Applied Databases

Lecture 1
Introduction, Basics of XML

Sebastian Maneth

Univeristy of Edinburgh - January 11", 2016

Applied Databases

- Apply database technology (e.g. MySQL) in varying contexts
- with other technology:
- XML

- Lucene (full-text search)
- RDF

Applied Databases

- Apply database technology (e.g. MySQL) in varying contexts
—> with other technology:
- XML

- Lucene (full-text search)
- RDF

also “big data” issues: -> similarity search
= mining / analytics

Course Organization

Lectures Monday 14:10-15:00
Lecture Theatre 3, Appleton Tower
Thursday 14:10-15:00
Lecture G.03, 50 George Square
Lecturer Sebastian Maneth (smaneth@inf.ed.ac.uk)
TA Geng Lyu
Assessment Exam (70%)

Assignment 1 (15%)
due 12th February, 4:00pm

Assignment 2 (15%)
due 11th March, 4:00pm

21 Lectures

Assignments

Course Format

all material covered in the lectures
IS examinable

Lectures 1-8 cover material
relevant to the Assignments

Assignments

- taken, with consent and warm thanks,
from UCLA lecture “CS144: Web Applications”

Assignments 1 & 2
- Programming assignments, in Java & SQL

- Pair programming:
you are allowed to program in pairs of two persons

Rules:

—> either alone or with partner

- may change partner for 2" assignment
—> submit one solution

- same mark for both in the team

Assignments

Pair programming
- together design database schema
-> individually write load functions for different tables

Ideally together find abstractions that
make the code small, elegant, and readable

Assignment 1

1) design a relational schema for EBAY data
2) convert EBAY data from XML into relational tables (csv files)
3) import csv files into a MySQL database

4) execute some SQL queries over the database

Assignment 1

1) design a relational schema for EBAY data
2) convert EBAY data from XML into relational tables (csv files)
3) import csv files into a MySQL database

4) execute some SQL queries over the database

Requires
- XML parsing (DTDs, DOM, SAX)

- basic DB knowledge (schema design, basic SQL queries)

10
Assignment 1
1) design a relational schema for EBAY data
2) convert EBAY data from XML into relational tables (csv files)
3) import csv files into a MySQL database

4) execute some SQL queries over the database

Lectures 1 & 2

Requires /

- XML parsing (DTDs, DOM, SAX)

- basic DB knowledge (schema design, basic SQL queries)

N

Lectures 3 & 4

Assignment 2

1) create a Lucene full-text Index (from Java)
2) implement a basic keyword search function
3) build a spatial index in MySQL

4) implement spatial search

5) create web interface for keyword & spatial search
and for display of results

11

10km

Assignment 2

1) create a Lucene full-text Index (from Java)
2) implement a basic keyword search function
3) build a spatial index in MySQL

4) implement spatial search

5) create web interface for keyword & spatial search
and for display of results

12

10km

Requires Lecture 6

- spatial search /

- basic knowledge of Lucene / text-indexing

™~

Lecture 7

Assignment 2

1) create a Lucene full-text Index (from Java)
2) implement a basic keyword search function
3) build a spatial index in MySQL

4) implement spatial search

5) create web interface for keyword & spatial search
and for display of results

13

Assignments 1 & 2

- hands-on experience to implement a web store
such as EBAY or similar!!

10km

14

Applied Databases

Main Topics

- Heterogeneous Data (XML, Text, RDF / Graph) Lectures 1,2,7-13
- Recap RDBMS, SQL, Schema Design, Indexes Lectures 3-6

-~ Similarity Search Lectures 14-18
—> Data Analytics Lectures 19-21

15

Lecture 1

Basics of XML

Outline

1. Motivations for XML
2. Well-formed XML

3. Parsing / DTD Validation:

Introduction

16

17

XML

- Similar to HTML (Berners-Lee, CERN - W3C)
use your own tags.

- XML is the de-facto standard for data exchange on the web

18

1. XML

Motivation

to have one language to speak about data

20

1. XML Motivation

- XML is a Data Exchange Format

1974

1989

1994

1996

SGML Standardized Generalized Markup Language
(Charles Goldfarb at IBM Research)

HTML (Tim Berners-Lee at CERN/Geneva)
Berners-Lee founds Web Consortium (W3C)

XML (W3C draft, v1.0 in 1998)

\

http://www.w3.0rg/TR/REC-xml/

XML = data

Philip wadler
U. of Edinburgh
wadler@inf.ed.ac.uk

Helmut Seidl
TU Munich
seidl@inf.tum.de

Text file

21

XML =data + structure

Philip wadler
U. of Edinburgh
wadler@inf.ed.ac.uk

Helmut Seidl
TU Munich
seidl@inf.tum.de

Text file

“mark
it
up!”

