
Sebastian Maneth

Lecture 12
Lucene, JDBC

University of Edinburgh - February 25th, 2016

Applied Databases

2

Outline

1. New Marking Scheme for Assignement 1

2. Lucene

3. JDBC

3

Marking Assignment 1

Previous marking scheme was not adequate!

Our mistake.

4

New Marking Scheme
→ 15 points

Breakdown

1) Large part of the assignment was about
 parsing XML and writing CSV files of tables

 5 Points XML-to-CSV

 -1 Point if you write CSV’s but not the full data
 (e.g., items are missing, or sellers, bids etc.)

5

New Marking Scheme
→ 15 points

Breakdown

1) Large part of the assignment was about
 parsing XML and writing CSV files of tables

 5 Points XML-to-CSV

 -1 Point if you write CSV’s but not the full data
 (e.g., items are missing, or sellers, bids etc)

 2) 1 Point LOAD into mysql

6

New Marking Scheme
→ 15 points

Breakdown

1) 6 Points XML-to-CSV & LOAD

2) 3.5 Points Queries (0.5 per query)

 → even if your load is incomplete, we
 → check every query by hand, or test it against
 our sample solution over your incomplete data

7

New Marking Scheme
→ 15 points

Breakdown

1) 6 Points XML-to-CSV & LOAD

2) 3.5 Points Queries (0.5 per query)

 → even if your load is incomplete, we
 → check every query by hand, or test it against
 our sample solution over your incomplete data

3) 2 Points Schema (1 Point for keys, 1 Point for NFs)

8

New Marking Scheme
→ 15 points

Breakdown

1) 6 Points XML-to-CSV & LOAD

2) 3.5 Points Queries (0.5 per query)

 → even if your load is incomplete, we
 → check every query by hand, or test it against
 our sample solution over your incomplete data

3) 2 Points Schema (1 Point for keys, 1 Point for NFs)

4) 3.5 Points Misc. issues (0.7 per issue)
 (a) nulls
 (b) duplicates
 (c) truncation of description
 (d) drop (e.g. exists forgotten)
 (e) runLoad (e.g., DOS returns, CSVs not removed,
 try to remove files that don’t exist)

9

New Marking Scheme
→ 15 points

1) 6 Points XML-to-CSV & LOAD
2) 3.5 Points Queries (0.5 per query)
3) 2 Points Schema (1 Point for keys, 1 Point for NFs)
4) 3.5 Points Misc. issues (0.7 per issue)

Average now: 80%
Almost everyone > 50%

→ you should receive an email with new feedback & mark
 this afternoon

→ new marks will be reported to the ITO, should be in
 the system within the next few days

Back to TFIDF, and Lucene

Many variations of TFIDF scoring

→ IDF(T) = log(N / DF(T)) [as on previous slide]
 gives weight zero, to a term appearing in each document!
→ IDF alternatives: log(1+ N / DF(T)) or 1 + log(N / DF(T))

→ alternatives to TF: – divide by largest TF of that term (normalization)
 – take 1 + ln TF (“log-frequencey weighting”)
 – SQRT(TF)

Many variations of TFIDF scoring

→ IDF(T) = log(N / DF(T)) [as on previous slide]
 gives weight zero, to a term appearing in each document!
→ IDF alternatives: log(1+ N / DF(T)) or 1 + log(N / DF(T))

→ alternatives to TF: – divide by largest TF of that term (normalization)
 – take 1 + ln TF (“log-frequencey weighting”)
 – SQRT(TF)

Explanations for taking log of N / DF(T) (“damping”)

→ Probability that random document contains term T:
 P(T) = DF(T) / N

→ IDF(T) = – log(P(T))

Many variations of TFIDF scoring

→ IDF(T) = log(N / DF(T)) [as on previous slide]
 gives weight zero, to a term appearing in each document!
→ IDF alternatives: log(1+ N / DF(T)) or 1 + log(N / DF(T))

→ alternatives to TF: – divide by largest TF of that term (normalization)
 – take 1 + ln TF (“log-frequencey weighting”)

Explanations for taking log of N / DF(T) (“damping”)

→ Probability that random document contains term T:
 P(T) = DF(T) / N

→ IDF(T) = – log(P(T))

→ IDF(T1 ‘and’ T2) = – log(P(T1) * P(T2)) = IDF(T1) + IDF(T2)

statistically independent
good!

