Applied Databases

Lecture 12
Lucene, JDBC

Sebastian Maneth

University of Edinburgh - February 25", 2016

Outline

1. New Marking Scheme for Assignement 1
2. Lucene

3. JDBC

Marking Assignment 1

Previous marking scheme was not adequate!

Our mistake.

New Marking Scheme

— 15 points
Breakdown

1) Large part of the assignment was about
parsing XML and writing CSV files of tables

5 Points XML-to-CSV

-1 Point if you write CSV’s but not the full data
(e.g., items are missing, or sellers, bids etc.)

New Marking Scheme

— 15 points
Breakdown

1) Large part of the assignment was about
parsing XML and writing CSV files of tables

5 Points XML-to-CSV

-1 Point if you write CSV’s but not the full data
(e.g., items are missing, or sellers, bids etc)

2) 1 Point LOAD into mysql

New Marking Scheme
— 15 points
Breakdown
1) 6 Points XML-to-CSV & LOAD
2) 3.5Points Queries (0.5 per query)
— even if your load is incomplete, we

— check every query by hand, or test it against
our sample solution over your incomplete data

New Marking Scheme
— 15 points
Breakdown
1) 6 Points XML-to-CSV & LOAD
2) 3.5Points Queries (0.5 per query)
— even if your load is incomplete, we
— check every query by hand, or test it against

our sample solution over your incomplete data

3) 2 Points Schema (1 Point for keys, 1 Point for NFs)

New Marking Scheme
— 15 points

Breakdown
1) 6 Points XML-to-CSV & LOAD
2) 3.5Points Queries (0.5 per query)

— even if your load is incomplete, we
— check every query by hand, or test it against
our sample solution over your incomplete data

3) 2 Points Schema (1 Point for keys, 1 Point for NFs)

4) 3.5 Points Misc. issues (0.7 per issue)

a) nulls

) duplicates

) truncation of description

) drop (e.g. exists forgotten)

) runLoad (e.g., DOS returns, CSVs not removed,
try to remove files that don’t exist)

(
(b
©
(d
(

e

New Marking Scheme

— 15 points

1) 6 Points XML-to-CSV & LOAD

2) 3.5Points Queries (0.5 per query)

3) 2 Points Schema (1 Point for keys, 1 Point for NFs)
4) 3.5 Points Misc. issues (0.7 per issue)

Average now: 80%
Almost everyone > 50%

— you should receive an email with new feedback & mark
this afternoon

— new marks will be reported to the ITO, should be in
the system within the next few days

Back to TFIDF, and Lucene

tf-idf weighting

w =tf , xlogN/df,

l,

= Best known weighting scheme in information
retrieval

s Increases with the number of occurrences within
a document

= Increases with the rarity of the term in the
collection

= Works surprisingly well!
= Works in many other application domains

Binary — count — weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.91 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights € RV

We then calculate the similarity using cosine
similarity with these vectors

Many variations of TFIDF scoring

— IDF(T) = log(N/DF(T)) [as on previous slide]
gives weight zero, to a term appearing in each document!
— |DF alternatives: log(1+ N/DF(T)) or 1+log(N/DF(T))

— alternatives to TF: — divide by largest TF of that term (normalization)
— take 1 +In TF (“log-frequencey weighting”)

— SQRT(TF)

Many variations of TFIDF scoring

— IDF(T) = log(N/DF(T)) [as on previous slide]
gives weight zero, to a term appearing in each document!
— |IDF alternatives: log(1+ N/DF(T)) or 1+log(N/DF(T))

— alternatives to TF: — divide by largest TF of that term (normalization)
— take 1 +In TF (“log-frequencey weighting”)

— SQRT(TF)

Explanations for takinglog of N/DF(T) (“damping”)

— Probability that random document contains term T:
P(T) = DF(T)/N

— IDF(T) = —log(P(T))

Many variations of TFIDF scoring

— IDF(T) = log(N/DF(T)) [as on previous slide]
gives weight zero, to a term appearing in each document!
— |IDF alternatives: log(1+ N/DF(T)) or 1+log(N/DF(T))

— alternatives to TF: — divide by largest TF of that term (normalization)
— take 1 +In TF (“log-frequencey weighting”)

Explanations for taking log of N/DF(T) (“"damping”)

— Probability that random document contains term T:
P(T) = DF(T)/N

— IDF(T) = —log(P(T))

— IDF(T1‘and’ T2)= —log(P(T1) * P(T2)) = IDF(T1) + IDF(T2)

N/ |
statistically independent ﬁ good!