22

<Related>

<colleague>

<name>Phi1lip wadler</name>
<affil>u. of Edinburgh</affil>
<email>wadler@inf.ed.ac.uk
</email></colleague>
</colleague>

<friend>

<name>Helmut Seidl</name>
<affil1>TU Munich</affil>
<email>seidl@inf.tum.de
</email>

</friend>

</Related>

XML document

XML =data + structure

Philip wadler
U. of Edinburgh

wadler@inf.ed.ac.uk

Helmut Seidl
TU Munich

seidl@inf.tum.de

“mark
it
up!”

Text file

23

<Related>

<colleague>

<name>Phi1lip wadler</name>
<affil>u. of Edinburgh</affil>
<email>wadler@inf.ed.ac.uk
</email></colleague>
</colleague>

<friend>

<name>Helmut Seidl</name>
<affil1>TU Munich</affil>
<email>seidl@inf.tum.de
</email>

</friend>

</Related>

XML document

Is this a good “template”?

24
XML Documents

- Ordinary text files (UTF-8, UTF-16, UCS-4 ...)
- Originates from typesetting/DocProcessing community

- |dea of labeled brackets (“mark up”) for structure is not new!
(already used by Chomsky in the 1960’s)

- Brackets describe a tree structure

- Allows applications from different vendors to exchange data!

= standardized, extremely widely accepted!

25
XML Documents

- Ordinary text files (UTF-8, UTF-16, UCS-4 ...)
- Originates from typesetting/DocProcessing community

- |dea of labeled brackets (“mark up”) for structure is not new!
(already used by Chomsky in the 1960’s)

- Brackets describe a tree structure

- Allows applications from different vendors to exchange data!

= standardized, extremely widely accepted!

\

Social Implications!
All sciences (biology, geography, meteorology, astrology...)
have own XML “dialects” to exchange their data optimally

26
XML Documents

- Ordinary text files (UTF-8, UTF-16, UCS-4 ...)
Originates from typesetting/DocProcessing community

|dea of labeled brackets (“mark up”) for structure is not new!
(already used by Chomsky in the 1960’s)

Brackets describe a tree structure

- Allows applications from different vendors to exchange data!

= standardized, extremely widely accepted!

Problem highly verbose, lots of repetitive markup

27
XML Documents

- Ordinary text files (UTF-8, UTF-16, UCS-4 ...)
Originates from typesetting/DocProcessing community

|dea of labeled brackets (“mark up”) for structure is not new!
(already used by Chomsky in the 1960’s)

Brackets describe a tree structure

- Allows applications from different vendors to exchange data!

= standardized, extremely widely accepted!

Contra.. highly verbose, lots of repetitive markup

Pro.. we have a standard! A STANDARD!
- © You never need to write a parser again! Use XML! ©

28
XML: Validation & Parsing

... instead of writing a validator, you simply fix your own “XML dialect”,
by describing all “admissible templates” (+ maybe even the specific

data types that may appear inside).

You do this, using an XML Type definition language such
as DTD, XML Schema, or Relax NG.

- type definition languages must be SIMPLE, because you
want the parsers to be efficient!

They are similar to EBNF. = context-free grammar with reg. expr’s in
the right-hand sides. ©

XML Documents

Example DTD (Document Type Description)

Related > (colleague | friend | family)*
colleague > (name,affil*,email¥)

friend - (name,affil*,email*)

family - (name,affil*,email*)

name - (#PCDATA)

\ N

Element names and their content

29

30
XML Documents

Example DTD (Document Type Description)

Related > (colleague | friend | family)*
colleague > (name,affil*,email¥)

friend - (name,affil*,email*)

family - (name,affil*,email*)

name - (#PCDATA)

\ N

Element names and their content

ordered,
Related unranked tree
friend ... colleague family
/LN N
name affil email name email emalil

y
Helmut ..

31
XML Documents

Example DTD

Related > (colleague | friend | family)*
colleague > (name,affil*,email¥)

friend - (name,affil*,email*)

family > (name,affil*,email*)

name - (#PCDATA)

\ N

Element names and their content

Related

/ l “Element node”

: /
friend ... colleagu =@

name affil emalil name email email
v
Victor ..

32
XML Documents

Example DTD

Related > (colleague | friend | family)*
colleague > (name,affil*,email¥)

friend - (name,affil*,email*)

family > (name,affil*,email*)

name - (#PCDATA)

\ N

Element names and their content

Related

/ l “Element node”

: o
friend ... colleagu =@
“Text node” / l \

\ name affii email name email email
v
Victor ..