Recall from Information Theory:

Message probabilities p1, p2, p3, …, pN (sum equals 1)

Information of Message k: I(k) = – log pk → see Robertson’s paper
 linked on course web page

Recall from Information Theory:

Message probabilities p1, p2, p3, …, pN (sum equals 1)

Information of Message k: I(k) = – log pk

→ slight relationship to Zipf’s law

Mentioned in original article introducing IDF
[Spärck Jones, 1972]

→ see Robertson’s paper
 linked on course web page

gives a line on
log/log-scale

→ how does the base of the logs influence scoring / ranking?

→ take document length into account
 (favour shorter documents)

→ e.g. divide by square root of document length
 (done by Lucene, via the “LengthNorm”)

21

Lucene’s Scoring Function

22

Lucene’s Scoring Function

natural log (base e)

23

Lucene’s Scoring Function

natural log (base e)

very useful:
→ e.g., boost weight of title-field
 or of categories-field

24

2. Lucene

25

2. Lucene

→ choose appropriate Analyzer for
 – casefolding
 – stemming (wrt a given language)
 – stopping (wrt a given language)

→ insert documents (per “field”) into a collection and
 generate inverted files

→ retrieve top-K ranked documents

→ retrieve score of a document

26

2. Lucene

→ choose appropriate Analyzer for
 – casefolding
 – stemming (wrt a given language)
 – stopping (wrt a given language)
→ insert documents (per “field”) and
 generate inverted files
→ retrieve top-K docs with scores

Lucene is a huge library

→ we use Version 5.4.0

→ most books use older Versions,
 e.g. Versions 4 or 3

→ the Versions are not downward compatible :-(

27

Lucene Indexing

public static void insertDoc(IndexWriter i, String doc_id, String line){
 Document doc = new Document();
 doc.add(new TextField("doc_id", doc_id, Field.Store.YES));
 doc.add(new TextField("line", line,Field.Store.YES));
 try { i.addDocument(doc); } catch (Exception e) { e.printStackTrace(); }
}

public static void rebuildIndexes(String indexPath) {
 try {
 . . .
 IndexWriterConfig config=new IndexWriterConfig(new SimpleAnalyzer());

IndexWriter i = new IndexWriter(directory, config);
i.deleteAll();
insertDoc(i, "1", "The old night keeper keeps the keep in the town");
insertDoc(i, "2", "In the big old house in the big old gown.");

 . . .

doc_id field line field

store original text

public static void insertDoc(IndexWriter i, String doc_id, String line){
 Document doc = new Document();
 doc.add(new TextField("doc_id", doc_id, Field.Store.YES));
 doc.add(new TextField("line", line,Field.Store.YES));
 try { i.addDocument(doc); } catch (Exception e) { e.printStackTrace(); }
}

public static void rebuildIndexes(String indexPath) {
 try {
 Path path = Paths.get(indexPath);

System.out.println("Indexing to directory " + indexPath);
Directory directory = FSDirectory.open(path);
IndexWriterConfig config = new IndexWriterConfig(new SimpleAnalyzer());
IndexWriter i = new IndexWriter(directory, config);
i.deleteAll();
insertDoc(i, "1", "The old night keeper keeps the keep in the town");
insertDoc(i, "2", "In the big old house in the big old gown.");
insertDoc(i, "3", "The house in the town had the big old keep");
insertDoc(i, "4", "Where the old night keeper never did sleep.");
insertDoc(i, "5", "The night keeper keeps the keep in the night");
insertDoc(i, "6", "And keeps in the dark and sleeps in the light.");

 i.close();
directory.close();
}

 catch (Exception e) { e.printStackTrace(); }
}

path name (from command line)
Full code for indexing documents to
an index on disk (directory indexPath)

29

2. Lucene

public static void rebuildIndexes(String indexPath) {
 try {
 . . .
 IndexWriterConfig config = new IndexWriterConfig(new SimpleAnalyzer());

IndexWriter i = new IndexWriter(directory, config);

SimpleAnalyzer
→ Analyzer that filters LetterTokenizer with LowerCaseFilter

LetterTokenizer
→ divides text at non-letters.
→ tokens are maximal strings of adjacent letters,
 as defined by java.lang.Character.isLetter() predicate.