Recall from Information Theory:

Message probabilities p1, p2, p3, ..., pN (sum equals 1)

Information of Message k: I(k) =—log pk — see Robertson’s paper
linked on course web page

Recall from Information Theory:

Message probabilities p1, p2, p3, ..., pN (sum equals 1)

Information of Message k: I(k) =—log pk — see Robertson’s paper
linked on course web page

Degree Distribution of CA-Graph

— slight relationship to Zipf's law .

50000 100000 150000 200000 250000

Mentioned in original article introducing IDF
[Sparck Jones, 1972] e

0

Degree Distribution of CA-Graph

gives a line on
log/log-scale

LOG(frequency)

Log-frequency weighting

= Want to reduce the effect of multiple occurrences
of a term

s A document about “Clinton” will have “Clinton”
occuring many times

= Rather than use the frequency, us the log of the
frequency

1 + logtf , iftf, > O
W 50 | .
’ 0, otherwise

» 0-0,1-1,2—-513,10 - 2, 1000 — 4, etc.

tf-idf weighting has many variants

Term frequency Document frequency Normalization
n (natural) tfe o n (no) 1 n (none))
y . \ / -~ \ 'z r\ IﬂlJ f . \
| (logarithm) 1 + log(tf:.q) t (idf) log T c (cosine)
ar; 1
ll“ l: } W

a (augmented) 0.5+ %—) p (prob idf) max]0, IogN(—l_f‘:‘“ L | u (piv_oted) 1/u
d) unique

b (boolean) L if theg 0 b (byte size) 1/CharLength™,
0 otherwise o1

1+log(avecq(tfs o))

L (log ave)

— how does the base of the logs influence scoring / ranking?

— take document length into account
(favour shorter documents)

— e.g. divide by square root of document length
(done by Lucene, via the “LengthNorm?”)

21

Lucene’s Scoring Function

score(q,d) = Z[tf(td) X 1df(t) x boost (t.fieldy) x lengthNorm(t.field;)] x coord(q,d) x gqNorm(q)

where g is the query, d a document, ¢ a term, and:

1. tf is a function of the term frequency within the document (default: \/freq);

numDocs) 1

2. idf: Inverse document frequency of ¢ within the whole collection (default: log(757z T

1);

3. boost is the boosting factor, if required in the query with the
field (if not specified, set to the default field);

4. lengthNorm: field normalization according to the number of terms. Defaul- m

overlap
maxQOverlap

1

operator on a given

5. coord: overlapping rate of terms of the query in the given document. Default:

6. gNorm: query normalization according to its length; it corresponds to the sum of square
values of terms’ weight, the global value is multiplied by each term’s weight.

22

Lucene’s Scoring Function

score(q,d) = Z[tf(td) X 1df(t) x boost (t.fieldy) x lengthNorm(t.field;)] x coord(q,d) x gqNorm(q)

where g is the query, d a document, ¢ a term, and:

1. tf is a function of the term frequency within the document (default: \/freq);

numDocs) 1

2. ﬂ : Inverse document frequency of ¢t within the whole collection (default:l_og(docFreq+1

1); natural log (base e)

1

3. boost is the boosting factor, if required in the query with the
field (if not specified, set to the default field);

4. lengthNorm: field normalization according to the number of terms. Defaul- m

overlap
maxQOverlap

operator on a given

5. coord: overlapping rate of terms of the query in the given document. Default:

6. gNorm: query normalization according to its length; it corresponds to the sum of square
values of terms’ weight, the global value is multiplied by each term’s weight.

