Agent-Based Systems Tutorial 6

Michael Rovatsos

- **Q1** Consider the politics in the UK example from the lecture: $\Omega = \{\omega_L, \omega_D, \omega_C\}$, where ω_L represents the Labour Party, ω_D the Liberal Democrats and ω_C the Conservative Party. Voters have the following preferences:
 - 43% of |Ag| are left-wing voters: $\omega_L \succ \omega_D \succ \omega_C$
 - 12% of |Ag| are centre-left voters: $\omega_D \succ \omega_L \succ \omega_C$
 - 45% of |Ag| are right-wing voters: $\omega_C \succ \omega_D \succ \omega_L$
 - 1. Which party will win an election based on the following voting procedures:
 - Plurality
 - Sequential majority elections with $\omega_L, \omega_D, \omega_C$
 - 2. Is it possible to fix the election agenda in favour of any outcome?
 - 3. Assuming that a new fourth party ω_N emerges altering the preferences of the voters to:
 - 38% of |Ag| are left-wing voters: $\omega_L \succ \omega_D \succ \omega_N \succ \omega_C$
 - 11% of |Ag| are centre-left voters: $\omega_D \succ \omega_L \succ \omega_N \succ \omega_C$
 - 39% of |Ag| are right-wing voters: $\omega_C \succ \omega_D \succ \omega_L \succ \omega_N$
 - 12% of |Ag| are voters of the new party: $\omega_N \succ \omega_C \succ \omega_D \succ \omega_L$

In favour of which party is it possible to fix the election agenda in sequential majority elections?

- 4. Determine the winner of the election using the following voting procedures:
 - The Borda count
 - The Slater ranking
- Q2 Consider the following coalitional games:
 - (The glove game) Players have left and right hand gloves and they are trying to form pairs. Players 1 and 2 have right hand gloves whereas player 3 has a left hand glove. The agents have the following value function:

$$v(C) = \begin{cases} 1 & \text{if } C \in \{\{1,3\}, \{2,3\}, \{1,2,3\}\} \\ 0 & \text{otherwise} \end{cases}$$

 (The treasure of Sierra Madre game) 3 people find a treasure of many gold pieces in the mountains of Sierra Madre. Each piece can be carried by two people but not by a single person. The valuation function of this game is:

$$v(C) = \lfloor \frac{|C|}{2} \rfloor$$

- 1. Compute the Core
- 2. Compute the Shapley value for both games.
- **Q3** Consider the following weighted voting game: $\langle 10; 6, 4, 2 \rangle$.
 - 1. Calculate the Shapley-Shubik power index for all players.
 - 2. How important is the role of player 3 in the game?
 - 3. Suppose we add one more player to the game: $\langle 10; 6, 4, 2, 8 \rangle$. How does this affect the role of player 3?