Note: this does a decent job for most European languages, but does a
terrible job for some Asian languages, where words are not separated by spaces.

LowerCaseFilter
→ Normalizes token text to lower case.

Private static TopDocs search(String searchText);
 . . .
 IndexReader indexReader = DirectoryReader.open(directory);
 IndexSearcher indexSearcher = new IndexSearcher(indexReader);
 QueryParser queryParser = new QueryParser(searchField, new SimpleAnalyzer());

 Query query = queryParser.parse(searchText);
 TopDocs topDocs = indexSearcher.search(query,10000);
 System.out.println("Number of Hits: " + topDocs.totalHits);
 for (ScoreDoc scoreDoc:topDocs.scoreDocs) {

Document doc = indexSearcher.doc(scoreDoc.doc);
System.out.println("doc_id: " + doc.get("doc_id")

 + ", score: " + scoreDoc.score
 + " [" + doc.get("line") +"]");

}

Top-K (K= 10000)
Output
→ doc_id
→ score
→ content (line)

30

Keyword Search

$ java Searcher “old”

Running search(old, line)
Number of Hits: 4
doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

$ java Searcher “old”

Running search(old, line)
Number of Hits: 4
doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

How is this computed?

$ java Searcher “old”

Running search(old, line)
Number of Hits: 4
doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

How is this computed?

→ in the for-loop, add:

Explanation ex = indexSearcher.explain(query, rank);
System.out.println("Explanation: " + ex.toString());

Integer, gives
the k-th ranked doc
→ for equal rank:
 uses indexing order!

$ java Searcher “old”

Running search(old, line)
Number of Hits: 4
doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

Explanation: 0.5225172 = weight(line:old in 1) [DefaultSimilarity], result of:
 0.5225172 = fieldWeight in 1, product of:
 1.4142135 = tf(freq=2.0), with freq of:
 2.0 = termFreq=2.0
 1.1823215 = idf(docFreq=4, maxDocs=6)
 0.3125 = fieldNorm(doc=1)

$ java Searcher “old”

Running search(old, line)
Number of Hits: 4
doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

Explanation: 0.5225172 = weight(line:old in 1) [DefaultSimilarity], result of:
 0.5225172 = fieldWeight in 1, product of:
 1.4142135 = tf(freq=2.0), with freq of:
 2.0 = termFreq=2.0
 1.1823215 = idf(docFreq=4, maxDocs=6)
 0.3125 = fieldNorm(doc=1)

https://lucene.apache.org/core/5_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

$ java Searcher “old”

Running search(old, line)
Number of Hits: 4
doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

Explanation: 0.5225172 = weight(line:old in 1) [DefaultSimilarity], result of:
 0.5225172 = fieldWeight in 1, product of:
 1.4142135 = tf(freq=2.0), with freq of:
 2.0 = termFreq=2.0
 1.1823215 = idf(docFreq=4, maxDocs=6)
 0.3125 = fieldNorm(doc=1)

https://lucene.apache.org/core/5_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

1 + ln(6/5) = 1 + ln(1.2) = 1.1823215567 (natural logarithm!)

