Agent-Based Systems Tutorial 2

Michael Rovatsos

- **Q1** Formally define the function $new : D \times Per \rightarrow D$ that updates the agent's knowledge base for the vacuum-world example (using a schematic tabular representation or pseudo-code, if desired).
- **Q2** Suggest a compact and elegant decision making algorithm for the vacuum world that works for arbitrary grids using first-order logic. You can use the usual quantifiers \exists and \forall , equality =, integers and normal operations on them as well as a constant *S* which denotes the size of the grid.
- **Q3** The following specification describes the famous "Snow White" example in Concurrent MetateM:

SnowWhite(ask)[give] :

$$@ask(x) \Rightarrow \Diamond give(x)$$

 $give(x) \land give(y) \Rightarrow (x = y)$
 $eager(give)[ask] :$
 $start \Rightarrow ask(eager)$
 $@give(eager) \Rightarrow ask(eager)$
 $greedy(give)[ask] :$
 $start \Rightarrow \Box ask(greedy)$
courteous(give)[ask] :
 $((\neg ask(courteous) \ S \ give(eager)) \land$
 $(\neg ask(courteous) \ S \ give(greedy))) \Rightarrow ask(courteous)$
 $shy(give)[ask] :$
 $start \Rightarrow \Diamond ask(shy)$
 $@ask(x) \Rightarrow \neg ask(shy)$
 $@give(shy) \Rightarrow \Diamond ask(shy)$

Describe what the programme does and trace its operation in a table for the first three time steps. For reference, the following table summarises the MetateM operators:

$\bigcirc arphi$	arphi is true tomorrow
$\odot \varphi$	arphi was true yesterday
$\Diamond \varphi$	arphi now or at some point in the future
$\Box \varphi$	arphi now and at all points in the future
$\blacklozenge \varphi$	arphi was true sometimes in the past
$\blacksquare \varphi$	arphi was always true in the past
$arphi \mathcal{U} \psi$	ψ some time in the future φ until then
$\varphi \mathcal{S} \psi$	ψ some time in the past, φ since then (but not now)
$\varphi \mathcal{W} \psi$	ψ was true unless $arphi$ was true in the past
$\varphi \mathcal{Z} \psi$	like " ${\mathcal S}$ " but φ may have never become true