

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k



61
Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb
Online construction

%

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes



62
Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb
Online construction

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes



63
Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb
Online construction a b

S oA a/b/ X

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes



64

Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T

= abaabb

Online construction a b

L
b/ \a What are the
a /&b . new suffix links?

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes



65
Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb
Online construction a
o

b
b
oA NS
o a

w M

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.

Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]
If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes



66
Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb

Online construction b b/Q ‘\
b
A / \‘\* /
O
= lowest leaf in tree
b = T[current]
From v, follow (k times) suffix links (to u) until child(u, b) is defined.

Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]
If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes



Using suffix links, we can on-/ine build the

Suffix-TRIE of T in time O(|Suffix-TRIE(T))). 4

= abaabb a/\b b/ \ 4 \a
Online construction ii b b/‘i\a ‘\ /\

T

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes



Using suffix links, we can on-/ine build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb
Online construction a b b/

v = lowest leaf in tree

b = T[current]

From v, follow (k times) suffix links (to u) until child(u, b) is defined.
Create b-sons for v, suf[v], sufq[v], ..., suf<1[v]

If there is no such u, create b-sons for all of them, up to k

New suffix links:

—_ New suffix links

o suf[v]
Vv

new nodes



Using suffix links, we can on-line build the
Suffix-TRIE of T in time O(|Suffix-TRIE(T)|).

T = abaabb

Online construction a b b/&

a

Ukkonen’s on-line
construction of suffix trees
works in a similar way.

It maintains collapsed edges

at all times.
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4. Applications of Suffix Trees

Generalized Suffix tree for a SET S of strings:
S={S,,5, S5 ...., 5}
T=8,#,S,#,S;#;.... S5, #

Where #,, #,, ..., #,_are fresh new symbols.

58



(b) Longest Common Substring of two Strings

S;=superiorcalifornialives
S, =seal iver

LCS(S,, S,) = alive

- Build generalized suffix tree of { S, S, }
- Mark internal nodes with “1” or “2”
if subtree contains (1,_) pair or (2, _) pair.

LCS(S1, S2) =
maximal string depth of any
node marked “1,2”

- Can be determined by a simple
tree traversal

(2,31) (1,8)



(b) Longest Common Substring of two Strings

Theorem
The longest common substring of two strings can be found
in linear time, using a generalized suffix tree.

[Karp,Miller,Rosenberg1972] solved the problem in
O((m+n)log(m+n)) time where m=|S,| and n=|S,|.

In 1970 Donald Knuth conjectured that it is impossible to
solve the problem in linear time!

—> Linear time solution by [Weiner,1973]

\ First linear time suffix tree

construction algorithm



(c) Matching Statistics

ms(k) = length L of longest substring T[k...k+L] that matches a substring in P.
p(k) = start position in P of a substring of length ms(k) matching T[k...k+ms(k)]

T = abcxabcdex . ... Computation of ms and p
P = yabcwzgabcdw
Build suffix tree of P (including suffix links).

ms(1) =3 At node v corresponding to ms(i),
p(1) =2 compute ms(i+1) as follows:

(1) If v is internal, follow its suffix link.
ms(5) = 4 (2) If v is leaf, walk to parent (label ~)
p(4)=8

Current node is prefix of T[i+1...n].

Proceed downwards to longest match
(as in ordinary search)

—Allows to find LCS(S_1,S_2) using only
*one™ suffix tree (of the shorter string).



(d) Compression |
Implemented in an open-source

compression tool.
LZ-variant with infinite window > Very high compression ratios!

abaabaaabababaabb

ab aabaaabababaabb

longest string that has appeared before
coded as: (position, length)

aba(1,4)(1,3)(9,4)(1,2)b

- Build suffix tree of text T
- Annotate internal nodes by smallest position number in their subtree

- To find pair (x,y) at a position p in T, match T[x...] against suffix tree
as long as minimal pos number is smaller than x.
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4. Applications of Suffix Trees

Suffix trees have many more applications
e.g. in computational biology see [Gusfield book].

- Substring problem for a database of patterns
- DNA contamination problem
- Find complemented palindroms in DNA (e.g. AGCTCGCGAGCT)
- Find all maximal repeats / maximal pairs |
ALGORITAMS 00 STRINGS

-2 ...
[
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7 First Applications of Suffix Trees

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20

APL1: Exact string matching

APL2: Suffix trees and the exact set matching problem

APL3: The substring problem for a database of patterns

APLA4: Longest common substring of two strings

APLS5: Recognizing DNA contamination

APL6: Common substrings of more than two strings

APL7: Building a smaller directed graph for exact matching
APLS: A reverse role for suffix trees, and major space reduction
APLY: Space-efficient longest common substring algorithm
APL10: All-pairs suffix-prefix matching

Introduction to repetitive structures in molecular strings
APL11: Finding all maximal repetitive structures in linear time
APL12: Circular string linearization

APL13: Suffix arrays — more space reduction

APL14: Suffix trees in genome-scale projects

APLI15: A Boyer-Moore approach to exact set matching
APL16: Ziv-Lempel data compression

APL17: Minimum length encoding of DNA

Additional applications

Exercises

122
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135
135
138
143
148
149
156
157
164
167
168
168
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