33
XML Documents

Example DTD
Related > (colleague | friend | family)*
colleague > (name,affil*,email*)
friend - (name,affil*,email*)
family = (name,affil*,email*) Terminology
name - (#PCDATA)
’\ \ document is
valid wrt the DTD

Element names and their content

“It validates”
Related

/ l “Element node”

: o
friend ... colleagu =@
“Text node” / l \

\ name affii email name email email
v
Victor ..

XML Documents

What else: (besides element and text nodes)

—> attributes

—> processing instructions

- comments

- hamespaces

—> entity references (two kinds)

34

XML Documents

What else: (besides element and text nodes)

-> attributes

—> processing instructions

- comments

- hamespaces

—> entity references (two kinds)

<family rel="brother”,age="25">
<name>

</family>

35

36

XML Documents
<?php sql (“SELECT * FROM ...”) ...?>

What else: See 2.6 Processing Instructions

-> attributes

—> processing instructions

- comments

- hamespaces

—> entity references (two kinds)

<family rel="brother’,age="25">
<name>

</family>

37

XML Documents
<?php sql (“SELECT * FROM ...”) ...?>

What else: See 2.6 Processing Instructions

—> attributes

—> processing instructions

- comments <!-- some comment -->
- hamespaces

—> entity references (two kinds)

<family rel="brother’,age="25">
<name>

</family>

38

XML Documents
<?php sql (“SELECT * FROM ...”) ...?>

What else: See 2.6 Processing Instructions

—> attributes

—> processing instructions

- comments <!-- some comment -->
—-> hamespaces

—> entity references (two kinds)

<family rel="brother’,age="25">
<name>

</family>

<!I-- the 'price' element's namespace is http://ecommerce.org/schema -->
<edi:price xmins:edi="http://ecommerce.org/schema’ units='"Euro'>32.18</edi:price>

39

XML Documents
<?php sql (“SELECT * FROM ...”) ...?>

What else: See 2.6 Processing Instructions

—> attributes

—> processing instructions
- comments <!-- some comment -->
—-> hamespaces

- entity references (two kinds) —> character reference

Type <key>less-than</key>
(<) to save options.

<family rel="brother’,age="25">
<name>

</family>

<!I-- the 'price' element's namespace is http://ecommerce.org/schema -->
<edi:price xmins:edi="http://ecommerce.org/schema’ units='"Euro'>32.18</edi:price>

40

XML Documents
<?php sql (“SELECT * FROM ...”) ...?>

What else: See 2.6 Processing Instructions

—> attributes

—> processing instructions
- comments <!-- some comment -->
—-> hamespaces

- entity references (two kinds) — character reference

Type <key>less-than</key>
(<) to save options.

<family rel="brother’,age="25">
<name>

</family> This document was prepared on &docdate; and

<!I-- the 'price' element's namespace is http://ecommerce.org/schema -->
<edi:price xmins:edi="http://ecommerce.org/schema’ units='"Euro'>32.18</edi:price>

XML: not tree but DAG (Directed Acyclic Graph)

—> attributes of type ID: must be unique, i.e., no duplicate values

- may be referenced via attributes of type IDREF

Related

— T

UID=173478" «— friend ... colleague family

SN o INT—

naine affil email name email email friend > uidREF=“173478"
Helmut ..

XML, typical usage scenario

Document structure
Def. of price, gst, ...

DTD, XML Schema

A

Presentation
Format info

XML Stylesheet

42

<Product> XML
<product_id> m101 </product_id> Stylesheet
<name> Sony walkman </name> -
<currency> AUD </currency> X
<price> 200.00 </price>
<gst> 10% </gst> M

</Product> L ™~ XML

Stylesheet

One data source -> several

(dynamic gen.) views

43
XML: has it succeded?

Yes and No:
- has become *very* popular and adopted
- technically it is still (1) challenging:

(*) standard too complex

(*) causes, e.g., slowness of XML parsers
(a “threat to databases”)

- JSON - invented in 2001 by Douglas Crockford
- took off since 2005/2006

JavaScript Object Notation

[1] document

[2] Char
[3] S
[4] NameChar
[5] Name

[22] prolog
[23] XMLDec |

[24]VersionInfo

[25] EQ
[26]VersionNum

[39] element

[40] STag
[41] Attribute
[42] ETag

[43] content

[44]EmptyElemTag ::

[67] Reference
[68] EntityRef
[84] Letter
[88] Digit

44

XML Grammar - EBNF-style

a Unicode character

R AN A R A AN L
(Letter | Digit | *.7 [‘=7 | *:’
(IR A)*
? ¥* (7':)?
'<?xml’ ?
'Ver'S'ion' (ll'll |||||| T
?ot=t 07
'1.0°
<! ().;\. 2 'S
l</l S? 'S¢

(element | Reference | Charbata?)*
'<' Name (S Attribute)* S? '/>°¢

EntityRef | CharRef
'&' Name ';°
[a-zA-Z]

[0-9]

?