23

Lucene’s Scoring Function

score(q,d) = Z[tf(td) X 1df(t) x boost (t.fieldy) x lengthNorm(t.field;)] x coord(q,d) x gqNorm(q)

where g is the query, d a document, ¢ a term, and:

1. tf is a function of the term frequency within the document (default: \/freq);

numDocs) 1

2. ﬂ : Inverse document frequency of ¢t within the whole collection (default:l_og(docFreq+1

1); natural log (base e)

1

3. boost is the boosting factor, if required in the query with the

fielbﬁ;ot specified, set to the default field);

o N \ 1
4. lengthNorm: field normalization according to the number of terms. Defaul- e

operator on a given

very useful:
— e.g., boost weight of title-field
or of categories-field

2. Lucene

24

2. Lucene

— choose appropriate Analyzer for
— casefolding
— stemming (wrt a given language)
— stopping (wrt a given language)

— insert documents (per “field”) into a collection and
generate inverted files

25

— retrieve top-K ranked documents

— retrieve score of a document

2. Lucene

— choose appropriate Analyzer for
— casefolding
— stemming (wrt a given language)
— stopping (wrt a given language)
— insert documents (per “field”) and
generate inverted files
— retrieve top-K docs with scores

Lucene is a huge library
— we use Version 5.4.0

— most books use older Versions,
e.g. Versions 4 or 3

— the Versions are not downward compatible :-(

26

A quide to the Java search engine

Otis Gospodnetic
Erik Hatcher

rorewarn b Doug Cutting

| | T

27
Lucene Indexing

store original text

public static void insertDoc(IndexWriter 1, String’déz_id, String line){
Document doc = new Document();

doc.add(new TextField("doc_id", doc_idﬁ:Eiéig.Store.YES) y
doc.add(new TextField("Tine", line,Field.Store.YES));

try { i.addDocument(doc); } catch (Exception e) { e.printStackTrace(); }
3

public static void rebuildIndexes(String indexPath) {
try {

IndexWriterConfig config=new IndexWriterConfig(new SimpleAnalyzer());

IndexWriter i = new IndexWriter(directory, config);
i.deleteAl1();

insertDoc(i, "1", "The old night keeper keeps the keep in the town");
insertDoc(i, "2", "In the big old house in the big old gown.");

doc_1id field Tine field

Full code for indexing documents to _
an index on disk (directory indexPath) path name (from command line)

public static void insertDoc(IndexWriter i, String doc_id, String line){
Document doc = new Document();
doc.add(new TextField("doc_id", doc_id, Field.Store.YES));
doc.add(new TextField("1ine", T1ine,Field.Store.YES));
try { i.addDocument(doc); } catch (Exception/e) { e.printStackTrace(); }

public static void rebuildIndexes(String indexPath) {

try {
Path path = Paths.get(indexPath);
System.out.println("Indexing to directory " + indexPath);
Directory directory = FSDirectory.open(path);
IndexWriterConfig config = new IndexWriterConfig(new SimpleAnalyzer());
IndexWriter i = new IndexWriter(directory, config);
i.deleteAll1();
insertDoc(i, "1", "The old night keeper keeps the keep in the town");
insertDoc(i, "2", "In the big old house in the big old gown.");
insertDoc(i, "3", "The house in the town had the big old keep");
insertDoc(i, "4", "Where the old night keeper never did sleep.");
insertDoc(i, "5", "The night keeper keeps the keep in the night");
insertDoc(i, "6", "And keeps in the dark and sleeps in the light.");
i.close();
directory.close();
}

catch (Exception e) { e.printStackTrace(); }

}

2. Lucene

public static void rebuildIndexes(String indexPath) {
try {

IndexWriterConfig config = new IndexWriterConfig(new SimpleAnalyzer())
IndexWriter i = new IndexWriter(directory, config);

SimpleAnalyzer
— Analyzer that filters LetterTokenizer with LowerCasekFilter

LetterTokenizer
— divides text at non-letters.
— tokens are maximal strings of adjacent letters,
as defined by java.lang.Character.isLetter() predicate.

Note: this does a decent job for most European languages, but does a
terrible job for some Asian languages, where words are not separated by spaces.

LowerCaseFilter
— Normalizes token text to lower case.

29

30

Keyword Search

Private static TopDocs search(String searchText);

IndexReader indexReader = DirectoryReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
QueryParser queryParser = new QueryParser(searchField, new SimpleAnalyzer());

Query query = queryParser.parse(searchText);
TopDocs topDocs = indexSearcher.search(query,10000) ;
System.out.printin("Number of Hits: " + topDocs.tokalHits);
for (ScoreDoc scoreDoc:topDocs.scoreDocs) {
Document doc = indexSearcher.doc(scoreDoc.doc);
System.out.println("doc_id: " + doc.get("doc_id")

+ ", score: + scoreDoc.score
+ " [+ doc.get("1ine™) +"1");

Top-K (K= 10000)
Output
— doc _id
— SCore
— content (line)

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

O Ul W N =

Fig. 1. TheKeeper database. It consists of six one-line documents.