$ java Searcher “old”

Running search(old, line)
Number of Hits: 4
doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

Explanation: 0.5225172 = weight(line:old in 1) [DefaultSimilarity], result of:
 0.5225172 = fieldWeight in 1, product of:
 1.4142135 = tf(freq=2.0), with freq of:
 2.0 = termFreq=2.0
 1.1823215 = idf(docFreq=4, maxDocs=6)
 0.3125 = fieldNorm(doc=1)

https://lucene.apache.org/core/5_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

1 / SQRT(10) = 0.316227

fieldNorm = 1/SQRT(#terms in doc)

(because we have’t specified
 any ”field boost” at indexing time)

$ java Searcher “old”

Running search(old, line)
Number of Hits: 4
doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

Explanation: 0.5225172 = weight(line:old in 1) [DefaultSimilarity], result of:
 0.5225172 = fieldWeight in 1, product of:
 1.4142135 = tf(freq=2.0), with freq of:
 2.0 = termFreq=2.0
 1.1823215 = idf(docFreq=4, maxDocs=6)
 0.3125 = fieldNorm(doc=1)

1 / SQRT(10) = 0.316227

fieldNorm = 1/SQRT(#terms in doc)

(because we have’t specified
 any ”field boost” at indexing time)

→ why such crude rounding?
→ uses only 1 BYTE
 – three-bit mantissa
 – five-bit exponent
 – zero-exponent point at 15

e.g. decode(encode(0.89)) = 0.75

(1/2) (1/4) (1/8) (1/16)

1 0 1 = 0.3125

$ java Searcher “big old house”

Running search(big old house, line)
Number of Hits: 4
doc_id: 2, score: 1.0412337 [In the big old house in the big old gown.]
doc_id: 3, score: 0.83452004 [The house in the town had the big old keep]
doc_id: 1, score: 0.054527204 [The old night keeper keeps the keep in the town]
doc_id: 4, score: 0.054527204 [Where the old night keeper never did sleep.]

$ java Searcher “the”

Running search(the, line)
Number of Hits: 6
doc_id: 1, score: 0.4578294 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.4578294 [The house in the town had the big old keep]
doc_id: 5, score: 0.4578294 [The night keeper keeps the keep in the night]
doc_id: 2, score: 0.37381613 [In the big old house in the big old gown.]
doc_id: 6, score: 0.37381613 [And keeps in the dark and sleeps in the light.]
doc_id: 4, score: 0.2643279 [Where the old night keeper never did sleep.]

$ java Searcher “the”

Running search(the, line)
Number of Hits: 6
doc_id: 1, score: 0.4578294 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.4578294 [The house in the town had the big old keep]
doc_id: 5, score: 0.4578294 [The night keeper keeps the keep in the night]
doc_id: 2, score: 0.37381613 [In the big old house in the big old gown.]
doc_id: 6, score: 0.37381613 [And keeps in the dark and sleeps in the light.]
doc_id: 4, score: 0.2643279 [Where the old night keeper never did sleep.]

length 10 vs 9

$ java Searcher “the”

Running search(the, line)
Number of Hits: 8
doc_id: 8, score: 0.55138564 [The house.]
doc_id: 7, score: 0.5458439 [The house is the house.]
doc_id: 1, score: 0.47751394 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.47751394 [The house in the town had the big old keep]
doc_id: 5, score: 0.47751394 [The night keeper keeps the keep in the night]
doc_id: 2, score: 0.38988853 [In the big old house in the big old gown.]
doc_id: 6, score: 0.38988853 [And keeps in the dark and sleeps in the light.]
doc_id: 4, score: 0.27569282 [Where the old night keeper never did sleep.]

7 The house is the house.
8 The house.

Shorter – encode(0.447)

Even shorter – encode(0.707)

$ java Searcher “the”
doc_id: 9, score: 0.9393754 [the-the_the__the.]
doc_id: 12, score: 0.9393754 [The.]
doc_id: 13, score: 0.83029836 [The the.]
doc_id: 10, score: 0.81352293 [the-the___the.]
doc_id: 11, score: 0.6642387 [the-thethe__the.]
doc_id: 8, score: 0.5871096 [The house.]
doc_id: 16, score: 0.5871096 [The a.]
doc_id: 7, score: 0.5812088 [The house is the house.]
doc_id: 1, score: 0.5084518 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.5084518 [The house in the town had the big old keep]
doc_id: 5, score: 0.5084518 [The night keeper keeps the keep in the night]
doc_id: 14, score: 0.4696877 [The a b c.]
doc_id: 15, score: 0.4696877 [The a b.]
doc_id: 2, score: 0.41514918 [In the big old house in the big old gown.]
doc_id: 6, score: 0.41514918 [And keeps in the dark and sleeps in the light.]
doc_id: 4, score: 0.2935548 [Where the old night keeper never did sleep.]