? TS

llll)

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

45

2. Well-Formed XML

From the W3C XML recommendation

http://www.w3.0rg/TR/REC-xml/

“A textual object is well-formed XML if,

(1) taken as a whole, it matches the production labeled document
(2) it meets all the well-formedness constraints given in this specification ..”

document = start symbol of a context-free grammar (“XML grammar”)

- (1) contains the contex-free properties of well-formed XML
- (2) contains the context-dependent properties of well-formed XML

There are 10 WFCs (well-formedness constraints).
E.g.: Element Type Match “The Name in an element’s end tag must match

> Why is this not context-free? ~ the element name in the start tag.”

46

XML vs JSON

<Related> Related = {

<colleague> “colleague”:{

<name>Philip wadler</name> “name” :”Philip wadler”,
<affil>u. of Edinburgh</affil> “affi1”:”u. of Edinburgh”,
<email> “email” :wadler@inf.ed.ac.uk
wadler@inf.ed.ac.uk }

</email></colleague> "

</colleague> “friend”: {

. “name” :”Helmut Seidl”,
<friend> “affil”:”Tu Munich”,
<name>Helmut Seidl</name> “email”:”seidl@inf.tum.de”}

<affil>Tu Munich</affil>
<email>seidl@inf.tum.de
</email>

</friend>

</Related>

47

XML vs JSON

- 7 node types
- DTDs are built in

Very rich schema languages, e.g.,

- XML Schema
(e.g., XHTML schema: >2000 lines)

6 data types:

- numbers

- strings

- booleans (true/ false)

- array

- object (set of name:value pairs)
- empty value (null)

XML Parsing: A Threat to Database Performance

Matthias Nicola
IBM Silicon Valley Lab
555 Bailey Avenue
San Jose, CA 95123, USA
mnicola@us.ibm.com

ABSTRACT

XML parsing is generally known to have poor performance char-
acteristics relative to transactional database processing. Yet, its
potentially fatal impact on overall database performance is being
underestimated. We report real-word database applications where
XML parsing performance is a
deployment. There is a conside
cations which are prone to fail
XML parsing. We analyze XM
tify the extra overhead of DTD
son with relational database pe
response times and transaction rates over XML data can not be
achieved without major improvements in XML parsing technol-
ogy. Thus, we identify research topics which are most promising
for XML parser performance in database systems.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—transaction processing.

General Terms: Algorithms, Measurement, Performance,
Design.

Keywords: XML, Parser, Database, Performance, SAX,
DOM, Validation.

1. INTRODUCTION

Jasmi John
IBM Toronto Lab
8200 Warden Ave
Markham, ON L6G 1C7, Canada
jasmij@ca.ibm.com

tially because processing of XML requires parsing of XML
documents which is very CPU intensive.

The performance of many XML operations is often determined by
the performance of the XML parser. Examples are converting
XML into a relational format, evaluating XPath expressions, or

2. XML PARSING IN DATABASES

There are two models of XML parsing, DOM and SAX. DOM
parsers construct the “Document Object Model” in main memory
which requires a considerable amount of CPU time and memory
(2 to 5 times the size of the XML document, hence unsuitable for
large documents). Lazy DOM parsers materialize only those parts
of the document tree which are actually accessed, but if most the
document is accessed lazy DOM is slower than regular DOM.
SAX parsers report parsing events (e.g. start and end of elements)
to the application through callbacks. They deliver an event stream
which the application processes in event handlers. The memory
consumption does not grow with the size of the document. In gen-
eral, applications requiring random access to the document nodes
use a DOM parser while for serial access a SAX parser is better.

49
How expensive is XML Validation?

= DTD is part of XML
- DTDs may contain (deterministic) regular expressions

- How expensive is it to match a text of size n
against a regular expression of size m?

- DTDs allow recursive definitions

- DTDs can specify ID and IDREF attributes
(ID: check uniqueness, IDREF: check existence)

50
How expensive is XML Validation/Parsing?

= DTD is part of XML
- DTDs may contain (deterministic) regular expressions

- How expensive is it to match a text of size n
against a regular expression of size m?

- DTDs allow recursive definitions

- DTDs allow ID and IDREF attributes
(ID: check uniqueness, IDREF: check existence)

Compare this to parsing complexity of

- JSON
- csv files (csv = “comma-separated values”) [IBM Fortran, 1967]

51