$ java Searcher “old”

Running search(old, Tine)

Number of Hits: 4

doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

O Ul W N =

Fig. 1. TheKeeper database. It consists of six one-line documents.

$ java Searcher “old”

Running search(old, Tine)
Number of Hits: 4
doc_id: 2, score: [In the big old house in the big old gown.]
doc_id: 1, score: O. 48 [The old n1ght keeper keeps the keep in the town]
doc_id: 3, score: 0,/36947548 [The house in the town had the big old keep]
doc_id: 4, score: (0.36947548 [Where the old night keeper never did sleep.]

How is this computed?

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

O Ul W N =

Fig. 1. TheKeeper database. It consists of six one-line documents.

$ java Searcher “old”

Running search(old, Tine)
Number of Hits: 4
doc_id: 2, score: [In the big old house in the big old gown.]
doc_id: 1, score: O. 48 [The old n1ght keeper keeps the keep in the town]
doc_id: 3, score: 0,/36947548 [The house in the town had the big old keep]
doc_id: 4, score: (0.36947548 [Where the old night keeper never did sleep.]

L Integer, gives
How is this computed? the k-th ranked doc
— in the for-loop, add: / — for egual rank:
uses indexing order!

Explanation ex = indexSearcher.explain(query, rank);
System.out.println("Explanation: " + ex.toString());

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

O Ul W N =

Fig. 1. TheKeeper database. It consists of six one-line documents.

$ java Searcher “old”

Running search(old, Tine)

Number of Hits: 4

doc_id: 2, score: [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

Explanation: 0.5225172 = weight(line:old in 1) [DefaultSimilarity], result of:
0.5225172 = fieldwWeight in 1, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreg=2.0
1.1823215 = idf(docFreq=4, maxDocs=6)
0.3125 = fieldNorm(doc=1)

https://lucene.apache.org/core/5 0 _0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

tf(t in d) = frequency”

$ java Searcher “old”

Running search(old, Tine)

Number of Hits: 4

doc_id: 2, score: [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

Explanation: 0.5225172 = weight(line:old in 1) [DefaultSimilarity], result of:
0.5225172 = fieldwWeight in 1, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreg=2.0
1.1823215 = idf(docFreq=4, maxDocs=6)
0.3125 = fieldNorm(doc=1)

https://lucene.apache.org/core/5 0 _0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

tf(t in d) = frequency”
numDocs
idf(t) = 1 +log ()
docFreq+1

$ java Searcher “old”

Running search(old, Tine)

Number of Hits: 4

doc_id: 2, score: [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

Explanation: 0.5225172 = weight(line:old in 1) [DefaultSimilarity], result of:
0.5225172 = fieldwWeight in 1, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreqg=2.0
1.1823215 = idf(docFreq=4, maxDocs=6)
0.3125 = fieldNorm(doc=1)

1+1In(6/5)=1+1In(1.2) = 1.1823215567 (natural logarithm!)

https://lucene.apache.org/core/5 0 _0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

tf(t in d) = frequency”
numDocs
idf(t) = 1 +log (
docFreq+1

$ java Searcher “old”

Running search(old, Tine)

fieldNorm = 1/SQRT(#terms in doc)

(because we have't specified
any "field boost” at indexing time)

Number of Hits: 4

doc_id: 2, score: [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

Explanation: 0.5225172 = weight(line:old in 1) [DefaultSimilarity], result of:

0.5225172 = fieldwWeight in 1, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreg=2.0
1.1823215 = idf(docFreq=4, maxDocs=6)
0.3125 = fieldNorm(doc=1)

1/SQRT(10) = 0.316227

— why such crude rounding?

— uses only 1 BYTE fieldNorm = 1/SQRT(#terms in doc)
— three-bit mantissa
— five-bit exponent (because we have'’t specified
— zero-exponent point at 15 any “field boost” at indexing time)

e.g. decode(encode(0.89)) = 0.75

$ java Searcher “old”

Running search(old, Tine)

Number of Hits: 4

doc_id: 2, score: 0.5225172 [In the big old house in the big old gown.]
doc_id: 1, score: 0.36947548 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.36947548 [The house in the town had the big old keep]
doc_id: 4, score: 0.36947548 [Where the old night keeper never did sleep.]