7 The house is the house.
8 The house.
9 the-the_the__the.
10 the-the___the.
11 the-thethe__the.

12 The.
13 The.
14 The a b c.
15 The a b.
16 The a.

same encoded lengthNorm

term frequency = 2

term frequency = 4

term frequency = 3

SimpleAnalyzer
→ filters LetterTokenizer with LowerCaseFilter

StandardAnalyzer
→ filters StandardTokenizer with StandardFilter, LowerCaseFilter
 and StopFilter, using a list of English stop words.

StandardTokenizer
→ grammar-based tokenizer (done in JFlex), implements the Word Break rules
 from the Unicode Text Segmentation algorithm, as specified in
 Unicode Standard Annex #29.

Standard Filter
→ normalizes tokens extracted with StandardTokenizer.

StopFilter
→ removes stop words from a token stream.

$ java Searcher “the”

Running search(the, line)
Number of Hits: 0

45

StandardAnalyzer – Stop Words

$ java Searcher “the”

Running search(the, line)
Number of Hits: 0

$ java Searcher “and”

Running search(and, line)
Number of Hits: 0

46

StandardAnalyzer – Stop Words

$ java Searcher “the”

Running search(the, line)
Number of Hits: 0

$ java Searcher “and”

Running search(and, line)
Number of Hits: 0

$ java Searcher “in”

Running search(in, line)
Number of Hits: 0

47

StandardAnalyzer – Stop Words

$ java Searcher “keeper”

Running search(keeper, line)
Number of Hits: 3
doc_id: 5, score: 0.614891 [The night keeper keeps the keep in the night]
doc_id: 1, score: 0.5270494 [The old night keeper keeps the keep in the town]
doc_id: 4, score: 0.5270494 [Where the old night keeper never did sleep.]

48

StandardAnalyzer – Search

$ java Searcher “keeping”

Running search(keeping, line)
Number of Hits: 0

49

StandardAnalyzer – Stemming?

→ stemming?

$ java Searcher “keeping”

Running search(keeping, line)
Number of Hits: 3
doc_id: 5, score: 0.614891 [The night keeper keeps the keep in the night]
doc_id: 1, score: 0.5270494 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.5270494 [The house in the town had the big old keep]

50

EnglishAnalyzer

Stemming

→ EnglishAnalyzer (in the Query part)

51

JDBC
→ run SQL queries from Java

→ there will be a file DbManager.java that opens a
 connection to MySQL (at port 3306) and database “ad”

public class DbManager {
 static private String databaseURL = "jdbc:mysql://localhost:3306/";
 static private String dbname = "ad";
 static private String username = "ad";
 static private String password = "ad";
 public static Connection getConnection(boolean readOnly)

throws SQLException {
Connection conn = DriverManager.getConnection(

 databaseURL + dbname, username, password);
conn.setReadOnly(readOnly);

return conn;
}

52

JDBC
→ run SQL queries from Java

→ there will be a file DbManager.java that opens a
 connection to MySQL (at port 3306) to the database “ad”

public static void runQuery(String indexPath) {
 Connection conn = null;
 Statement stmt = null;
 try {

conn = DbManager.getConnection(true);
stmt = conn.createStatement();
String sql = "SELECT count(*) as count from item;";
ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){
 String c = rs.getString("count");
 System.out.println("count: " + c);
 rs.close();
 conn.close();
}

 } catch (SQLException ex) {
System.out.println(ex);

 }
}

$ java -cp … runQuery
count: 19532

53

END
Lecture 12

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