Explanation: 0.5225172 = weight(line:old in 1) [DefaultSimilarity], result of:
0.5225172 = fieldwWeight in 1, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreqg=2.0

13823215 = idf(docFreg=4, maxDocs=6)
5 = fieldNorm(doc=1)
(1/2) (1/4) (1/8) (1/16)

1/SQRT(1O)=227 1.0 1 =03125

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

O Ul W N =

Fig. 1. TheKeeper database. It consists of six one-line documents.

$ java Searcher “big old house”

Running search(big old house, 1ine)

Number of Hits: 4

doc_id: 2, score: 1.0412337 [In the big old house in the big old gown.]

doc_id: 3, score: 0.83452004 [The house in the town had the big old keep]
doc_id: 1, score: 0.054527204 [The old night keeper keeps the keep in the town]
doc_id: 4, score: 0.054527204 [Where the old night keeper never did sleep.]

O Ul W N =

Fig. 1.

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

The Keeper database. It consists of six one-line documents.

$ java Searcher “the”

Running search(the, Tine)
Number 6 JVL JVL JVL

doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_id:
doc_1id:

f Hits:
score:
score:
score:
score:
score:
score:

.4578294 [The old night keeper keeps the keep in the town]
.4578294 [The house in the town had the big old keep]
.4578294 [The night keeper keeps the keep in the night]
.37381613 [In the big old house in the big old gown.]
.37381613 [And keeps in the dark and sleeps in the 1light.]
.2643279 [Where the old night keeper never did sleep.]

T

OO OO0

O Ul W N =

Fig. 1.

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

The Keeper database. It consists of six one-line documents.

$ java Searcher “the”

Running search(the, Tine)
Number 6 JVL JVL JVL

doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_id:
doc_1id:

f Hits:
score:
score:
score:
score:
score:
score:

.4578294 [The old night keeper keeps the keep in the town]
.4578294 [The house in the town had the big old keep] I
.4578294 [The night keeper keeps the keep in the night]

.37381613 [In the big old house in the big old gown.] A
.37381613 [And keeps in the dark and sleeps in the 1light.]
.2643279 [Where the old night keeper never did sleep.]

T

OO OO0

length 10 vs 9

Sy UL W N

The house
Where the
The night
And keeps

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

in the town had the big old keep

old night keeper never did sleep.
keeper keeps the keep in the night

in the dark and sleeps in the light.

The house is the house.
The house.

$ java Searcher “the”

Running search(the,
Number of Hits:

doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:

score.
score.
score.
score.
score.
score.
score.
score.

Even shorter — encode(0.707)

Shorter — encode(0.447)

Tine)

8
0.55138564 [The house.]
0.5458439 [The house 1is the house]
0.47751394 [The old night keeper keeps the keep in the town]
0.47751394 [The house in the town had the big old keep]
0.47751394 [The night keeper keeps the keep in the night]
0.38988853 [In the big old house in the big old gown.]
0.38988853 [And keeps in the dark and sleeps in the 1light.]
0.27569282 [Where the old night keeper never did sleep.]

$ java

doc_1id:
doc_1id:
doc_1id:
doc_id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:
doc_1id:

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

OO0 N O U W N -

The house is the house. 12
The house. 13
the-the_the__the. 14
0 the-the___the. 15
1 the-thethe__the. 16

Searcher “the”

9,

12,
13,
10,
11,

8,

16,

7,
1,
3,
3,

14,
15,

2,
6,
4,

score.

score:
score:
score:
score.:

score.

score:

score.
score.
score.
score.

score:
score:

score.
score.
score.

0.9393754 [the-the_the__
0.9393754 [The.]
0.83029836 [The the.]
0.81352293 [the-the___
0.6642387 [the-thethe__

0.5871096 [The house.]
0.5871096 [The a.]

0.5812088 [The house is the house.]

0.5084518 [The old night keeper keeps the keep in the town]
0.5084518 [The house in the town had the b1g old keep]
keeper keeps the keep in the night]

<« same encoded lengthNorm

e big old house in the big old gown.]
0.41514918 [And keeps in the dark and sleeps in the light.]
0.2935548 [Where the old night keeper never did sleep.]

0.5084518 [The
0.46968 [The a b c.]
0.46968 The a b.]

0.41514918 [In t

The.
The.

The
The
The

Q9

the.]« term frequency = 4

the.] €« term frequency = 3
the.]<« — term frequency = 2

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

Sy Ul W N =

SimpleAnalyzer
— filters LetterTokenizer with LowerCaseFilter

StandardAnalyzer
— filters StandardTokenizer with StandardFilter, LowerCaseFilter
and StopkFilter, using a list of English stop words.

StandardTokenizer

— grammar-based tokenizer (done in JFlex), implements the Word Break rules
from the Unicode Text Segmentation algorithm, as specified in
Unicode Standard Annex #29.

Standard Filter
— normalizes tokens extracted with StandardTokenizer.

StopFilter
— removes stop words from a token stream.

StandardAnalyzer — Stop Words

The house
Where the
The night
And keeps

Sy UL W N =

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

in the town had the big old keep
old night keeper never did sleep.
keeper keeps the keep in the night
in the dark and sleeps in the light.

$ java Searcher “the”

Running search(the, Tine)
Number of Hits: O

45

StandardAnalyzer — Stop Words

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

Sy UL W N =

$ java Searcher “the”

Running search(the, Tine)
Number of Hits: O

$ java Searcher “and”

Running search(and, Tine)
Number of Hits: O

46

StandardAnalyzer — Stop Words

The house
Where the
The night
And keeps

Sy UL W N =

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

in the town had the big old keep
old night keeper never did sleep.
keeper keeps the keep in the night
in the dark and sleeps in the light.

$ java Searcher “the”

Running search(the, Tine)
Number of Hits: O

$ java Searcher “and”

Running search(and, Tine)
Number of Hits: O

$ java Searcher “in

Running search(in, 1line)
Number of Hits: O

47

48

StandardAnalyzer — Search

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

Sy UL W N =

$ java Searcher “keeper”

Running search(keeper, 1line)

Number of Hits: 3

doc_id: 5, score: 0.614891 [The night keeper keeps the keep in the night]
doc_id: 1, score: 0.5270494 [The old night keeper keeps the keep in the town]
doc_id: 4, score: 0.5270494 [Where the old night keeper never did sleep.]

StandardAnalyzer — Stemming?

The house
Where the
The night
And keeps

Sy UL W N =

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

in the town had the big old keep
old night keeper never did sleep.
keeper keeps the keep in the night
in the dark and sleeps in the light.

$ java Searcher “keeping”

Running search(keeping, 1line)

Number of Hits: O

— stemming?

49

50

EnglishAnalyzer

The old night keeper keeps the keep in the town
In the big old house in the big old gown.

The house in the town had the big old keep
Where the old night keeper never did sleep.

The night keeper keeps the keep in the night
And keeps in the dark and sleeps in the light.

Sy UL W N =

$ java Searcher “keeping”

Running search(keeping, 1line)

Number of Hits: 3

doc_id: 5, score: 0.614891 [The night keeper keeps the keep in the night]
doc_id: 1, score: 0.5270494 [The old night keeper keeps the keep in the town]
doc_id: 3, score: 0.5270494 [The house in the town had the big old keep]

Stemming

— EnglishAnalyzer (in the Query part)

JDBC

— run SQL queries from Java

— there will be a file DbManager.java that opens a
connection to MySQL (at port 3306) and database “ad”

public class DbManager {
static private String databaseURL = "jdbc:mysql://localhost:3306/";

static private String dbname = "ad";
static private String username = "ad";
static private String password = "ad";

public static Connection getConnection(boolean readOnly)
throws SQLException {

Connection conn = DriverManager.getConnection(

databaseURL + dbname, username, password);
conn.setReadOnly(readOnly);

return conn;

51

52

JDBC

— run SQL queries from Java

— there will be a file DbManager.java that opens a
connection to MySQL (at port 3306) to the database “ad”

public static void runQuery(String indexPath) {
Connection conn = null;
Statement stmt = null;
try {
conn = DbManager.getConnection(true);
stmt = conn.createStatement();
String sql = "SELECT count(*) as count from item;";
ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){
String c = rs.getString("count");
System.out.printin("count: " + c);
rs.close();
conn.close();
}

} catch (SQLException ex) { :)
System.out.println(ex); $ java -cp .. runQuery

} count: 19532

53

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

